期末总复习三、三角形中的边角关系、命题与证明
三角形中的边角关系、命题与证明(知识点汇总 沪科8上)

第13章 三角形中的边角关系、命题与证明一、三角形(一)、三角形概念1、不在同一条直线上的三条线段首尾顺次相接所组成的图形,称为三角形,可以用符号“Δ”表示。
组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。
2、顶点是A 、B 、C 的三角形,记作“ΔABC”,读作“三角形ABC”。
3、组成三角形的三条线段叫做三角形的边,即边AB 、BC 、AC ,有时也用a ,b ,c 来表示,顶点A 所对的边BC 用a 表示,边AC 、AB 分别用b ,c 来表示;4、∠A 、∠B 、∠C 为ΔABC 的三个内角。
(二)、三角形中三边的关系1、三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边。
用字母可表示为a+b>c,a+c>b,b+c>a ;a -b<c,a -c<b,b -c<a 。
2、判断三条线段a,b,c 能否组成三角形:(1)当a+b>c,a+c>b,b+c>a 同时成立时,能组成三角形;(2)当两条较短线段之和大于最长线段时,则可以组成三角形。
3、确定第三边(未知边)的取值范围时,它的取值范围为大于两边的差而小于两边的和,即.4、作用:∠判断三条已知线段能否组成三角形;∠当已知两边时,可确定第三边的范围;∠证明线段不等关系。
(三)、三角形中三角的关系1、三角形内角和定理:三角形的三个内角的和等于1800。
2、三角形按内角的大小可分为三类:(1)锐角三角形,即三角形的三个内角都是锐角的三角形;(2)直角三角形,即有一个内角是直角的三角形,我们通常用“RtΔ”表示“直角三角形”,其中直角∠C 所对的边AB 称为直角三角表的斜边,夹直角的两边称为直角三角形的直角边。
注:直角三角形的性质:直角三角形的两个锐角互余。
(3)钝角三角形,即有一个内角是钝角的三角形。
3、判定一个三角形的形状主要看三角形中最大角的度数。
八年级上册数学 三角形三边关系-命题与证明

三角形中的边角关系、命题与证明【学习目的】①理解与三角形有关的基本概念②命题与证明考点一:三角形中的边角关系►知识点拨:1.三角形中的有关概念(1)三角形的概念:由不在同一直线上的三条线段首尾依次相接所组成的封闭图形叫做三角形.用符号“△”表示.(2)三角形的顶点、边和角:①边的表示;②角的表示;③对边、对角的概念.2.三角形按边的关系分类(1)不等边三角形:三条边互不相等;②等腰三角形:有两条边相等的三角形;(2)等边三角形:三条边都相等的三角形(等腰三角形的特例)3.三角形的三边关系:三角形中任何两条边的和大于第三边,两边的差(绝对值)小于第三边.4.三角形中角的关系(1)按角分类:①直角三角形;②斜三角形:锐角三角形和钝角三角形.(2)三角形的内角和等于180 .注意:①用Rt△ABC表示直角三角形;②任意一个三角形最多有三个锐角;最少有两个锐角;最多有一个钝角;最多有一个直角;③任何三角的最大内角不能小于60 ,最小内角不能大于60 .5.三角形中的几条重要线段(1)角平分线:角平分线把角分成两个相等的角.(三条角平分线的交点就是三角形的外心)(2)中线:三角形一顶点与它对边中点的线段叫中线.(三条中线的交点就是三角形的重心)(3)高线:三角形一顶点与它对边所在直线的垂线段叫三角形的高线.注意:三角形的中线所分得的两个三角形的面积相等.6.定义:能明确界定某个对象含义的语句叫做定义.例1:如图所示,以点A为顶点的三角形共有()A.6个B.7个C.8个D.9个A.20或16B.20C.60D.以上都不对例3:若四条线段的长分别为2cm、3cm、4cm、5cm,以其中的三条线段为边长,则可以构成三角形的个数有()A.1 B.2 C.3 D.4A.锐角三角形B.钝角三角形C.直角三角形D.无法确定例5:如图,CD、CE、CF分别是△ABC的高、角平分线、中线,则下列各式中错误的是()A.BA=2BFB.2∠ACE=∠ACBC.AE=BED.CD⊥BE例6:下列属于定义的是()A.两点确定一条直线B.两直线平行,同位角相等C.三角形的高、角平分线和中线都是线段D.有一个角是直角的三角形叫做直角三角形基础训练1、如图所示,AB=AC,BE=CD,AD=BD=DE=AE=CE,则图中共有个等腰三角形,有个等边三角形.第1题图第3题图第4题图2、一个等腰三角形中,一边长为9cm,另一边长为5cm,则等腰三角形的周长是.3、如图,AD、BE、CF分别是△ABC的高、中线、角平分线.则△ADC的高、中线、角平分线分别是.4、如图,图中以AB为边的三角形的个数是()A.3B.4C.5D.6A.等腰三角形B.等边三角形C.直角三角形D.不能确定6、三角形的两边长分别为3,8,则第三边长为()A.5B.6C.3D.117、以下各组长度的线段为边,组成的三角形是()A.2、3、5B.3、3、6C.5、8、2D.4、5、68、设三角形的三边长分别为2,9,1-2a,则a的取值范围是()A.3<a<5B.-5<a<3C.-5<a<-3D.不能确定9、三角形的内角和等于()A.90B.180C.300D.36010、在△ABC中,若∠A=54 ,∠B=36 ,则△ABC是()A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形11、当三角形中一个内角α是另一个内角β的2倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为()A.30°B.50°C.80°D.100°12、三角形的角平分线、中线和高()A.都是射线B.都是直线C.都是线段D.都在三角形内13、如图所示,已知∠1=∠2,∠3=∠4,则下列结论正确的个数为()①AD平分∠BAF;②AF平分∠DAC;③AE平分∠DAF;④AE平分∠BAC.A.②和③B.③和④C.①和④D.仅有③14、下面四个命题中属于定义的是()A.两点之间线段最短B.对顶角相等C.有两条边相等的三角形叫等腰三角形D.内错角相等强化训练1.