专题讲练:三角形边角关系及命题与证明重难点问题

合集下载

八年级数学上第13章三角形中的边角关系命题与证明13.1三角形中的边角关系2三角形中角的关系授课

八年级数学上第13章三角形中的边角关系命题与证明13.1三角形中的边角关系2三角形中角的关系授课
知1-练
导引:有一个角是直角的三角形就是直角三角形,已 知∠ACB=90°,CD⊥AB,可得到∠ADC= ∠CDB=90°.
解: 图中直角三角形有:Rt△ABC,斜边为AB; Rt△ADC,斜边为AC;Rt△DBC,斜边为BC.
感悟新知
总结
知1-讲
找直角三角形就是找直角,找斜边也是找直角.
感悟新知
的三角形叫做钝角三角形.
要点精析:
(1)从角的角度判断三角形的形状,主要看最大的内角即 可,最大的内角为锐角、直角、钝角,则三角形的形
状分别为锐角三角形、直角三角形和钝角三角形;
感悟新知
(2)直角三角形夹直角的两边为直角边,直角的对边
知1-讲
为斜边,直角三角形ABC可以写成Rt△ABC. 2.三角形按角的大小可分为:
谢谢观赏
You made my day!
④直角三角形一定不是等腰三角形.
A.1个 B.2个 C.3个 D.4个
感悟新知
导引:紧扣三角形分类的标准进行辨析.
知1-练
①锐角三角形的三个角都为锐角,锐角小于 90°,故正确;
②等边三角形的三个角都为 60°,所以它是锐角三角形,故 正确;
③对于顶角是钝角的等腰三角形,不满足题设条件,故错误;
④直角三角形可能是等腰三角形,三角尺中就有一个是等腰 三角形的直角三角形,故错误.故选B.
(2)已知:∠A∶∠B∶∠C=3∶4∶5,则∠C=_____.
2 已知:如图,∠ACB=90°,CD⊥AB,垂足是D.
(1)写出图中所有相等的角;
(2)写出图中所有直角三角形,
并指出它们的斜边.
课堂小结
三角形中角的关系
1. 任意一个三角形的三个内角和都等于180°,这一性质 是三角形中角的关系的一个非常重要的性质,当已知 三角形的两个内角时,可以很容易求出第三个角.例 如,在△ABC中,如果∠A=30°,∠B=90°,那么 ∠C=180°- ∠A-∠B=180°-30°-90°=60°.

沪科8年级数学上册第13章2 命题与证明

沪科8年级数学上册第13章2 命题与证明

作为进一步判断其他命题真假的依据,只不过基本事实
(公理) 是最原始的依据;而命题不一定是真命题,因而不
能直接用来作为判断其他命题真假的依据.
例 4 填写下列证明过程中推理的依据.
知4-练
如图13.2-1,已知AC,BD相交于点O,DF平分
∠CDO与AC相交于点F,BE平分
∠ABO与AC相交于点E,∠A=∠C.
知识点 5 三角形内角和定理及推论1, 2
知5-讲
1. 定理 三角形的内角和等于180°. 几何语言:在△ABC中,∠A+∠B+∠C=180°.
2. 三角形内角和定理的证明
知5-讲
证明方法 方法一
图示
证明过程
如图,过点A作l∥BC,则 ∠2=∠B,∠3=∠C. 因为 ∠1+∠2+∠3=180°,所 以∠1+∠B+∠C=180°.
知1-练
解:(1)(2)(3)(4)(5)(7)是命题,其中(2)(3)是真命题, (1)(4)(5)(7)是假命题.(6)不是命题.
知1-练
1-1. [期末·宿州桥区]下列命题是真命题的是( C ) A. 如果AB=BC,那么点C是AB的中点 B. 三条线段的长分别为a,b,c,如果a+b > c,那 么这三条线段一定能组成三角形 C. 三角形的内角和等于180° D. 如果| a |=| b |,那么a=b
续表: 证明方法
方法二
图示
知5-讲
证明过程 如图, 过点C作CD∥AB, 则∠1=∠A,∠2=∠B. 因 为∠1+∠2+∠ACB= 180°,所以∠A+∠B+ ∠ACB=180°.
续表: 证明方法
方法三
图示
知5-讲
证明过程 如图,过点D作DE∥AB, DF∥AC,则∠1=∠C, ∠2=∠4,∠3=∠B,∠A =∠4. 所以∠2=∠A. 因为 ∠1+∠2+∠3=180°,所 以∠A+∠B+∠C=180°.