在△ABC中,如果∠A:∠B:∠C=1:2:3,则△ABC一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形2.如图,AE是△ABC的中线,D是BE上一点,若BE=5,DE=2,则CD的长为()A.7B.6C.5D.43.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()4.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是()A.3cm,4cm,8cmB.8cm ,7cm,15cmC.5cm ,5cm,11cmD.13cm ,12cm,20cm5.如图,在△ABC中,点D是边AB上的一点,点E是边AC上一点,且DE∥BC,∠B=40 ,∠AED=60 ,则∠A的度数是()A.100 B.90 C.80 D.70第5题图第7题图第8题图6.一个三角形的两边长为8和10,则它的最短边a的取值范围是.7.如图,AD是△ABC的BC边上的高,AE是∠BAC的平分线.(1)若∠B=47°,∠C=53°,则∠DAE=度;(2)若∠B=α,∠C=β(α<β),则∠DAE=度.(用α、β含的代数式表示)8.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是.9.已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是_____.10.如图,在△ABC中,∠A=40 ,D点是∠ABC和∠ACB角平分线的交点,则∠BDC=_____.11.如图,AD为△ABC的中线,BE为△ABD的中线.(1)若∠ABE=15 ,∠BAD=40 ,求∠BED的度数;(2)在△BED 中,作BD 边上的高;(3)若△ABC 的面积为40,BD=5,求△BDE 中BD 边上的高为多少?12.如图,在△ABC 中,AD 是BC 边上的高,AE 、BF 是角平分线,它们相交于点O ,∠BAC =50°,∠C =70°,求∠DAC ,∠BOA.能力提升1.各边长度都是正整数且最大边长为8的三角形共有个.2.三角形的三边长分别为a 、b 、c ,且(a -b-c)∙(b-c)=0,则此三角形为________三角形.3.如图所示,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12=∆ABC S ,则图中阴影部分面积是_____.4.如图所示,在△ABC 中,已知点D 、E 、F 分别为边BC 、AD 、CE 的中点,且24cm S ABC =∆,则阴影S 等于 ( )5.如图,用钢筋做支架,要求BA 、DC 相交所成的锐角为32 ,现测得∠BAC=∠DCA=115 ,则这个支架符合设计要求吗?为什么?6.设三角形的三条边为整数a 、b 、c 且c b a ≤≤,当b=4时,符合条件的a 、b 、c 的取值若下表:(1)将表格补充完整;(2)满足条件的三角形共有多少个?其中等腰三角形有多少个?等边三角形又有多少个? 考点二:命题与证明例1:下列语句不是命题的是()A.直角都等于90 B.对顶角相等 C.互补的两个角不相等 D.作线段AB例2:把下例命题改写成“如果......那么.....”的形式,并分别指出它们的题设和结论.(1)整数一定是有理数;(2)同角的补角相等;(3)两个锐角互余.例3:写出下列命题的逆命题,并判断真假(1)两直线平行,同位角相等;(2)若a=0,则a b=0;(3)对顶角相等.例4:请举反例说明命题“对于任意实数x ,552++x x 的值总是正数”是假命题,你举的反例是_____(写出一个的值即可).例5:在下列证明中,填上推理依据:如图,CD ∥EF ,∠1=∠2,求证:∠3=∠ACB.例6:如图,在△ABC 中,∠ABC=66 ,∠ACB=54 ,BE 、CF 是两边AC 、AB 上的高,它们交于点H.求∠ABE 和∠BHC 的度数.基础训练1、下列语句中,不是命题的是 ( ) A.两点之间线段最短B.对顶角相等C.不是对顶角的两个角不相等D.过直线AB 外一点P 作直线AB 的垂线2、下列命题中,是真命题的是 ( ) A.三角形的一个外角大于任何一个内角 B.三角形的一个外角等于两个内角之和 C.三角形的两边之和一定不小于第三边D.三角形的三条中线交于一点,这个交点就是三角形的重心3、“两条直线相交只有一个交点”的题设是 ( )A.两条直线B.相交C.只有一个交点D.两条直线相交4、已知命题A:“任何偶数都是8的整数倍”.在下列选项中,可以作为“命题A是假命题”的反例的是()A.2kB.15C.24D.425、如图,下列说法中错误的是()A.∠1不是△ABC的外角B.∠B<∠1+∠2C.∠ACD是△ABC的外角D.∠ACD>∠A+∠B第5题图第6题图第7题图6、一副三角板有两个直角三角形,如图叠放在一起,则∠α的度数是()A.165B.120C.150D.1357、如图,在△ABC中,∠ACB=90°,CD∥AB,∠ACD=40°,则∠B的度数为()A.40°B.50°C.60°D.70°8、命题“有两边相等的三角形是等腰三角形”的题设是,结论是,它的逆命题是.9、完成以下证明,并在括号内填写理由:已知:如图所示∠1=∠2,∠A=∠3.求证:AC∥DE.证明:因为∠1=∠2,所以AB∥.()所以∠A=∠4.()又因为∠A=∠3,所以∠3=.()所以AC∥DE. ()10、将下列命题改写成“如果......那么......”的形式,并分别指出命题的题设与结论:(1)直角都相等;(2)末位数字是5的整数能被5整除;(3)同角的余角相等.11、分析下列所举反例的正确性,若不正确,请写出正确的反例.(1)若|x|=|y|,则x=y;反例:取x=3,y=-3,则|x|=|y|,所以此命题是假命题;(2)两个锐角的和一定是钝角;反例:取∠1=30°,∠2=100°,则∠1+∠2=130°,不符合命题的结论,所以此命题是假命题;(3)若|a|=a,则a>0.12、如图,已知AC∥DE,∠1=∠2.求证:AB∥CD.13、如图,在△ABC中,∠A=62°,∠ABD=∠DCE=36°,求∠BEC的度数.14、如图,点E是△ABC中AC边上的一点,过E作ED⊥AB,垂足为D,若∠1=∠2,,则△ABC 是直角三角形吗?