八年级上册数学 三角形三边关系-命题与证明

八年级上册数学 三角形三边关系-命题与证明

三角形中的边角关系、命题与证明【学习目的】①理解与三角形有关的基本概念②命题与证明考点一:三角形中的边角关系►知识点拨:1.三角形中的有关概念(1)三角形的概念:由不在同一直线上的三条线段首尾依次相接所组成的封闭图形叫做三角形.用符号“△”表示.(2)三角形的顶点、边和角:①边的表示;②角的表示;③对边、对角的概念.2.三角形按边的关系分类(1)不等边三角形:三条边互不相等;②等腰三角形:有两条边相等的三角形;(2)等边三角形:三条边都相等的三角形(等腰三角形的特例)3.三角形的三边关系:三角形中任何两条边的和大于第三边,两边的差(绝对值)小于第三边.4.三角形中角的关系(1)按角分类:①直角三角形;②斜三角形:锐角三角形和钝角三角形.(2)三角形的内角和等于180 .注意:①用Rt△ABC表示直角三角形;②任意一个三角形最多有三个锐角;最少有两个锐角;最多有一个钝角;最多有一个直角;③任何三角的最大内角不能小于60 ,最小内角不能大于60 .5.三角形中的几条重要线段(1)角平分线:角平分线把角分成两个相等的角.(三条角平分线的交点就是三角形的外心)(2)中线:三角形一顶点与它对边中点的线段叫中线.(三条中线的交点就是三角形的重心)(3)高线:三角形一顶点与它对边所在直线的垂线段叫三角形的高线.注意:三角形的中线所分得的两个三角形的面积相等.6.定义:能明确界定某个对象含义的语句叫做定义.例1:如图所示,以点A为顶点的三角形共有()A.6个B.7个C.8个D.9个A.20或16B.20C.60D.以上都不对例3:若四条线段的长分别为2cm、3cm、4cm、5cm,以其中的三条线段为边长,则可以构成三角形的个数有()A.1 B.2 C.3 D.4A.锐角三角形B.钝角三角形C.直角三角形D.无法确定例5:如图,CD、CE、CF分别是△ABC的高、角平分线、中线,则下列各式中错误的是()A.BA=2BFB.2∠ACE=∠ACBC.AE=BED.CD⊥BE例6:下列属于定义的是()A.两点确定一条直线B.两直线平行,同位角相等C.三角形的高、角平分线和中线都是线段D.有一个角是直角的三角形叫做直角三角形基础训练1、如图所示,AB=AC,BE=CD,AD=BD=DE=AE=CE,则图中共有个等腰三角形,有个等边三角形.第1题图第3题图第4题图2、一个等腰三角形中,一边长为9cm,另一边长为5cm,则等腰三角形的周长是.3、如图,AD、BE、CF分别是△ABC的高、中线、角平分线.则△ADC的高、中线、角平分线分别是.4、如图,图中以AB为边的三角形的个数是()A.3B.4C.5D.6A.等腰三角形B.等边三角形C.直角三角形D.不能确定6、三角形的两边长分别为3,8,则第三边长为()A.5B.6C.3D.117、以下各组长度的线段为边,组成的三角形是()A.2、3、5B.3、3、6C.5、8、2D.4、5、68、设三角形的三边长分别为2,9,1-2a,则a的取值范围是()A.3<a<5B.-5<a<3C.-5<a<-3D.不能确定9、三角形的内角和等于()A.90B.180C.300D.36010、在△ABC中,若∠A=54 ,∠B=36 ,则△ABC是()A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形11、当三角形中一个内角α是另一个内角β的2倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为()A.30°B.50°C.80°D.100°12、三角形的角平分线、中线和高()A.都是射线B.都是直线C.都是线段D.都在三角形内13、如图所示,已知∠1=∠2,∠3=∠4,则下列结论正确的个数为()①AD平分∠BAF;②AF平分∠DAC;③AE平分∠DAF;④AE平分∠BAC.A.②和③B.③和④C.①和④D.仅有③14、下面四个命题中属于定义的是()A.两点之间线段最短B.对顶角相等C.有两条边相等的三角形叫等腰三角形D.内错角相等强化训练1.在△ABC中,如果∠A:∠B:∠C=1:2:3,则△ABC一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形2.如图,AE是△ABC的中线,D是BE上一点,若BE=5,DE=2,则CD的长为()A.7B.6C.5D.43.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()4.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是()A.3cm,4cm,8cmB.8cm ,7cm,15cmC.5cm ,5cm,11cmD.13cm ,12cm,20cm5.如图,在△ABC中,点D是边AB上的一点,点E是边AC上一点,且DE∥BC,∠B=40 ,∠AED=60 ,则∠A的度数是()A.100 B.90 C.80 D.70第5题图第7题图第8题图6.一个三角形的两边长为8和10,则它的最短边a的取值范围是.7.如图,AD是△ABC的BC边上的高,AE是∠BAC的平分线.(1)若∠B=47°,∠C=53°,则∠DAE=度;(2)若∠B=α,∠C=β(α<β),则∠DAE=度.(用α、β含的代数式表示)8.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是.9.已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是_____.10.如图,在△ABC中,∠A=40 ,D点是∠ABC和∠ACB角平分线的交点,则∠BDC=_____.11.如图,AD为△ABC的中线,BE为△ABD的中线.(1)若∠ABE=15 ,∠BAD=40 ,求∠BED的度数;(2)在△BED 中,作BD 边上的高;(3)若△ABC 的面积为40,BD=5,求△BDE 中BD 边上的高为多少?12.如图,在△ABC 中,AD 是BC 边上的高,AE 、BF 是角平分线,它们相交于点O ,∠BAC =50°,∠C =70°,求∠DAC ,∠BOA.能力提升1.各边长度都是正整数且最大边长为8的三角形共有个.2.三角形的三边长分别为a 、b 、c ,且(a -b-c)∙(b-c)=0,则此三角形为________三角形.3.如图所示,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12=∆ABC S ,则图中阴影部分面积是_____.4.如图所示,在△ABC 中,已知点D 、E 、F 分别为边BC 、AD 、CE 的中点,且24cm S ABC =∆,则阴影S 等于 ( )5.如图,用钢筋做支架,要求BA 、DC 相交所成的锐角为32 ,现测得∠BAC=∠DCA=115 ,则这个支架符合设计要求吗?为什么?6.设三角形的三条边为整数a 、b 、c 且c b a ≤≤,当b=4时,符合条件的a 、b 、c 的取值若下表:(1)将表格补充完整;(2)满足条件的三角形共有多少个?其中等腰三角形有多少个?等边三角形又有多少个? 考点二:命题与证明例1:下列语句不是命题的是()A.直角都等于90 B.对顶角相等 C.互补的两个角不相等 D.作线段AB例2:把下例命题改写成“如果......那么.....”的形式,并分别指出它们的题设和结论.(1)整数一定是有理数;(2)同角的补角相等;(3)两个锐角互余.例3:写出下列命题的逆命题,并判断真假(1)两直线平行,同位角相等;(2)若a=0,则a b=0;(3)对顶角相等.例4:请举反例说明命题“对于任意实数x ,552++x x 的值总是正数”是假命题,你举的反例是_____(写出一个的值即可).例5:在下列证明中,填上推理依据:如图,CD ∥EF ,∠1=∠2,求证:∠3=∠ACB.例6:如图,在△ABC 中,∠ABC=66 ,∠ACB=54 ,BE 、CF 是两边AC 、AB 上的高,它们交于点H.求∠ABE 和∠BHC 的度数.基础训练1、下列语句中,不是命题的是 ( ) A.两点之间线段最短B.对顶角相等C.不是对顶角的两个角不相等D.过直线AB 外一点P 作直线AB 的垂线2、下列命题中,是真命题的是 ( ) A.三角形的一个外角大于任何一个内角 B.三角形的一个外角等于两个内角之和 C.三角形的两边之和一定不小于第三边D.三角形的三条中线交于一点,这个交点就是三角形的重心3、“两条直线相交只有一个交点”的题设是 ( )A.两条直线B.相交C.只有一个交点D.两条直线相交4、已知命题A:“任何偶数都是8的整数倍”.在下列选项中,可以作为“命题A是假命题”的反例的是()A.2kB.15C.24D.425、如图,下列说法中错误的是()A.∠1不是△ABC的外角B.∠B<∠1+∠2C.∠ACD是△ABC的外角D.∠ACD>∠A+∠B第5题图第6题图第7题图6、一副三角板有两个直角三角形,如图叠放在一起,则∠α的度数是()A.165B.120C.150D.1357、如图,在△ABC中,∠ACB=90°,CD∥AB,∠ACD=40°,则∠B的度数为()A.40°B.50°C.60°D.70°8、命题“有两边相等的三角形是等腰三角形”的题设是,结论是,它的逆命题是.9、完成以下证明,并在括号内填写理由:已知:如图所示∠1=∠2,∠A=∠3.求证:AC∥DE.证明:因为∠1=∠2,所以AB∥.()所以∠A=∠4.()又因为∠A=∠3,所以∠3=.()所以AC∥DE. ()10、将下列命题改写成“如果......那么......”的形式,并分别指出命题的题设与结论:(1)直角都相等;(2)末位数字是5的整数能被5整除;(3)同角的余角相等.11、分析下列所举反例的正确性,若不正确,请写出正确的反例.(1)若|x|=|y|,则x=y;反例:取x=3,y=-3,则|x|=|y|,所以此命题是假命题;(2)两个锐角的和一定是钝角;反例:取∠1=30°,∠2=100°,则∠1+∠2=130°,不符合命题的结论,所以此命题是假命题;(3)若|a|=a,则a>0.12、如图,已知AC∥DE,∠1=∠2.求证:AB∥CD.13、如图,在△ABC中,∠A=62°,∠ABD=∠DCE=36°,求∠BEC的度数.14、如图,点E是△ABC中AC边上的一点,过E作ED⊥AB,垂足为D,若∠1=∠2,,则△ABC 是直角三角形吗?为什么?强化训练1.如图,在锐角三角形ABC中,CD、BE分别是AB、AC边上的高,且CD、BE相交于点P.若∠A =50°,则∠BPC的度数是()A.150B.130C.120D.1002.如图,从①∠1=∠2;②∠C=∠D;③∠A=∠F三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为()A.0 B.1 C.2 D.3第2题图第6题图3.一个三角形的三个外角之比为3:4:5,则这个三角形三个内角之比是()A.5:4:3B.4:3:2C.3:2:1D.5:3:14.能说明命题“对于任何实数a ,a a ->”是假命题的一个反例可以是 ( )A.a =-2B.31=a C. a =1 D.2=a 5.下列命题:①对顶角相等;②同位角相等,两直线平行;③若b a =,则b a =;④若0=x ,则022=-x x .它们的逆命题一定成立的有 ( )A.①②③④B.①④C.②④D.②6.如图,CE 是△ABC 的外角∠ACD 的平分线,若∠B=35 ,∠ACE=60 ,则∠A= ( )A.35B.95C.85D.757.如图,在△ABC 中,∠B=40 ,三角形的外角∠DAC 和∠ACF 的平分线交于点E ,则∠AEC=.8.直角三角形中两个锐角的平分线相交所成的锐角的度数是.9.写出命题“如果b a =,那么b a 33=”的逆命题:.10.如图,AD 是△ABC 的高,BE 平分∠ABC 交AD 于E.若∠C =60°,∠BED =54°,求∠BAC 的度数.11.如图,AD 是△ABC 的外角平分线,交BC 的延长线于D 点,若∠B=30°,∠ACD=100°, 求∠DAE 的度数.12.如图,D是△ABC内的任意一点.求证:∠BDC=∠1+∠A+∠2.13.用两种方法证明“三角形的外角和等于360 ”.如图,∠BAE、∠CBF、∠ACD是△ABC的三个外角.求证:∠BAE+∠CBF+∠ACD=360 .证法1: ,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180⨯ 3=540 .∴∠BAE+∠CBF+∠ACD=540 -(∠1+∠2+∠3).,∴∠BAE+∠CBF+∠ACD=540 -180 =360 .请把证法1补充完整,并用不同的方法完成证法2.能力提升1.如图,∠A+∠B+∠C+∠D=.2.观察下列各式:想一想:什么样的两个数之积等于这两个数的和?设n 表示正整数,用关于n 的代数式表示这个规律:_______×_______=_______+________.3.如图,在△ABC 中,AD 是BC 边上的中线,且AD=12BC .2224,24;1139393,3;22224164164,4;33335255255,5.4444⨯=+=⨯=+=⨯=+=⨯=+=(1)求证:∠BAC=90°;(2)直接运用这个结论解答题目:一个三角形一边长为2,这边上的中线长为1,另两边之和为4.如图在△ABC中AB=AC,∠BAC=900,直角∠EPF的顶点P是BC的中点,两边PE、PF分别交AB、AC于E、F.(1)求证:AE=CF(2)是否还有其他结论,不要求证明(至少2个)。

第13章三角形中的边角关系命题与证明总复习

第13章三角形中的边角关系命题与证明总复习
第13章三角形中的边角关 系、命题与证明
总复习
1.三角形的概念
不在同一直线上的三条线段首尾顺次相接组成 的图形叫做三角形.
注意: 1:三条线段要不在同一直线上,且首尾顺
次相接; 2:三角形是一个封闭的图形; 3:△ABC是三角形ABC的符号标记,单独
的△没有意义
2.三角形的三边关系
三角形的任意两边之和大于第三边; 三角形的任意两边之差小于第三边.
(1)基本事实:从长期实践中总结出来的,不需
要再作证明的真命题。
(2)定理:从公理或其他真命题出发,用推理方法证
明为正确的,并被选作判断命题真假的依据的真命 题
(3)推论:由公理、定理直接得出的真命题。
(4)演绎推理:从已知条件出发,依据定义、公
理、定理,并按照逻辑规则,推导出结论的方法。
(5)证明:演绎推理的过程就是演绎证明,简称“证
O 1
图1
2 C
例3如图,在△ABC中, ∠BAC=4∠ABC=4∠C,BD⊥AC于点 D,求∠ABD的度数。
答案∠ABD=30°
例4如图,AC∥BD,AE平分∠BAC 交BD于点E,若∠1=64°,则 ∠2= .
例5:在三条边都不相等的三角形中,同一条边 上的中 线,高和这边所对角的角平分线,最
短的是( B )
A:中线
B:高线。
C:角平分线
D:不能确定。
6.有关“命题”的概念
命题的定义:用来判断它是真(正确)、假 (错误)的语句或式子。
命题的分类
命题的结构
命题的逆命题 如何说明一个命题是真命题?
7.有关“基本事实、定理、证明、推论、 演绎推理、辅助线”等概念
边所在 的直线作垂线,顶点和垂足之间的线