为什么?强化训练1.如图,在锐角三角形ABC中,CD、BE分别是AB、AC边上的高,且CD、BE相交于点P.若∠A =50°,则∠BPC的度数是()A.150B.130C.120D.1002.如图,从①∠1=∠2;②∠C=∠D;③∠A=∠F三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为()A.0 B.1 C.2 D.3第2题图第6题图3.一个三角形的三个外角之比为3:4:5,则这个三角形三个内角之比是()A.5:4:3B.4:3:2C.3:2:1D.5:3:14.能说明命题“对于任何实数a ,a a ->”是假命题的一个反例可以是 ( )A.a =-2B.31=a C. a =1 D.2=a 5.下列命题:①对顶角相等;②同位角相等,两直线平行;③若b a =,则b a =;④若0=x ,则022=-x x .它们的逆命题一定成立的有 ( )A.①②③④B.①④C.②④D.②6.如图,CE 是△ABC 的外角∠ACD 的平分线,若∠B=35 ,∠ACE=60 ,则∠A= ( )A.35B.95C.85D.757.如图,在△ABC 中,∠B=40 ,三角形的外角∠DAC 和∠ACF 的平分线交于点E ,则∠AEC=.8.直角三角形中两个锐角的平分线相交所成的锐角的度数是.9.写出命题“如果b a =,那么b a 33=”的逆命题:.10.如图,AD 是△ABC 的高,BE 平分∠ABC 交AD 于E.若∠C =60°,∠BED =54°,求∠BAC 的度数.11.如图,AD 是△ABC 的外角平分线,交BC 的延长线于D 点,若∠B=30°,∠ACD=100°, 求∠DAE 的度数.12.如图,D是△ABC内的任意一点.求证:∠BDC=∠1+∠A+∠2.13.用两种方法证明“三角形的外角和等于360 ”.如图,∠BAE、∠CBF、∠ACD是△ABC的三个外角.求证:∠BAE+∠CBF+∠ACD=360 .证法1: ,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180⨯ 3=540 .∴∠BAE+∠CBF+∠ACD=540 -(∠1+∠2+∠3).,∴∠BAE+∠CBF+∠ACD=540 -180 =360 .请把证法1补充完整,并用不同的方法完成证法2.能力提升1.如图,∠A+∠B+∠C+∠D=.2.观察下列各式:想一想:什么样的两个数之积等于这两个数的和?设n 表示正整数,用关于n 的代数式表示这个规律:_______×_______=_______+________.3.如图,在△ABC 中,AD 是BC 边上的中线,且AD=12BC .2224,24;1139393,3;22224164164,4;33335255255,5.4444⨯=+=⨯=+=⨯=+=⨯=+=(1)求证:∠BAC=90°;(2)直接运用这个结论解答题目:一个三角形一边长为2,这边上的中线长为1,另两边之和为4.如图在△ABC中AB=AC,∠BAC=900,直角∠EPF的顶点P是BC的中点,两边PE、PF分别交AB、AC于E、F.(1)求证:AE=CF(2)是否还有其他结论,不要求证明(至少2个)。
第13章《三角形的边角关系、命题与证明》期末总复习资料

第13章《三角形的边角关系、命题与证明》期末总复习资料本章需要理解掌握的知识点有:一、三角形的概念(要注意“不在同一直线上”)二、三角形边的关系1、按边分类:不等边三角形;等腰三角形(包括等边三角形)2、特殊三角形:等腰三角形,腰、底边;顶角、底角。
3、三边之间关系:三角形任何两边之和大于第三边三角形任何两边之差小于第三边4、三边关系应用:已知两边求第三边取值范围(第三边小于两边之和、大于两边之差的绝对值);已知三条线段的长,判断能否构成三角形(只要看“两条较小线段的长度和是否大于最长线段)证明线段不等关系(只要是证明线段不等关系的题目,都要考虑用”三角形两边之和大于第三边“来证,那么。
首先要出现三角形,然后在三角形中来证明)三、三角形角之间关系1、按角分类:直角三角形;斜三角形(包括锐角三角形和钝角三角形)2、特殊三角形:直角三角形,直角边、斜边。
3、三角之间关系:三角形内角和是180度4、三角关系应用:求角度证明角的不等关系四、三角形中重要线段1、三角形的角平分线(1、三角形的角平分线是线段,2、角平分线的交点叫三角形的内心)2、三角形的中线(1、中线把三角形分成了两个面积相等的三角形,2、中线的交点叫重心,3、遇到中线的问题如果难以解决,则加倍延长中线)3、三角形的高(1、高并不一定在内部,2、把握高的定义是作三角形高的基础,3、高的交点叫垂心,4、牵扯到高的题目通常用面积相等来解决)探究几何图形的性质可以通过观察、操作和实验的方法。
但这些方法得到的结论有时候是近似的、甚至是错误的。
要想结论使人信服就要用到推理、推理就需要思维、思维就需要作出判断,判断的语句就是命题。
五、命题1、命题的定义2、真、假命题3、命题的构成4、命题的形式5、互逆命题六、证明一个命题是假命题的方法:举反例(例子要“符合命题的题设,但不符合命题的结论”)七、证明一个命题是真命题要用推理的方法。
八、命题的证明1、把命题改写成“如果p,那么q”的形式,找出题设和结论,p就是题设、q就是结论2、画出符合题意的图形,并标明字母3、结合图形写出已知、和求证:在已知中写题设;在求证中写结论4、分析证明思路(执果索因)5、写出证明过程:每一步都要有依据。
第13章,三角形的边角关系,命题与证明基础知识总结

第13章,三角形的边角关系,命题与证明基础知识总结一、三角形的分类及其重要线段1,三角形的分类。
(1)按边分:三角形(2)按角分:三角形 2、三角形的高、中线、角平分线。
△的高、中线、角平分线几何符号语言表示(1)∵AD 是△ABC 的边BC 上的高,∴AD ⊥BC ,∴∠ADB=∠ADC=90°(2)∵AE 是△ABC 的边BC 上的中线,∴BE = EC = ,S △ABE = S △AEC = 。
(3)∵AF 是△ABC 的角平分线,∴∠1=∠2 = ∠ 。