三角形中的边角关系、命题与证明

三角形中的边角关系、命题与证明

高效学案4、三角形中的重要线段(1)三角形的角平分线:三角形的一个内角的平分线与它的对边相交,连接这个角的顶点和交点之间的线段.(2)三角形的中线:三角形中,连接一个顶点和它所对边的中点的线段叫做三角形的中线.(3)三角形的高:从三角形一个顶点向它的对边作一条垂线,三角形顶点和垂足之间的线段称三角形这条边上的高.三、经典例题【例1】以下列各组线段长为边,能组成三角形的是( )A .1cm ,2cm ,4cmB .8cm ,6cm ,4cmC .12cm ,5cm ,6cmD .2cm ,3cm ,6cm【变式1】两根木棒的长分别为7cm 和10cm ,要选择第三根棒,将它钉成一个三角形框架,那么第三根木棒长x cm 的范围是__________.【变式2】若a 、b 、c 是△ABC 的三边,化简c b a a c b c b a +--+--+--.【变式3】如图,已知P 是△ABC 内一点,连结AP ,PB ,PC .求证:PA+PB+PC >21(AB+AC+BC).【例2】等腰三角形的两边长分别为5 cm 和10 cm ,则此三角形的周长是( )A .15cmB .20cmC .25 cmD .20 cm 或25 cm【例3】已知△ABC 中:(1)∠A=20°,∠B ﹣∠C=40°,则∠B=______;(2)∠A=120°,2∠B+∠C=80°,则∠B=_______;(3)∠B=∠A+40°,∠C=∠B ﹣50°,则∠B=_______;(4)∠A :∠B :∠C=1:3:5,则∠B=_______.E DA 2 1 ABC 【变式】如图把△ABC 纸片沿DE 折叠,当点A 在四边形BCDE 的内部时,则∠A 与∠1、∠2之间有一种数量关系始终保持不变.请试着找出这个规律,你发现的规律是( )A.∠A=∠2+∠1B.2∠A=∠2+∠1C.3∠A=2∠1+∠2D.3∠A=2∠1+2∠2【例4】如图,α、β、γ分别是△ABC 的外角,且α:β:γ= 2:3:4,则α =__________.【变式1】如图,五角星ABCDE ,求E D C B A ∠+∠+∠+∠+∠的度数.【变式2】已知:如图1,线段AB 、CD 相交于点O ,连接AD 、CB ,我们把形如图1的图形称之为“8字形”.试解答下列问题:(1)在图1中,请直接写出∠A 、∠B 、∠C 、∠D 之间的数量关 ;(2)在图2中,若∠D=40°,∠B=36°,∠DAB 和∠BCD 的平分线AP 和CP 相交于点P ,并且与CD 、AB 分别相交于M 、N .利用(1)的结论,试求∠P 的度数;(3)如果图2中∠D 和∠B 为任意角时,其他条件不变,试问∠P 与∠D 、∠B 之间存在着怎样的数量关系?【例5】如图,∆ABC 中,AD 是BC 上的中线,BE 是∆ABD 中AD 边上的中线,若∆ABC 的面积是24,则∆ABE 的面积是________.【例6】如图,在△ABC 中,BE ⊥AC ,BC=5cm ,AC=8cm ,BE=3cm .(1)求△ABC 的面积;(2)画出△ABC 中的BC 边上的高AD ,并求出AD 的值.【例7】已知:如图AB//CD 直线EF 分别交AB 、CD 于点E 、F ,BEF ∠的平分线与DFE ∠的平分线相交于P ,求证 90=∠P .【变式】如图,∠MON=90°,点A ,B 分别在射线OM ,ON 上运动,BE 平分∠NBA ,BE 的反向延长线与∠BAO 的平分线交于点C .∠BAO=45°则∠C 的度数是( )A .30°B .45°C .55°D .60°【例8】如图,△ABC 中,∠B 和∠C 的平分线交于点O ,若∠A=70°,则∠BOC= 度.【变式】认真阅读下面关于三角形内外角平分线所夹的探究片段,完成所提出的问题.探究1:如图1,在△ABC 中,O 是∠ABC 与∠ACB 的平分线BO 和CO 的交点,试分析∠BOC 与∠A 有怎样的关系? 探究2:如图2中,O 是∠ABC 与外角∠ACD 的平分线BO 和CO 的交点,试分析∠BOC 与∠A 有怎样的关系? 探究3:如图3中,O 是外角∠DBC 与外角∠ECB 的平分线BO 和CO 的交点,则∠BOC 与∠A 有怎样的关系?四、方法归纳1、三角形的边的关系,只需验证:两个较短的边之和大于第三边即可.2、三角形的两边长分别为b a ,,则第三边长c 的取值范围是:b a c b a +<<-.3、三角形的几种“心”.(1)重心:三条中线的交点.(2)外心:三边垂直平分线的交点.(3)内心:三条内角平分线的交点.(4)垂心:三条高线的交点.五、课后作业【作业1】1.如图所示,共有_______个三角形,以AD 为一边的三角形有___________________,∠C 是△ADC 的________边的对角,AE 是△ABE 中∠_____的对边.2.一个三角形周长为27cm ,三边长为2:3:4,则最长边为______cm.3.已知在△ABC 中,5=a ,3=b ,那么第三边c 的取值范围是_____________.4.在△ABC 中,2∠A=3∠B=6∠C ,则△ABC 是________三角形.5.在△ABC 中,已知∠B -∠A=5°,∠C -∠B=20°,则∠A=_______.6.如图,在△ABC 中,∠ACB=90°,∠ABC=25°,CD ⊥AB 于D ,则∠ACD =_________.7.等腰三角形周长为14,其中一边长为3,则腰长为________.8.一个三角形有两条边相等,一边长为4cm ,另一边长为9cm ,那么这个三角形的周长是__________.9.在△ABC 中,∠B ,∠C 的平分线交与点O ,若∠BOC=132°,则∠A=________.10.如图,在△ABC 中,D 、E 分别是AB 、AC 边上的点,DE ∥BC ,∠ADE=30°,∠C=120°,则∠A 等于( )A.60°B.45°C.30°D.20°11.如果三角形的一个角等于其他两个角的差,那么这个三角形一定是( )A.锐角三角形B.直角三角形C.钝角三角形D.不确定12.一个三角形的两边长分别为3和7,若第三边长为偶数,则第三边为( )A.4,6B.4,6,8C.6,8D.6,8,1013.能将三角形的面积分成相等的两部分的是( )A.三角形的角平分线B.三角形的中线C.三角形的高线D.以上都不对14.在△ABC 中,若∠A :∠B :∠C=1:2:3,则△ABC 是( )A.锐角三角形B.直角三角形C.钝角三角形D.正三角形15.如图,AD 、AF 分别是△ABC 的高和角平分线,已知∠B=36°,∠C=76°,求∠DAF 数.(提示:先证明∠DAF=21(∠C -∠B ))16.如图,已知I 为△ABC 的内角平分线的交点.求证:∠BIC=90°+21∠A.17.如图,在△ABC 中,∠B = 60°,∠C = 50°,AD 是∠BAC 的平分线,DE 平分∠ADC 交AC 于E ,求∠BDE 的度数.18.如图,在△ABC 中,∠B=∠C ,FD ⊥BC ,DE ⊥AB ,垂足分别为D 、E ,已知∠AFD=150°,求∠EDF 等于多少度?【作业2】1.如图,AD ,BE ,CF 是△ABC 的中线、高、角平分线.则:BD=___=21___;∠___=∠___=90°;∠___=∠___=21∠___. 2.如图,在△ABC 中,AD ⊥BC ,CE ⊥AB ,已知AB=6,BC=4,AD=5,则CE=______.3.如图,AD 、AE 分别是△ABC 的中线、高,且AB=5,AC=3,则△ABD 与△ACD 的周长的差是_________,△ACD 与△ABD 的面积关系为__________.第1题 第2题 第3题 第4题 第5题4.如图,△ABC 的周长是21cm ,AB=AC ,中线BD 分△ABC 为两个三角形,且△ABD 的周长比△BCD 的周长大6cm ,则AB= ,BC=_________.5.如图,在△ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点,且2ABC cm 8=∆S ,则阴影部分的面积等于_________.6.在△ABC 中,若AB=5,AC=2,且三角形周长为偶数,则BC=________.7.△ABC 的三边长是a ,b ,c ,则c b a a c b c b a +++-----=________.第8题 第9题 第10题8.如图,在Rt △ABC 中,∠C=90°,点B 沿CB 所在直线远离C 点移动,下列说法不正确的是( )A.三角形面积随之增大B.∠CAB 的度数随之增大C.边AB 的长度随之增大D.BC 边上的高随之增大9.如图,在△ABC 中,∠B 、∠C 的平分线BE ,CD 相交于点F ,∠ABC=42°,∠A=60°,则∠BFC=( )A.118°B.119°C.120°D.121°10.如图,在△ABC 中,BO ,CO 分别平分∠ABC 和∠ACB ,则∠BOC 与∠A 的大小关系是( )A.∠BOC=2∠AB.∠BOC=90°+∠AC.∠BOC=90°+21∠A D.∠BOC=90°21-∠A11.如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°﹣∠ABD;④∠BDC=∠BAC.其中正确的结论有()A.1个B.2个C.3个D.4个12.如图,在△ABC中,∠ABC与∠ACB的平分线相交于D,已知∠A=50°,求∠BDC的度数.13.如图,已知BD为∠ABC的平分线,CD为△ABC的外角∠ACE的平分线,CD与BD交于点D,试说明∠A=2∠D.14.如图,已知AB∥CD,EF与AB、CD分别相交于点E、F,∠BEF与∠EFD的平分线相交于点P,求证:EP⊥FP.15.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.16.已知:∠MON=40°,OE 平分∠MON ,点A 、B 、C 分别是射线OM 、OE 、ON 上的动点(A 、B 、C 不与点O 重合),连接AC 交射线OE 于点D .设∠OAC x =°.21(1)如图1,若AB ∥ON ,则①∠ABO 的度数是 ;②当∠BAD=∠ABD 时,=x ;当∠BAD=∠BDA 时,=x .(2)如图2,若AB ⊥OM ,则是否存在这样的x 的值,使得△ADB 中有两个相等的角?若存在,求出x 的值;若不存在,说明理由.第二节:命题与证明一、课堂导入有个学生请教爱因斯坦逻辑学有什么用。

中考数学直角三角形的边角关系的综合热点考点难点含答案解析

中考数学直角三角形的边角关系的综合热点考点难点含答案解析

中考数学直角三角形的边角关系的综合热点考点难点含答案解析一、直角三角形的边角关系1.如图,PB为☉O的切线,B为切点,过B作OP的垂线BA,垂足为C,交☉O于点A,连接PA,AO.并延长AO交☉O于点E,与PB的延长线交于点D.(1)求证:PA是☉O的切线;(2)若=,且OC=4,求PA的长和tan D的值.【答案】(1)证明见解析;(2)PA =3,tan D=.【解析】试题分析: (1)连接OB,先由等腰三角形的三线合一的性质可得:OP是线段AB的垂直平分线,进而可得:PA=PB,然后证明△PAO≌△PBO,进而可得∠PBO=∠PAO,然后根据切线的性质可得∠PBO=90°,进而可得:∠PAO=90°,进而可证:PA是⊙O的切线;(2)连接BE,由,且OC=4,可求AC,OA的值,然后根据射影定理可求PC的值,从而可求OP的值,然后根据勾股定理可求AP的值.试题解析:(1)连接OB,则OA=OB,∵OP⊥AB,∴AC=BC,∴OP是AB的垂直平分线,∴PA=PB,在△PAO和△PBO中,∵,∴△PAO≌△PBO(SSS)∴∠PBO=∠PAO,PB=PA,∵PB为⊙O的切线,B为切点,∴∠PBO=90°,∴∠PAO=90°,即PA⊥OA,∴PA是⊙O的切线;(2)连接BE,∵,且OC=4,∴AC=6,∴AB=12,在Rt△ACO中,由勾股定理得:AO=,∴AE=2OA=4,OB=OA=2,在Rt△APO中,∵AC⊥OP,∴AC2=OC PC,解得:PC=9,∴OP=PC+OC=13,在Rt△APO中,由勾股定理得:AP==3.易证,所以,解得,则,在中,.考点:1.切线的判定与性质;2.相似三角形的判定与性质;3.解直角三角形.2.如图,湿地景区岸边有三个观景台、、.已知米,米,点位于点的南偏西方向,点位于点的南偏东方向.(1)求的面积;(2)景区规划在线段的中点处修建一个湖心亭,并修建观景栈道.试求、间的距离.(结果精确到米)(参考数据:,,,,,,)【答案】(1)560000(2)565.6【解析】试题分析:(1)过点作交的延长线于点,,然后根据直角三角形的内角和求出∠CAE,再根据正弦的性质求出CE的长,从而得到△ABC的面积;(2)连接,过点作,垂足为点,则.然后根据中点的性质和余弦值求出BE、AE的长,再根据勾股定理求解即可.试题解析:(1)过点作交的延长线于点,在中,,所以米.所以(平方米).(2)连接,过点作,垂足为点,则.因为是中点,所以米,且为中点,米,所以米.所以米,由勾股定理得,米.答:、间的距离为米.考点:解直角三角形3.水库大坝截面的迎水坡坡比(DE与AE的长度之比)为1:0.6,背水坡坡比为1:2,大坝高DE=30米,坝顶宽CD=10米,求大坝的截面的周长和面积.【答案】故大坝的截面的周长是(345)米,面积是1470平方米.【解析】试题分析:先根据两个坡比求出AE和BF的长,然后利用勾股定理求出AD和BC,再由大坝的截面的周长=DC+AD+AE+EF+BF+BC,梯形的面积公式可得出答案.试题解析:∵迎水坡坡比(DE与AE的长度之比)为1:0.6,DE=30m,∴AE=18米,在RT△ADE中,22+34DE AE∵背水坡坡比为1:2,∴BF=60米,在RT△BCF中,22CF BF+5∴周长345(345)米,面积=(10+18+10+60)×30÷2=1470(平方米).故大坝的截面的周长是(634+305+98)米,面积是1470平方米.4.如图,AB是⊙O的直径,E是⊙O上一点,C在AB的延长线上,AD⊥CE交CE的延长线于点D,且AE平分∠DAC.(1)求证:CD是⊙O的切线;(2)若AB=6,∠ABE=60°,求AD的长.【答案】(1)详见解析;(2)9 2【解析】【分析】(1)利用角平分线的性质得到∠OAE=∠DAE,再利用半径相等得∠AEO=∠OAE,等量代换即可推出OE∥AD,即可解题,(2)根据30°的三角函数值分别在Rt△ABE中,AE=AB·cos30°,在Rt△ADE中,AD=cos30°×AE即可解题.【详解】证明:如图,连接OE,∵AE平分∠DAC,∴∠OAE=∠DAE.∵OA=OE,∴∠AEO=∠OAE.∴∠AEO=∠DAE.∴OE∥AD.∵DC⊥AC,∴OE⊥DC.∴CD是⊙O的切线.(2)解:∵AB是直径,∴∠AEB=90°,∠ABE=60°.∴∠EAB =30°,在Rt △ABE 中,AE =AB·cos30°=6×3=33, 在Rt △ADE 中,∠DAE =∠BAE =30°, ∴AD=cos30°×AE=3×33=92.【点睛】本题考查了特殊的三角函数值的应用,切线的证明,中等难度,利用特殊的三角函数表示出所求线段是解题关键.5.如图,在⊙O 的内接三角形ABC 中,∠ACB =90°,AC =2BC ,过C 作AB 的垂线l 交⊙O 于另一点D ,垂足为E .设P 是»AC 上异于A ,C 的一个动点,射线AP 交l 于点F ,连接PC 与PD ,PD 交AB 于点G . (1)求证:△PAC ∽△PDF ;(2)若AB =5,¼¼AP BP=,求PD 的长.【答案】(1)证明见解析;(2310【解析】 【分析】(1)根据AB ⊥CD ,AB 是⊙O 的直径,得到¶¶ADAC =,∠ACD =∠B ,由∠FPC =∠B ,得到∠ACD =∠FPC ,可得结论;(2)连接OP ,由¶¶APBP =,得到OP ⊥AB ,∠OPG =∠PDC ,根据AB 是⊙O 的直径,得到∠ACB =90°,由于AC =2BC ,于是得到tan ∠CAB =tan ∠DCB =BCAC,得到12CE BE AE CE ==,求得AE =4BE ,通过△OPG ∽△EDG ,得到OG OPGE ED =,然后根据勾股定理即可得到结果. 【详解】(1)证明:连接AD ,∵AB ⊥CD ,AB 是⊙O 的直径, ∴¶¶ADAC =,∴∠ACD=∠B=∠ADC,∵∠FPC=∠B,∴∠ACD=∠FPC,∴∠APC=∠ACF,∵∠FAC=∠CAF,∴△PAC∽△CAF;(2)连接OP,则OA=OB=OP=15 22 AB=,∵¶¶AP BP=,∴OP⊥AB,∠OPG=∠PDC,∵AB是⊙O的直径,∴∠ACB=90°,∵AC=2BC,∴tan∠CAB=tan∠DCB=BCAC,∴12 CE BEAE CE==,∴AE=4BE,∵AE+BE=AB=5,∴AE=4,BE=1,CE=2,∴OE=OB﹣BE=2.5﹣1=1.5,∵∠OPG=∠PDC,∠OGP=∠DGE,∴△OPG∽△EDG,∴OG OP GE ED=,∴2.52 OE GE OPGE CE-==,∴GE=23,OG=56,∴PG5 6 =,GD23 =,∴PD=PG+GD【点睛】本题考查了相似三角形的判定和性质,垂径定理,勾股定理,圆周角定理,证得△OPG∽△EDG是解题的关键.6.在△ABC中,∠B=45°,∠C=30°,点D是边BC上一点,连接AD,将线段AD绕点A 逆时针旋转90°,得到线段AE,连接DE.(1)如图①,当点E落在边BA的延长线上时,∠EDC=度(直接填空);(2)如图②,当点E落在边AC上时,求证:BD=12 EC;(3)当AB=22,且点E到AC的距离等于3﹣1时,直接写出tan∠CAE的值.【答案】(1)90;(2)详见解析;(3)633 tan EAC-∠=【解析】【分析】(1)利用三角形的外角的性质即可解决问题;(2)如图2中,作PA⊥AB交BC于P,连接PE.只要证明△BAD≌△PAE(SAS),提出BD=PE,再证明EC=2PE即可;(3)如图3,作EF⊥AC于F,延长FE交BC于H,作AG⊥BC于G,PA⊥AB交BC于P,连接PE.设PH=x,在Rt△EPH中,可得EP3,EH=2PH=2x,由此FH=31,CF=33,由△BAD≌△PAE,得BD=EP3x,AE=AD,在Rt△ABG中, AG=GB=2,在Rt△AGC中,AC=2AG=4,故AE2=AD2=AF2+EF2,由勾股定理得AF=1+3,由此tan∠EAF=2﹣3,根据对称性可得tan∠EAC=6-33.11【详解】(1)如图1中,∵∠EDC=∠B+∠BED,∠B=∠BED=45°,∴∠EDC=90°,故答案为90;(2)如图2中,作PA⊥AB交BC于P,连接PE.∵∠DAE=∠BAP=90°,∴∠BAD=∠PAE,∵∠B=45°,∴∠B=∠APB=45°,∴AB=AP,∵AD=AE,∴△BAD≌△PAE(SAS),∴BD=PE,∠APE=∠B=45°,∴∠EPD=∠EPC=90°,∵∠C=30°,∴EC=2PE=2BD;(3)如图3,作EF⊥AC于F,延长FE交BC于H,作AG⊥BC于G,PA⊥AB交BC于P,连接PE.设PH=x,在Rt△EPH中,∵∠EPH=90°,∠EHP=60°,∴EP3,EH=2PH=2x,∴FH=31,CF3FH=33∵△BAD≌△PAE,∴BD=EP3,AE=AD,在Rt△ABG中,∵AB=2∴AG=GB=2,在Rt△AGC中,AC=2AG=4,∵AE2=AD2=AF2+EF2,∴22+(23)231)2+(4﹣3﹣32,整理得:9x2﹣12x=0,解得x=43(舍弃)或0∴PH=0,此时E,P,H共点,∴AF=3∴tan∠EAF=EFAF 331+=23根据对称性可知当点E在AC的上方时,同法可得tan∠EAC 6-33.【点睛】本题属于几何变换综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.7.如图所示的是一个地球仪及它的平面图,在平面图中,点A、B分别为地球仪的南、北极点,直线AB与放置地球仪的平面交于点D,所夹的角度约为67°,半径OC所在的直线与放置它的平面垂直,垂足为点E,DE=15cm,AD=14cm.(1)求半径OA 的长(结果精确到0.1cm ,参考数据:sin67°≈0.92,cos67°≈0.39,tan67°≈2.36)(2)求扇形BOC 的面积(π取3.14,结果精确到1cm )【答案】(1)半径OA 的长约为24.5cm ;(2)扇形BOC 的面积约为2822cm . 【解析】 【分析】(1)在Rt △ODE 中,DE=15,∠ODE=67°,根据∠ODE 的余弦值,即可求得OD 长,减去AD 即为OA .(2)用扇形面积公式即可求得. 【详解】(1)在Rt △ODE 中,15cm DE =,67ODE ∠=︒. ∵cos DEODE DO∠=, ∴150.39OD ≈, ∴()384614245cm OA OD AD =-≈-≈.., 答:半径OA 的长约为24.5cm . (2)∵67ODE ∠=︒, ∴157BOC ∠=︒, ∴2360BOCn r S π=扇形 2157 3.1424.52360⨯⨯≈()2822cm ≈.答:扇形BOC 的面积约为2822cm . 【点睛】此题主要考查了解直角三角形的应用,本题把实际问题转化成数学问题,利用三角函数中余弦定义来解题是解题关键.8. 兰州银滩黄河大桥北起安宁营门滩,南至七里河马滩,是黄河上游的第一座大型现代化斜拉式大桥如图,小明站在桥上测得拉索AB 与水平桥面的夹角是31°,拉索AB 的长为152米,主塔处桥面距地面7.9米(CD 的长),试求出主塔BD 的高.(结果精确到0.1米,参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)【答案】主塔BD的高约为86.9米.【解析】【分析】根据直角三角形中由三角函数得出BC相应长度,再由BD=BC+CD可得出.【详解】在Rt△ABC中,∠ACB=90°,sin BCAAB=.∴sin152sin311520.5279.04BC AB A︒=⨯=⨯=⨯=.79.047.986.9486.9BD BC CD=+=+=≈(米)答:主塔BD的高约为86.9米.