(4)△的高、△的中线、△的角平分线都是(选填‘线段、射线和直线’)(5)交点情况:a.三条高所在的直线交于一点:△是锐角三角形时交点位于△的内部;△是直角三角形时,交点位于直角三角形的直角顶点;△是钝角三角形时,交点位于三角形的外部。
b.△的三条中线交于一点,交点位于△的内部;交点叫重心。
c.△的三条角平分线交于一点,交点位于△的内部。
例题:1、图中共有( )个三角形。
A :5 B :6 C :7 D :8 2、如图,AE ⊥BC ,BF ⊥AC ,CD ⊥AB ,则△ABC 中AC 边上的高是( ) A :AE B :CD C :BF D :AF3、三角形一边上的高( )。
A :必在三角形内部B :必在三角形的边上C :必在三角形外部D :以上三种情况都有可能4、能将三角形的面积分成相等的两部分的是( )。
A :三角形的角平分线B :三角形的中线C :三角形的高线D :以上都不对6、具备下列条件的三角形中,不是直角三角形的是( )。
A :∠A+∠B=∠CB :∠A=∠B=12∠C C :∠A=90°-∠B D :∠A-∠B=90 7、如右图,△ABC 的周长为24,面积是32,BC=10,AD 是△ABC 的中线,且被分得的两个三角形的周长差为2,求AB 和AC 的长和S △ABD 。
212121C D F E E B C F D 等腰三角形(特例:等边三角形) 不等边三角形 钝角三角形 直角三角形 锐角三角形 斜三角形 A B C D二、三角形的性质1、三边关系:三角形任何两边的和 第三边. 三角形任何两边的差 第三边.例题:1、以下列线段为边不能组成等腰三角形的是( )。
安徽省八年级上册数学(沪科版)期末考试复习:第13章《三角形中的边角关系、命题与证明》解答题精选

2020-2021学年安徽省八年级上册数学(沪科版)期末考试复习:第13章《三角形中的边角关系、命题与证明》解答题精选一.解答题(共22小题)1.(2019秋•当涂县期末)如图,在△ABC中,∠A=75°,∠ABC与∠ACB的三等分线分别交于点M、N 两点.(1)求∠BMC的度数;(2)若设∠A=α,用α的式子表示∠BMC的度数.2.(2019秋•埇桥区期末)(1)如图(a),BD平分∠ABC,CD平分∠ACB.①当∠A=60°时,求∠D的度数.②猜想∠A与∠D有什么数量关系?并证明你的结论.(2)如图(b),BD平分外角∠CBP,CD平分外角∠BCQ,(1)中②的猜想还正确吗?如果不正确,请你直接写出正确的结论(不用写出证明过程).3.(2019秋•临泉县期末)如图,在△ABC和△DEF中,B、E、C、F在同一直线上,下面有四个条件:①AB=DE;②AC=DF;③AB∥DE;④BE=CF.请你从中选三个作为题设,余下的一个作为结论,写出一个真命题,并加以证明.解:我写的真命题是:已知:;求证:.(注:不能只填序号)证明如下:4.(2019秋•濉溪县期末)在如图所示的平面直角坐标系中,作出下列坐标的A(﹣3,2),B(0,﹣4),C (5,﹣3),D(0,1).并求出四边形ABCD的面积.5.(2019秋•潜山市期末)如图,∠A=37°,∠B=28°,∠ADB=148°,求∠C的度数.6.(2019秋•庐阳区期末)如图,在△ABC中,AD、CE分别平分∠BAC和∠ACB,AD、CE交于点O,若∠B=50°,求∠AOC.7.(2019秋•庐阳区期末)在△ABC中,∠A+∠B=∠C,∠B﹣∠A=30°.(1)求∠A、∠B、∠C的度数;(2)△ABC按角分类,属于什么三角形?△ABC按边分类,属于什么三角形?8.(2019秋•裕安区期末)如图,在△ABC中,∠BAC=90°,∠B=50°,AE,CF是角平分线,它们相交于为O,AD是高,求∠BAD和∠AOC的度数.9.(2019秋•瑶海区期末)如图,已知△ABC.(1)若AB=4,AC=5,则BC边的取值范围是;(2)点D为BC延长线上一点,过点D作DE∥AC,交BA的延长线于点E,若∠E=55°,∠ACD=125°,求∠B的度数.10.(2019秋•全椒县期末)已知,如图,在△ABC中,∠A=∠ABC,直线EF分别交△ABC的边AB,AC 和CB的延长线于点D,E,F.(1)求证:∠F+∠FEC=2∠A;(2)过B点作BM∥AC交FD于点M,试探究∠MBC与∠F+∠FEC的数量关系,并证明你的结论.11.(2019秋•涡阳县期末)如图,在△ABC中,AC=6,BC=8,AD⊥BC于D,AD=5,BE⊥AC于E,求BE的长.12.(2019秋•全椒县期末)如图,在△ABC中(AC>AB),AC=2BC,BC边上的中线AD把△ABC的周长分成60和40两部分,求AC和AB的长.13.(2019秋•和县期末)如图,在△ABC中,∠B=47°,三角形的外角∠DAC和∠ACF的平分线交于点E,求∠E的度数.14.(2019秋•涡阳县期末)如图,三角形AOB中,A、B两点的坐标分别为(﹣4,﹣6),(﹣6,﹣3),求三角形AOB的面积(提示:三角形AOB的面积可以看作一个梯形的面积减去一些小三角形的面积).15.(2018秋•望江县期末)在△ABC中,AB=9,BC=2,AC=x.(1)求x的取值范围;(2)若△ABC的周长为偶数,则△ABC的周长为多少?16.(2018秋•长丰县期末)已知:如图,D是AB上的一点,E是AC上一点,BE、CD相交于点F,∠A =62°,∠ACD=35°,∠ABE=20°.求:(1)∠BDC的度数;(2)∠BFC的度数.17.(2018秋•埇桥区期末)在△ABC中,∠A=∠B+20°,∠C=∠A+50°,求△ABC各内角的度数.18.(2018秋•包河区期末)如图,△ABC中,∠ACB>90°,AE平分∠BAC,AD⊥BC交BC的延长线于点D.(1)若∠B=30°,∠ACB=100°,求∠EAD的度数;(2)若∠B=α,∠ACB=β,试用含α、β的式子表示∠EAD,则∠EAD=.(直接写出结论即可)19.(2018秋•桐城市期末)如图,△ABC中,AD⊥BC于点D,AE是∠BAC的平分线,∠B=30°,∠C =70°,分别求:(1)∠BAC的度数;(2)∠AED的度数;(3)∠EAD的度数.20.(2018秋•无为县期末)如图,AC平分∠DCE,且与BE的延长线交于点A.(1)如果∠A=35°,∠B=30°,则∠BEC=.(直接在横线上填写度数)(2)小明经过改变∠A,∠B的度数进行多次探究,得出∠A、∠B、∠BEC三个角之间存在固定的数量关系,请你用一个等式表示出这个关系,并进行证明.解:(2)关系式为:证明:21.(2018秋•阜南县期末)如图,在△ABC中,AD是BC边上的高,AE平分∠BAC,∠B=42°,∠C=70°,求:∠DAE的度数.22.(2019春•庐江县期末)已知:三角形ABC和同一平面内的点D.(1)如图1,点D在BC边上,DE∥BA交AC于E,DF∥CA交AB于F.若∠EDF=85°,则∠A的度数为°.(2)如图2,点D在BC的延长线上,DF∥CA,∠EDF=∠A,证明:DE∥BA.(3)如图3,点D是三角形ABC外部的一个动点,过D作DE∥BA交直线AC于E,DF∥CA交直线AB于F,直接写出∠EDF与∠A的数量关系(不需证明).2020-2021学年安徽省八年级上册数学(沪科版)期末考试复习:第13章《三角形中的边角关系、命题与证明》解答题精选参考答案与试题解析一.解答题(共22小题)1.【解答】解:(1)∵∠A =75°,∴∠ABC +∠ACB =180°﹣75°=105°,∴∠MBC +∠MCB =23×105°=70°,∴∠BMC =180°﹣70°=110°.(2)∵∠A =α,∴∠ABC +∠ACB =180°﹣α∴∠MBC +∠MCB =23×(180°﹣α)=120°−23α∴∠BMC =180°﹣(120°−23α)=60°+23α2.【解答】解:(1)①∵∠A =60°,∴∠ABC +∠ACB =180°﹣60°=120°,∵∠DBC =12∠ABC ,∠DCB =12∠ACB ,∴∠DBC +∠DCB =12×120°=60°,∴∠D =180°﹣60°=120°.②结论:∠D =90°+12∠A .理由:∵∠DBC =12∠ABC ,∠DCB =12∠ACB ,∴∠DBC +∠DCB =12×(∠ABC +∠ACB )=12(180°﹣∠A )=90°−12∠A∴∠D =180°﹣(90°−12∠A )=90°+12∠A .(2)不正确.结论:∠D =90°−12∠A .理由:∵∠DBC =12∠PBC ,∠DCB =12∠ACB ,∴∠DBC +∠DCB =12×(∠PBC +∠QCB )=12(∠A +∠ACB +∠A +∠ABC )=12(180°+∠A )=90°+12∠A ,∴∠D =180°﹣(90°−+12∠A )=90°−12∠A .3.【解答】解:我写的真命题是:已知:①②④;求证:③证明如下:∵BE =FC ,∴BE +EC =CF +EC ,即BC =FE ,在△ABC 和△DEF 中{AA =AA AA =AA AA =AA ,∴△ABC ≌△DEF (SSS ),∴∠B =∠DEF ,∴AB ∥DE .故答案为①②④;③.4.【解答】解:如图所示,S 四边形ABCD =12×5×3+12×5×5=20.5.【解答】解:连接CD 并延长点E , ∵∠ACD =∠ADE ﹣∠A =∠ADE ﹣37°,∴∠A =37°,∠ADE =∠A +∠ACD ,同理可得:∠BCD =∠BDE ﹣28°,∵∠ACB =∠ACD +∠BCD ,∴∠ADB =148°,∠ACB =∠ADB ﹣∠A ﹣∠B ,=148°﹣37°﹣28°=83°.6.【解答】解:∵∠ABC =50°, ∴∠BAC +∠ACB =180°﹣50°=130°,∵AD ,CE 分别平分∠BAC 、∠ACB ,∴∠OAC =12∠BAC ,∠OCA =12∠ACB ,∴∠OAC +∠OCA =12(∠BAC +∠ACB )=12×130°=65°,在△AOC 中,∠AOC =180°﹣(∠OAC +∠OCA )=180°﹣65°=115°.7.【解答】解:(1)由题意:{∠A +∠A =∠AAA −AA =30°AA +AA +AA =180°,解得{∠A =30°AA =60°AA =90°.(2)∵∠C =90°,∠A =30°,∠B =60°,∴按角分类,属于直角三角形.△ABC 按边分类,属于不等边三角形.8.【解答】解:∵AD 是高,∠B =50°,∴Rt △ABD 中,∠BAD =90°﹣50°=40°,∵∠BAC =90°,∠B =50°,∴△ABC 中,∠ACB =90°﹣50°=40°,∵AE ,CF 是角平分线,∴∠CAE =12∠BAC =45°,∠ACF =12∠ACB =20°,∴△AOC 中,∠AOC =180°﹣45°﹣20°=115°.9.【解答】解:(1)∵AB =4,AC =5,∴5﹣4<BC <4+5,即1<BC <9,故答案为:1<BC <9;(2)∵∠ACD =125°,∴∠ACB =180°﹣∠ACD =55°,∵DE ∥AC ,∴∠BDE =∠ACB =55°.∵∠E =55°,∴∠B =180°﹣∠E ﹣∠BDE =180°﹣55°﹣55°=70°.10.【解答】(1)证明:∵∠FEC =∠A +∠ADE ,∠F +∠BDF =∠ABC ,∴∠F +∠FEC =∠F +∠A +∠ADE ,∵∠ADE =∠BDF ,∴∠F +∠FEC =∠A +∠ABC ,∵∠A =∠ABC ,∴∠F +∠FEC =∠A +∠ABC =2∠A .(2)∠MBC =∠F +∠FEC .证明:∵BM ∥AC ,∴∠MBA =∠A ,、∵∠A =∠ABC ,∴∠MBC =∠MBA +∠ABC =2∠A ,又∵∠F +∠FEC =2∠A ,∴∠MBC =∠F +∠FEC .11.【解答】解:∵S △ABC =12AC •BE ,S △ABC =12BC •AD ,∴AC •BE =BC •AD ,∴BE =406=203.12.【解答】解:设BD =CD =x ,AB =y ,则AC =2BC =4x ,∵BC 边上的中线AD 把△ABC 的周长分成60和40两部分,AC >AB , ∴AC +CD =60,AB +BD =40,即{4A +A =60A +A =40,解得:{A =12A =28, 当AB =28,BC =24,AC =48时,符合三角形三边关系定理,能组成三角形,所以AC =48,AB =28.13.