【点睛】本题考察了直角三角形与三角函数的结合,熟悉掌握是解决本题的关键.9.如图(1),已知正方形ABCD在直线MN的上方BC在直线MN上,E是BC上一点,以AE为边在直线MN的上方作正方形AEFG.(1)连接GD,求证:△ADG≌△ABE;(2)连接FC,观察并直接写出∠FCN的度数(不要写出解答过程)(3)如图(2),将图中正方形ABCD改为矩形ABCD,AB=6,BC=8,E是线段BC上一动点(不含端点B、C),以AE为边在直线MN的上方作矩形AEFG,使顶点G恰好落在射线CD上.判断当点E由B向C运动时,∠FCN的大小是否总保持不变,若∠FCN的大小不变,请求出tan∠FCN的值.若∠FCN的大小发生改变,请举例说明.【答案】(1)见解析;(2)∠FCN=45°,理由见解析;(3)当点E由B向C运动时,∠FCN的大小总保持不变,tan∠FCN=43.理由见解析.【解析】【分析】(1)根据三角形判定方法进行证明即可.(2)作FH ⊥MN 于H .先证△ABE ≌△EHF ,得到对应边相等,从而推出△CHF 是等腰直角三角形,∠FCH 的度数就可以求得了.(3)解法同(2),结合(1)(2)得:△EFH ≌△GAD ,△EFH ∽△ABE ,得出EH=AD=BC=8,由三角函数定义即可得出结论. 【详解】(1)证明:∵四边形ABCD 和四边形AEFG 是正方形, ∴AB =AD ,AE =AG =EF ,∠BAD =∠EAG =∠ADC =90°, ∴∠BAE +∠EAD =∠DAG +∠EAD ,∠ADG =90°=∠ABE , ∴∠BAE =∠DAG , 在△ADG 和△ABE 中,ADG ABE DAG BAE AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ADG ≌△ABE (AAS ). (2)解:∠FCN =45°,理由如下: 作FH ⊥MN 于H ,如图1所示:则∠EHF =90°=∠ABE , ∵∠AEF =∠ABE =90°,∴∠BAE +∠AEB =90°,∠FEH +∠AEB =90°, ∴∠FEH =∠BAE ,在△EFH 和△ABE 中,EHF ABE FEH BAE AE EF ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△EFH ≌△ABE (AAS ), ∴FH =BE ,EH =AB =BC , ∴CH =BE =FH , ∵∠FHC =90°, ∴∠FCN =45°.(3)当点E 由B 向C 运动时,∠FCN 的大小总保持不变,理由如下: 作FH ⊥MN 于H ,如图2所示:由已知可得∠EAG=∠BAD=∠AEF=90°,结合(1)(2)得:△EFH≌△GAD,△EFH∽△ABE,∴EH=AD=BC=8,∴CH=BE,∴EH FH FHAB BE CH==;在Rt△FEH中,tan∠FCN=8463 FH EHCH AB===,∴当点E由B向C运动时,∠FCN的大小总保持不变,tan∠FCN=43.【点睛】本题是四边形综合题目,考查了正方形,矩形的判定及全等三角形的判定方法等知识点的综合运用,其重点是通过证三角形全等或相似来得出线段的相等或成比例.10.在Rt△ABC中,∠ACB=90°,AB=7,AC=2,过点B作直线m∥AC,将△ABC绕点C 顺时针旋转得到△A′B′C(点A,B的对应点分别为A',B′),射线CA′,CB′分別交直线m于点P,Q.(1)如图1,当P与A′重合时,求∠ACA′的度数;(2)如图2,设A′B′与BC的交点为M,当M为A′B′的中点时,求线段PQ的长;(3)在旋转过程中,当点P,Q分别在CA′,CB′的延长线上时,试探究四边形PA'B′Q的面积是否存在最小值.若存在,求出四边形PA′B′Q的最小面积;若不存在,请说明理由.【答案】(1)60°;(2)PQ=72;(3)存在,S四边形PA'B′Q=33【解析】【分析】(1)由旋转可得:AC=A'C=2,进而得到BC3=∠A'BC=90°,可得cos ∠A 'CB 3'2BC A C ==,即可得到∠A 'CB =30°,∠ACA '=60°; (2)根据M 为A 'B '的中点,即可得出∠A =∠A 'CM ,进而得到PB 3=BC 32=,依据tan ∠Q =tan ∠A 3=,即可得到BQ =BC3⨯=2,进而得出PQ =PB +BQ 72=; (3)依据S 四边形PA 'B 'Q =S △PCQ ﹣S △A 'CB '=S △PCQ 3-,即可得到S 四边形PA 'B 'Q 最小,即S △PCQ 最小,而S △PCQ 12=PQ ×BC 3=PQ ,利用几何法即可得到S △PCQ 的最小值=3,即可得到结论. 【详解】(1)由旋转可得:AC =A 'C =2. ∵∠ACB =90°,AB 7=,AC =2,∴BC 3=.∵∠ACB =90°,m ∥AC ,∴∠A 'BC =90°,∴cos ∠A 'CB 3'2BC A C ==,∴∠A 'CB =30°,∴∠ACA '=60°;(2)∵M 为A 'B '的中点,∴∠A 'CM =∠MA 'C ,由旋转可得:∠MA 'C =∠A ,∴∠A =∠A 'CM ,∴tan ∠PCB =tan ∠A 3=,∴PB 3=BC 32=. ∵∠BQC =∠BCP =∠A ,∴tan ∠BQC =tan ∠A 3=,∴BQ =BC 3⨯=2,∴PQ =PB +BQ 72=; (3)∵S 四边形PA 'B 'Q =S △PCQ ﹣S △A 'CB '=S △PCQ 3-,∴S 四边形PA 'B 'Q 最小,即S △PCQ 最小,∴S △PCQ 12=PQ ×BC 3=PQ , 取PQ 的中点G . ∵∠PCQ =90°,∴CG 12=PQ ,即PQ =2CG ,当CG 最小时,PQ 最小,∴CG ⊥PQ ,即CG 与CB 重合时,CG 最小,∴CG min 3=,PQ min =23,∴S △PCQ 的最小值=3,S 四边形PA 'B 'Q =33-;【点睛】本题属于几何变换综合题,主要考查了旋转的性质,解直角三角形以及直角三角形的性质的综合运用,解题时注意:旋转变换中,对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.11.已知抛物线y=﹣16x2﹣23x+2与x轴交于点A,B两点,交y轴于C点,抛物线的对称轴与x轴交于H点,分别以OC、OA为边作矩形AECO.(1)求直线AC的解析式;(2)如图,P为直线AC上方抛物线上的任意一点,在对称轴上有一动点M,当四边形AOCP 面积最大时,求|PM﹣OM|的值.(3)如图,将△AOC沿直线AC翻折得△ACD,再将△ACD沿着直线AC平移得△A'C′D'.使得点A′、C'在直线AC上,是否存在这样的点D′,使得△A′ED′为直角三角形?若存在,请求出点D′的坐标;若不存在,请说明理由.【答案】(1) y=13x+2;(2) 点M坐标为(﹣2,53)时,四边形AOCP的面积最大,此时|PM﹣OM|61 (3)存在,D′坐标为:(0,4)或(﹣6,2)或(35-,195).【解析】【分析】(1)令x=0,则y=2,令y=0,则x=2或﹣6,求出点A、B、C坐标,即可求解;(2)连接OP交对称轴于点M,此时,|PM﹣OM|有最大值,即可求解;(3)存在;分①A′D′⊥A′E;②A′D′⊥ED′;③ED′⊥A′E三种情况利用勾股定理列方程求解即可.【详解】(1)令x=0,则y=2,令y=0,则x=2或﹣6,∴A(﹣6,0)、B(2,0)、C(0,2),函数对称轴为:x=﹣2,顶点坐标为(﹣2,83),C点坐标为(0,2),则过点C的直线表达式为:y=kx+2,将点A坐标代入上式,解得:k13=,则:直线AC的表达式为:y13=x+2;(2)如图,过点P作x轴的垂线交AC于点H.四边形AOCP面积=△AOC的面积+△ACP的面积,四边形AOCP面积最大时,只需要△ACP的面积最大即可,设点P坐标为(m,16-m223-m+2),则点G坐标为(m,13m+2),S△ACP12=PG•OA12=•(16-m223-m+213-m﹣2)•612=-m2﹣3m,当m=﹣3时,上式取得最大值,则点P坐标为(﹣3,52).连接OP交对称轴于点M,此时,|PM﹣OM|有最大值,直线OP的表达式为:y56=-x,当x=﹣2时,y53=,即:点M坐标为(﹣2,5 3),|PM﹣OM|的最大值为:2222555(32)()2()233-++--+=61.(3)存在.∵AE=CD,∠AEC=∠ADC=90°,∠EMA=∠DMC,∴△EAM≌△DCM(AAS),∴EM=DM,AM=MC,设:EM=a,则:MC=6﹣a.在Rt△DCM中,由勾股定理得:MC2=DC2+MD2,即:(6﹣a)2=22+a2,解得:a83=,则:MC103=,过点D作x轴的垂线交x轴于点N,交EC于点H.在Rt△DMC中,12DH•MC12=MD•DC,即:DH10833⨯=⨯2,则:DH85=,HC2265DC DH=-=,即:点D的坐标为(61855-,);设:△ACD沿着直线AC平移了m个单位,则:点A′坐标(﹣61010,D′坐标为(618551010,-++),而点E坐标为(﹣6,2),则2''A D =22618(6)()55-++=36,2'A E =22()(2)1010+-=2410m -+,2'ED =22248()()551010+++=2128510m ++.若△A ′ED ′为直角三角形,分三种情况讨论: ①当2''A D +2'A E=2'ED 时,36+2410m -+=2128510m ++,解得:m =210,此时D ′(618551010,-++)为(0,4); ②当2''A D +2'ED =2'A E 时,36+2128510m ++=2410m -+,解得:m =810-,此时D ′(618551010,-++)为(-6,2);③当2'A E +2'ED =2''A D 时,2410m -++2128510m ++=36,解得:m =810-或m =10,此时D ′(618551010,-++)为(-6,2)或(35-,195).综上所述:D 坐标为:(0,4)或(﹣6,2)或(35-,195). 【点睛】本题考查了二次函数知识综合运用,涉及到一次函数、图形平移、解直角三角形等知识,其中(3)中图形是本题难点,其核心是确定平移后A ′、D ′的坐标,本题难度较大.12.关于三角函数有如下的公式: sin (α+β)=sinαcosβ+cosαsinβ① cos (α+β)=cosαcosβ﹣sinαsinβ② tan (α+β)=③利用这些公式可将某些不是特殊角的三角函数转化为特殊角的三角函数来求值,如:tan105°=tan (45°+60°)==﹣(2+).根据上面的知识,你可以选择适当的公式解决下面的实际问题:如图,直升飞机在一建筑物CD 上方A 点处测得建筑物顶端D 点的俯角α=60°,底端C 点的俯角β=75°,此时直升飞机与建筑物CD 的水平距离BC 为42m ,求建筑物CD 的高.【答案】建筑物CD的高为84米.【解析】分析:如图,过点D作DE⊥AB于点E,由题意易得∠ACB=75°,∠ABC=90°,DE=BC=42m,∠ADE=60°,这样在Rt△ABC和在Rt△ADE中,结合题中所给关系式分别求出AB和AE的长,即可由CD=BE=AB-AE求得结果了.详解:如图,过点D作DE⊥AB于点E,由题意可得∠ACB=75°,∠ABC=90°,DE=BC=42m,CD=BE,∠ADE=60°,∴在Rt△ABC和Rt△ADEAB=BC•tan75°=42tan75°=,AE=,∴CD=AB﹣AE=(米).答:建筑物CD的高为84米.睛:读懂题意,把已知量和未知量转化到Rt△ABC和Rt△ADE中,这样利用直角三角形中边角间的关系结合题目中所给的“两角和的三角形函数公式”即可使问题得到解决.。