【解答】解:∵三角形的外角∠DAC 和∠ACF 的平分线交于点E ,∴∠EAC =12∠DAC ,∠ECA =12∠ACF ;又∵∠B =47°(已知),∠B +∠1+∠2=180°(三角形内角和定理),∴12∠DAC +12∠ACF =12(∠B +∠B +∠1+∠2)=227°2(外角定理),∴∠E =180°﹣(12∠DAC +12∠ACF )=66.5°.14.【解答】解:S △AOB =S 梯形BCDO ﹣(S △ABC +S △OAD ) =12×(3+6)×6﹣(12×2×3+12×4×6)=27﹣(3+12) =12.15.【解答】解:(1)由题意知,9﹣2<x <9+2,即7<x <11;(2)∵7<x <11,∴x 的值是8或9或10,∴△ABC 的周长为:9+2+8=19(舍去).或9+2+9=20或9+2+10=21(舍去)即该三角形的周长是20.16.【解答】解:(1)∵∠A =62°,∠ACD =35°,∴∠BDC =∠A +∠ACD =62°+35°=97°;(2)∵∠ABE =20°,∠BDC =97°,∴∠BFC =∠BDC +∠ABE =97°+20°=117°.17.【解答】解:∵∠A =∠B +20°,∠C =∠A +50°, ∴∠C =∠B +20°+50°,∵∠A +∠B +∠C =180°,∴∠B +20°+∠B +∠B +20°+50°=180°,解得:∠B =30°,∴∠A =30°+20°=50°,∴∠C =50°+50°=100°,即∠A =50°,∠B =30°,∠C =100°.18.【解答】解:(1)∵AD ⊥BC ,∴∠D =90°,∵∠ACB =100°,∴∠ACD =180°﹣100°=80°,∴∠CAD =90°﹣80°=10°,∵∠B =30°,∴∠BAD =90°﹣30°=60°,∴∠BAC =50°,∵AE 平分∠BAC ,∴∠CAE =12∠BAC =25°,∴∠EAD =∠CAE +∠CAD =35°;(2)∵AD ⊥BC ,∴∠D =90°,∵∠ACB =β,∴∠ACD =180°﹣β,∴∠CAD =90°﹣∠ACD =β﹣90°,∵∠B =α,∴∠BAD =90°﹣α,∴∠BAC =90°﹣α﹣(β﹣90°)=180°﹣α﹣β, ∵AE 平分∠BAC ,∴∠CAE =12∠BAC =90°−12(α+β),∴∠EAD =∠CAE +∠CAD =90°−12(α+β)+β﹣90°=12β−12α.故答案为:12β−12α.19.【解答】解:(1)∵∠B =30°,∠C =70°,∴∠BAC =180°﹣∠B ﹣∠C =80°;(2)∵AE 是∠BAC 的平分线,∴∠BAE =12∠BAC =40°,∴∠AED =∠BAE +∠B =40°+30°=70°;(3)∵AD ⊥BC ,∴∠ADE =90°,∴∠EAD =∠ADE ﹣AED =90°﹣70°=20°.20.【解答】解:(1)∵∠A =35°,∠B =30°,∴∠ACD =∠A +∠B =65°,又∵AC 平分∠DCE ,∴∠ACE =∠ACD =65°,∴∠BEC =∠A +∠ACE =35°+65°=100°, 故答案为:100°;(2)关系式为∠BEC =2∠A +∠B .理由:∵AC 平分∠DCE ,∴∠ACD =∠ACE ,∵∠BEC =∠A +∠ACE =∠A +∠ACD ,∵∠ACD =∠A +∠B ,∴∠BEC =∠A +∠A +∠B =2∠A +∠B .21.【解答】解:∵∠B =42°,∠C =70°,∴∠BAC =180°﹣∠B ﹣∠C =68°,∵AE 平分∠BAC ,∴∠CAE=12A BAC=34°,∵AD是BC边上的高,∴∠ADC=90°,∵∠C=70°,∴∠CAD=180°﹣∠ADC﹣∠C=20°,∴∠DAE=∠CAE﹣∠CAD=34°﹣20°=14°.22.【解答】解:(1)∵DE∥BA,DF∥CA,∴∠A=∠DEC,∠DEC=∠EDF,∵∠EDF=85°∴∠A=∠EDF=85°;故答案为:85;(2)证明:如图1,延长BA交DF于G.∵DF∥CA,∴∠2=∠3.又∵∠1=∠2,∴∠1=∠3.∴DE∥BA.(3)∠EDF=∠A,∠EDF+∠A=180°,理由:如图2,∵DE∥BA,DF∥CA,∴∠EDF+∠E=180°,∠E+∠EAF=180°,∴∠EDF=∠EAF=∠A;如图3,∵DE∥BA,DF∥CA,∴∠EDF+∠F=180°,∠F=∠CAB,∴∠EDF+∠BAC=180°.即∠EDF+∠A=180°,。
三角形中的边角关系、命题与证明

高效学案4、三角形中的重要线段(1)三角形的角平分线:三角形的一个内角的平分线与它的对边相交,连接这个角的顶点和交点之间的线段.(2)三角形的中线:三角形中,连接一个顶点和它所对边的中点的线段叫做三角形的中线.(3)三角形的高:从三角形一个顶点向它的对边作一条垂线,三角形顶点和垂足之间的线段称三角形这条边上的高.三、经典例题【例1】以下列各组线段长为边,能组成三角形的是( )A .1cm ,2cm ,4cmB .8cm ,6cm ,4cmC .12cm ,5cm ,6cmD .2cm ,3cm ,6cm【变式1】两根木棒的长分别为7cm 和10cm ,要选择第三根棒,将它钉成一个三角形框架,那么第三根木棒长x cm 的范围是__________.【变式2】若a 、b 、c 是△ABC 的三边,化简c b a a c b c b a +--+--+--.【变式3】如图,已知P 是△ABC 内一点,连结AP ,PB ,PC .求证:PA+PB+PC >21(AB+AC+BC).【例2】等腰三角形的两边长分别为5 cm 和10 cm ,则此三角形的周长是( )A .15cmB .20cmC .25 cmD .20 cm 或25 cm【例3】已知△ABC 中:(1)∠A=20°,∠B ﹣∠C=40°,则∠B=______;(2)∠A=120°,2∠B+∠C=80°,则∠B=_______;(3)∠B=∠A+40°,∠C=∠B ﹣50°,则∠B=_______;(4)∠A :∠B :∠C=1:3:5,则∠B=_______.E DA 2 1 ABC 【变式】如图把△ABC 纸片沿DE 折叠,当点A 在四边形BCDE 的内部时,则∠A 与∠1、∠2之间有一种数量关系始终保持不变.请试着找出这个规律,你发现的规律是( )A.∠A=∠2+∠1B.2∠A=∠2+∠1C.3∠A=2∠1+∠2D.3∠A=2∠1+2∠2【例4】如图,α、β、γ分别是△ABC 的外角,且α:β:γ= 2:3:4,则α =__________.【变式1】如图,五角星ABCDE ,求E D C B A ∠+∠+∠+∠+∠的度数.【变式2】已知:如图1,线段AB 、CD 相交于点O ,连接AD 、CB ,我们把形如图1的图形称之为“8字形”.试解答下列问题:(1)在图1中,请直接写出∠A 、∠B 、∠C 、∠D 之间的数量关 ;(2)在图2中,若∠D=40°,∠B=36°,∠DAB 和∠BCD 的平分线AP 和CP 相交于点P ,并且与CD 、AB 分别相交于M 、N .利用(1)的结论,试求∠P 的度数;(3)如果图2中∠D 和∠B 为任意角时,其他条件不变,试问∠P 与∠D 、∠B 之间存在着怎样的数量关系?【例5】如图,∆ABC 中,AD 是BC 上的中线,BE 是∆ABD 中AD 边上的中线,若∆ABC 的面积是24,则∆ABE 的面积是________.【例6】如图,在△ABC 中,BE ⊥AC ,BC=5cm ,AC=8cm ,BE=3cm .(1)求△ABC 的面积;(2)画出△ABC 中的BC 边上的高AD ,并求出AD 的值.【例7】已知:如图AB//CD 直线EF 分别交AB 、CD 于点E 、F ,BEF ∠的平分线与DFE ∠的平分线相交于P ,求证 90=∠P .【变式】如图,∠MON=90°,点A ,B 分别在射线OM ,ON 上运动,BE 平分∠NBA ,BE 的反向延长线与∠BAO 的平分线交于点C .∠BAO=45°则∠C 的度数是( )A .30°B .45°C .55°D .60°【例8】如图,△ABC 中,∠B 和∠C 的平分线交于点O ,若∠A=70°,则∠BOC= 度.【变式】认真阅读下面关于三角形内外角平分线所夹的探究片段,完成所提出的问题.探究1:如图1,在△ABC 中,O 是∠ABC 与∠ACB 的平分线BO 和CO 的交点,试分析∠BOC 与∠A 有怎样的关系? 探究2:如图2中,O 是∠ABC 与外角∠ACD 的平分线BO 和CO 的交点,试分析∠BOC 与∠A 有怎样的关系? 探究3:如图3中,O 是外角∠DBC 与外角∠ECB 的平分线BO 和CO 的交点,则∠BOC 与∠A 有怎样的关系?四、方法归纳1、三角形的边的关系,只需验证:两个较短的边之和大于第三边即可.2、三角形的两边长分别为b a ,,则第三边长c 的取值范围是:b a c b a +<<-.3、三角形的几种“心”.(1)重心:三条中线的交点.(2)外心:三边垂直平分线的交点.(3)内心:三条内角平分线的交点.(4)垂心:三条高线的交点.五、课后作业【作业1】1.如图所示,共有_______个三角形,以AD 为一边的三角形有___________________,∠C 是△ADC 的________边的对角,AE 是△ABE 中∠_____的对边.2.一个三角形周长为27cm ,三边长为2:3:4,则最长边为______cm.3.已知在△ABC 中,5=a ,3=b ,那么第三边c 的取值范围是_____________.4.在△ABC 中,2∠A=3∠B=6∠C ,则△ABC 是________三角形.5.在△ABC 中,已知∠B -∠A=5°,∠C -∠B=20°,则∠A=_______.6.如图,在△ABC 中,∠ACB=90°,∠ABC=25°,CD ⊥AB 于D ,则∠ACD =_________.7.等腰三角形周长为14,其中一边长为3,则腰长为________.8.一个三角形有两条边相等,一边长为4cm ,另一边长为9cm ,那么这个三角形的周长是__________.9.在△ABC 中,∠B ,∠C 的平分线交与点O ,若∠BOC=132°,则∠A=________.10.如图,在△ABC 中,D 、E 分别是AB 、AC 边上的点,DE ∥BC ,∠ADE=30°,∠C=120°,则∠A 等于( )A.60°B.45°C.30°D.20°11.如果三角形的一个角等于其他两个角的差,那么这个三角形一定是( )A.锐角三角形B.直角三角形C.钝角三角形D.不确定12.一个三角形的两边长分别为3和7,若第三边长为偶数,则第三边为( )A.4,6B.4,6,8C.6,8D.6,8,1013.能将三角形的面积分成相等的两部分的是( )A.三角形的角平分线B.三角形的中线C.三角形的高线D.以上都不对14.在△ABC 中,若∠A :∠B :∠C=1:2:3,则△ABC 是( )A.锐角三角形B.直角三角形C.钝角三角形D.正三角形15.如图,AD 、AF 分别是△ABC 的高和角平分线,已知∠B=36°,∠C=76°,求∠DAF 数.(提示:先证明∠DAF=21(∠C -∠B ))16.如图,已知I 为△ABC 的内角平分线的交点.求证:∠BIC=90°+21∠A.17.如图,在△ABC 中,∠B = 60°,∠C = 50°,AD 是∠BAC 的平分线,DE 平分∠ADC 交AC 于E ,求∠BDE 的度数.18.如图,在△ABC 中,∠B=∠C ,FD ⊥BC ,DE ⊥AB ,垂足分别为D 、E ,已知∠AFD=150°,求∠EDF 等于多少度?【作业2】1.如图,AD ,BE ,CF 是△ABC 的中线、高、角平分线.则:BD=___=21___;∠___=∠___=90°;∠___=∠___=21∠___. 2.如图,在△ABC 中,AD ⊥BC ,CE ⊥AB ,已知AB=6,BC=4,AD=5,则CE=______.3.如图,AD 、AE 分别是△ABC 的中线、高,且AB=5,AC=3,则△ABD 与△ACD 的周长的差是_________,△ACD 与△ABD 的面积关系为__________.第1题 第2题 第3题 第4题 第5题4.如图,△ABC 的周长是21cm ,AB=AC ,中线BD 分△ABC 为两个三角形,且△ABD 的周长比△BCD 的周长大6cm ,则AB= ,BC=_________.5.如图,在△ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点,且2ABC cm 8=∆S ,则阴影部分的面积等于_________.6.