《第13章 三角形中的边角关系、命题与证明》学习指导

《第13章 三角形中的边角关系、命题与证明》学习指导

《第13章 三角形中的边角关系、命题与证明》学习要求:1.理解三角形的角平分线、中线、高线的概念及性质。

会用刻度尺和量角器画出任意三角形的角平分线、中线和 高。

2.掌握三角形的分类,理解并掌握三角形的三边关系。

3.掌握三角形内角和定理及推论,三角形的外角性质与外角和。

4.了解三角形的稳定性。

知识要点:一、三角形中的边角关系1.三角形有三条内角平分线,三条中线,三条高线,它们都相交于一点。

注意:三角形的中线平分三角形的面积。

2. 三角形三边间的不等关系:三角形的任意两边之和大于第三边,任意两边之差小于第三边。

注意:判断三条线段能否构成一个三角形时,就看这三条线段是否满足任何两边之和大于第三边,其简便方法是看两条较短线段的和是否大于第三条最长的线段。

3.三角形各角之间的关系:①三角形的内角和定理:三角形的三个内角和为180°。

②三角形的外角和等于360°(每个顶点处只取一个外角); ③三角形的一个外角等于与它不相邻的两个内角的和; ④三角形的一个外角大于任何一个和它不相邻的内角。

4.三角形的分类①三角形按边的关系可以如下分类:⎪⎩⎪⎨⎧⎩⎨⎧等边三角形角形底和腰不相等的等腰三等腰三角形不等边三角形三角形 ②三角形按角的关系可以如下分类:⎪⎩⎪⎨⎧⎩⎨⎧∆)()()(形有一个角为钝角的三角钝角三角形形三个角都是锐角的三角锐角三角形斜三角形形有一个角为直角的三角直角三角形三角形Rt 5.三角形具有稳定性。

知识结构:二、命题与证明1.判断一件事情的句子是命题,疑问句、感叹句不是命题,计算不是命题,画法不是命题。

2.命题都可以写成:“如果……,那么……。

”的形式。

为了语句通顺往往要加“字”,但不改变顺序。

3.命题由题设、结论两部分组成。

“如果”后面的是题设,“那么”后面的是结论。

4.命题分为真命题和假命题。

真命题需要证明,假命题只要举出一个反例。

5.将命题的题设和结论交换就得到原命题的逆命题。

专题13 全等三角形重难点模型(五大模型)(原卷版)

专题13  全等三角形重难点模型(五大模型)(原卷版)

专题13全等三角形重难点模型(五大模型)模型一:一线三等角型模型二:手拉手模型模型三:半角模型模型四:对角互补模型模型五:平行+线段中点构造全等模型【典例分析】【模型一:一线三等角型】如图一,∠D=∠BCA=∠E=90°,BC=AC。

结论:Rt△BDC≌Rt△CEA模型二一线三等角全等模型如图二,∠D=∠BCA=∠E,BC=AC。

结论:△BEC≌△CDA图一图二应用:①通过证明全等实现边角关系的转化,便于解决对应的几何问题;②与函数综合应用中有利于点的坐标的求解。

【典例1】如图,平面直角坐标系中有点A(﹣1,0)和y轴上一动点B(0,a),其中a>0,以B点为直角顶点在第二象限内作等腰直角△ABC,设点C的坐标为(c,d).(1)当a=2时,则C点的坐标为;(2)动点B在运动的过程中,试判断c+d的值是否发生变化?若不变,请求出其值;若发生变化,请说明理由.【变式1】点A的坐标为(4,0),点B为y轴负半轴上的一个动点,分别以OB、AB为直角边在第三象限和第四象限作等腰Rt△OBC和等腰Rt△ABD.(1)如图一,若点B坐标为(0,﹣3),连接AC、OD.①求证:AC=OD;②求D点坐标.(2)如图二,连接CD,与y轴交于点E,试求BE长度.【典例2】(1)猜想:如图1,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.试猜想DE、BD、CE有怎样的数量关系,请直接写出;(2)探究:如果三个角不是直角,那结论是否会成立呢?如图2,将(1)中的条件改为:在△ABC中,AB=AC,D,A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α(其中α为任意锐角或钝角)如果成立,请你给出证明;若不成立,请说明理由;(3)解决问题:如图3,F是角平分线上的一点,且△ABF和△ACF均为等边三角形,D、E分别是直线m上A点左右两侧的动点,D、E、A互不重合,在运动过程中线段DE的长度始终为n,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状,并说明理由.【变式2】已知,在△ABC中,AB=AC,D,A,E三点都在直线m上,且DE =9cm,∠BDA=∠AEC=∠BAC(1)如图①,若AB⊥AC,则BD与AE的数量关系为,CE与AD 的数量关系为;(2)如图②,判断并说明线段BD,CE与DE的数量关系;(3)如图③,若只保持∠BDA=∠AEC,BD=EF=7cm,点A在线段DE上以2cm/s的速度由点D向点E运动,同时,点C在线段EF上以xcm/s的速度由点E向点F运动,它们运动的时间为t(s).是否存在x,使得△ABD与△EAC全等?若存在,求出相应的t的值;若不存在,请说明理由.【模型二:手拉手模型】应用:①利用手拉手模型证明三角形全等,便于解决对应的几何问题;②作辅助线构造手拉手模型,难度比较大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题讲练:二角形边角关系及命题与证
明重难点问题
※题型讲练
【例1】设厶ABC 的三边a , b ,c 的长度均为自然数, a
+ b + C =13 ,求以a , b , c 为三边的三角形共有多少

A B
【例5】已在 △ ABC 中,AB=AC, AC 上中线BD 把△ ABC 周长分别24和18两部分,求△ ABC 的三边长.
【例2】如图,已知P 是厶ABC 内一点,连结AP, PB,PC,
在某个区域时,连接 PA PB,得到/ PBD / PAC 两个角.
【例 3】在厶ABC 中,/ A <Z B <Z C, 2/ C=5/ A,求/B
的取值范围.
(1) 如图(1),当点P 落在第②区域时,求/ PAC /PBD 度数; (2) ____________________________________________ 如
图(2),当点P 落在第③区域时,/PAG / PBD= _______________ 度
(3)
如图(3),当点P 落在第①区域时,直接写出/ PAC /PBD
【例4】△ ABC 中,AD BE 、CF 是角平分线,交点是点 G,
GHL BC 。

求证:/ BGD /CGH.
※课后练习
【例6】如图,已知:AB
A
【例9】如图(1)直线GC/HD
直线把EF 右侧的平面分成①、②、 上各点不属于任何区域) EF 交 CG HD 于 A B ,三条
③三个区域,
(规定:直线
.将一个透明的直角三角尺放置在该图|Q 求证:(1)PA+PB+PC
(2) PA+PB+PC >
中,使得30。

角(即/ P )的两边分别经过点
A
之间的等量关系.
IS C2) £ (3}
1 •若三角形的三个外角的比是
2: 3: 4,则这个三角形
2 •若 ABC 的三个内角满足
三角形是()
A .钝角三角形 B
C .锐角三角形
D 3 A>5 B , 3 C<2 B ,则
•直角三角形
•都有可能
分别落在 C' , D'上,EC'交AD 于点G 已知2 EFG=58 , 那么2 BEG=.
5 •一条线段的长为
a ,若要使3a —l , 4a +1, 12-a 这三 9 •如图所示,已知在厶ABC 中,AB=AC=8, P 是BC 上任 意一点,PDL AB 于点D, PEI AC 于点E.若厶ABC 的面积
为14,问:PD+PE 的值是否确定若能确定,是 能确定,请说明理由
条线段组成一个三角形,求
a 的取值范围
10.如图,已知ADLBC FGLBC 垂足分别为 D G 且2 1=22,
的最大内角的度数是 8 .如图△ ABC 中,2 BAD 2 CBE 2 ACF, 2 ABC=50 ,
3 •如图 5, 11 //12 , 21=120°,
22=100°,则/ 3=
7 •周长为30,各边长互不相等且都是整数的三角形有多少个11.已知AB//CD直线I与AB CD分别交于点E、F,点P是
直线CD上的一个动点(点P不与F重合),点M在EF上,且
/FMPMFPM
(1)如图1,当点P在射线PC上移动时,若/ AEF=60,则ZFPM= ;假设/ AEF=a 贝U/ FPM=
(2)如图2,当点P在射线FD上移动时,猜想/ FPM与/AEF
有怎样的数量关系请你说明理由.
6 .如图,在△ ABC中,2 ABC= 2 ACB 2 A = 40 ° , P 是厶ABC内一点,且2 1 = 2 2 •则2 BPG ________
猜想2 BDE与2C有怎样的大小关系试说明理由.。

相关文档
最新文档