在△ABC 中,若AB=5,AC=2,且三角形周长为偶数,则BC=________.7.△ABC 的三边长是a ,b ,c ,则c b a a c b c b a +++-----=________.第8题 第9题 第10题8.如图,在Rt △ABC 中,∠C=90°,点B 沿CB 所在直线远离C 点移动,下列说法不正确的是( )A.三角形面积随之增大B.∠CAB 的度数随之增大C.边AB 的长度随之增大D.BC 边上的高随之增大9.如图,在△ABC 中,∠B 、∠C 的平分线BE ,CD 相交于点F ,∠ABC=42°,∠A=60°,则∠BFC=( )A.118°B.119°C.120°D.121°10.如图,在△ABC 中,BO ,CO 分别平分∠ABC 和∠ACB ,则∠BOC 与∠A 的大小关系是( )A.∠BOC=2∠AB.∠BOC=90°+∠AC.∠BOC=90°+21∠A D.∠BOC=90°21-∠A11.如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°﹣∠ABD;④∠BDC=∠BAC.其中正确的结论有()A.1个B.2个C.3个D.4个12.如图,在△ABC中,∠ABC与∠ACB的平分线相交于D,已知∠A=50°,求∠BDC的度数.13.如图,已知BD为∠ABC的平分线,CD为△ABC的外角∠ACE的平分线,CD与BD交于点D,试说明∠A=2∠D.14.如图,已知AB∥CD,EF与AB、CD分别相交于点E、F,∠BEF与∠EFD的平分线相交于点P,求证:EP⊥FP.15.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.16.已知:∠MON=40°,OE 平分∠MON ,点A 、B 、C 分别是射线OM 、OE 、ON 上的动点(A 、B 、C 不与点O 重合),连接AC 交射线OE 于点D .设∠OAC x =°.21(1)如图1,若AB ∥ON ,则①∠ABO 的度数是 ;②当∠BAD=∠ABD 时,=x ;当∠BAD=∠BDA 时,=x .(2)如图2,若AB ⊥OM ,则是否存在这样的x 的值,使得△ADB 中有两个相等的角?若存在,求出x 的值;若不存在,说明理由.第二节:命题与证明一、课堂导入有个学生请教爱因斯坦逻辑学有什么用。
第13章 三角形中的边角关系、命题与证明(总复习)

证明三角形内角和定理的方法
添加辅助线思路:1、构造平角
A D E 1 2 F E A
A E 1
2
D
B 图2 C
1
2 D
B
图1
C
B
C
图3
添加辅助线思路:2、构造同旁内角
E A
E
A
F 4 C
1 2
B 图1 C
3
B
D
图2
9.三角形的外角
三角形的外角的定义: 三角形一边与另一边的延长线 组成的角,叫做三角形的外角.
4.三角形的分类:
1:按边分类
不等边三角形 三角形 腰与底不相等的等腰三角形 等腰三角形 腰与底相等的等边三角形
2:按角分类
直角三角形 三角形 锐角三角形 斜三角形 钝角三角形
5. 对“定义”的理解:
能明确界定某个对象含义的语句叫做定义 。 注意:明确界定某个对象有两种形式:
7.有关“公理、定理、证明、推论、演绎推理、 辅助线”等概念 (1)公理:从长期实践中总结出来的,不需要再作 证明的真命题。
(2)定理:从公理或其他真命题出发,用推理方法证明 为正确的,并被选作判断命题真假的依据的真命题 (3)推论:由公理、定理直接得出的真命题。 (4)演绎推理:从已知条件出发,依据定义、公理、 定理,并按照逻辑规则,推导出结论的方法。
(2)三角形中线:连结一个顶点和它对边中点的线段. 表示法: ① AD是△ABC的BC上的中线. ② BD=DC=½BC.
B A
注意: ①三角形的中线是线段;
D
C
②三角形三条中线全在三角形的内部;
③三角形三条中线交于三角形内部一点; ④中线把三角形分成两个面积相等的三角形.
第13章三角形边角关系、命题与证明 单元复习课件(共31张PPT)

其实,世上最温暖的语言,“ 不是我爱你,而是在一起。” 所以懂得才是最美的相遇!只有彼此以诚相待,彼此尊重 ,相互包容,相互懂得,才能走的更远。 相遇是缘,相守是爱。缘是多么的妙不可言,而懂得又是多么的难能可贵。否则就会错过一时,错过一世! 择一人深爱,陪一人到老。一路相扶相持,一路心手相牵,一路笑对风雨。在平凡的世界,不求爱的轰轰烈烈;不求誓 言多么美丽;唯愿简单的相处,真心地付出,平淡地相守,才不负最美的人生;不负善良的自己。 人海茫茫,不求人人都能刻骨铭心,但求对人对己问心无愧,无怨无悔足矣。大千世界,与万千人中遇见,只是相识的 开始,只有彼此真心付出,以心交心,以情换情,相知相惜,才能相伴美好的一生,一路同行。 然而,生活不仅是诗和远方,更要面对现实。如果曾经的拥有,不能天长地久,那么就要学会华丽地转身,学会忘记。 忘记该忘记的人,忘记该忘记的事儿,忘记苦乐年华的悲喜交集。 人有悲欢离合,月有阴晴圆缺。对于离开的人,不必折磨自己脆弱的生命,虚度了美好的朝夕;不必让心灵痛苦不堪, 弄丢了快乐的自己。擦汗眼泪,告诉自己,日子还得继续,谁都不是谁的唯一,相信最美的风景一直在路上。 人生,就是一场修行。你路过我,我忘记你;你有情,他无意。谁都希望在正确的时间遇见对的人,然而事与愿违时, 你越渴望的东西,也许越是无情无义地弃你而去。所以美好的愿望,就会像肥皂泡一样破灭,只能在错误的时间遇到错的人 。 岁月匆匆像一阵风,有多少故事留下感动。愿曾经的相遇,无论是锦上添花,还是追悔莫及;无论是青涩年华的懵懂赏 识,还是成长岁月无法躲避的经历……愿曾经的过往,依然如花芬芳四溢,永远无悔岁月赐予的美好相遇。 其实,人生之路的每一段相遇,都是一笔财富,尤其亲情、友情和爱情。在漫长的旅途上,他们都会丰富你的生命,使 你的生命更充实,更真实;丰盈你的内心,使你的内心更慈悲,更善良。所以生活的美好,缘于一颗善良的心,愿我们都能 善待自己和他人。 一路走来,愿相亲相爱的人,相濡以沫,同甘共苦,百年好合。愿有情有意的人,不离不弃,相惜相守,共度人生的每 一个朝夕……直到老得哪也去不了,依然是彼此手心里的宝,感恩一路有你!