16.3 二次根式的加减(1)

合集下载

16.3 二次根式的加减

16.3  二次根式的加减
16.3
二次根式的加减
第2课时
(1) 27 3 【例题】
6
2
Байду номын сангаас
(1) 27 3 6 2
3 3 (1 ) 27 6 3 6 2 ( 2) 】计算 3 3 6 【例 ( 2)1 3 3 8 8 3 2) 3 3 (3)( 48 ( 27 )83 48 27 ) 3 6 (3)( 1. 注意运算顺序
9 12 5 20 29 12 5
整式运算的乘法公式在二次根式的运算中仍然适用.
【跟踪训练】
1.计算
1 2
2 3 3
3
32 2

2 2
【解析】
2
3 2 2
(1)原式 2 2

3 3
2
2
8 27 19
(2)原式 6 4 2 3 2 4 2 2

5 6
5 6 11
【解析】选C.在选项C中,
2 2 2 ( 3) (a b)(a b) 3(a b ). 原式=
2.(德化·中考)下列计算正确的是( A. 20 2 10 C. 4 2 2 【解析】选B.选项A中 B. 2 3

6
2 D. ( 3) 3
45 30 10 50
95 30 10
1.下列计算正确的是(

A. 102 82 102 82 10 8 2
B. 2 3 2

2 3 2 4 3 2 2
2
C. 3 a b 3 a b 3 a 2 b 2 D.

(附答案解析)人教版八年级数学下册16.3二次根式的加减(1))精选同步练习

(附答案解析)人教版八年级数学下册16.3二次根式的加减(1))精选同步练习

16.3 二次根式的加减(1)同步练习姓名:__________班级:__________学号:__________本节应掌握和应用的知识点1.同类二次根式(1)同类二次根式的定义几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式叫做同类二次根式.(2)同类二次根式的合并合并同类二次根式类似于合并同类项,就是将同类二次根式的“系数”合并 ,根指数与被开方数保持不变.2.二次根式的加减(1)二次根式的加减实质是合并同类二次根式,非同类二次根式不能合并.(2)二次根式加减法的一般步骤: ①先把各根式化成最简二次根式; ②找出其中的同类二次根式; ③合并同类二次根式.3. 比较二次根式大小时,可将根号外的非负数(或式子) 移到根号内.基础知识和能力拓展训练一、选择题1.下列各组二次根式中,是同类二次根式的是( )A. 6和32B. a和2aC. 12和13D. 3和92.下列二次根式中,不能与2合并的是()A. 12B. 8C. 12D. 183.已知二次根式24a 与2是同类二次根式,则a的值可以是()A. 5B. 3C. 7D. 84.下列运算正确的是()A. (﹣a2)3=a6B. (a+b)2=a2+b2C. 8﹣2=2D. 55﹣5=4 5.已知等腰三角形的两边长为23和52,则此等腰三角形的周长为()A. 43+52B. 23+102C. 43+102D. 43+52或23+102 6.计算|2﹣5|+|4﹣5|的值是()A. ﹣2B. 2C. 25﹣6D. 6﹣257.计算:32﹣8的结果是()A. 30B. 2C. 22D. 2.88.实数的值在( )A. 0和1之间B. 1和2之间C. 2和3之间 D . 3和4之间9.设a=6-2,b=3-1,c=231,则a,b,c之间的大小关系是( )A. c>b>aB. a>c>bC. b>a>cD. a>b>c10.设的小数部分为,则的值是()A. B. 是一个无理数C. D. 无法确定二、填空题11.若最简二次根式与是同类二次根式,则a =______,b =___________.12.若最简二次根式1x +与22x -能合并为一个二次根式,则x =_______。

16.3二次根式的加减课件+2023-—2024学年人教版数学八年级下册

16.3二次根式的加减课件+2023-—2024学年人教版数学八年级下册

同类项合并就是字母不变,系数相加减。
新课学习
二次根式的加减
7.5dm
现有一块长7.5dm、宽5dm的木板,
能否采用如图的方式,在这块木板
5dm
上截出两个分别是8dm2和18dm2的
dm
dm
正方形木板?
( + )dm
问题转化为比较7.5dm与( + )dm的大小。
新课学习
( + )
复习导入
2、把下列各根式化简
(1) 12
2
3
1
(5)
2
2
2
(2) 48
4
3
(6) 32
4
2
(3) 18
3
2
(4) 50
5
2
1
(7) 45 (8) 1
3
3
5
2
3
3
导入新课
计算下列各式:
(1)2x+3x
5x
(2)2x5-5x5+5x5
2x5
(3)3x+2x+3y
5x+3y
(4)3a2-2a2+a3
a2+a3
先化为最简二次根式
把同类二次根式合并。
二次根式的加减与整式的加减根据都是分配律,它们的
运算实质也基本相同。
拓展提升
1.解下列方程和不等式.
(1)

x+


=2x+1
+
(2) (x-1)>3(x+1)
分析:(1)先将分母有理化,再解方程即可解答本题;
(2)根据解不等式的步骤进行解答即可,注意不等号的方向。

八年级数学下册第十六章二次根式16.3二次根式的加减第1课时教案新新人教

八年级数学下册第十六章二次根式16.3二次根式的加减第1课时教案新新人教

16.3二次根式的加减第1课时【教学目标】知识与技能:1.理解二次根式合并的原理,能进行二次根式的合并.2.掌握二次根式加减的法则,会运用法则进行二次根式的加减.过程与方法:先提出问题,分析问题,在分析问题中,渗透对二次根式进行加减的方法的理解.再总结经验,用它来指导二次根式的计算和化简.培养学生较熟练的运算能力.情感态度与价值观:帮助学生正确对待学习,养成良好的学习习惯,寻找有效的学习方法.【重点难点】重点:理解二次根式合并的原理,掌握二次根式加减的法则,会运用法则进行二次根式的加减.难点:掌握二次根式加减的法则,能熟练运用法则进行二次根式的加减.【教学过程】一、创设情境,导入新课:[问题情境]如图,面积为48 cm2的正方形四个角是面积为3 cm2的小正方形,现将四个角剪掉,制作一个无盖的长方体盒子,求这个长方体的底面边长和高分别是多少?解:原大正方形边长为=4(cm),小正方形边长为 cm.长方体的底面的边长为4-2.接下来怎样计算呢?这就是这节课我们要学习的二次根式的加减.二、探究归纳活动1:二次根式的合并的条件1.(1)什么是最简二次根式?(2)化简二次根式并找出被开方数相同的二次根式:①②③④⑤⑥⑦(3)上面二次根式哪些能合并?答案:①与⑥③与⑤④与⑦.2.归纳:二次根式的合并的条件把二次根式化成最简二次根式,被开方数相同的二次根式能合并.活动2:探索二次根式加减的法则1.填空:3+2=(3+2),其运算根据是______答案:分配律2.+=4+3①=(4+3)②=7.问题:(1)其中第①步是怎样运算的?______ ;答案:化成最简二次根式(2)第②步运算根据是________.答案:分配律3.思考:同类项可以合并,被开方数相同的最简二次根式能合并吗?提示:能.4.归纳:二次根式加减的法则:二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.活动3:例题讲解【例1】确定下列哪组二次根式能合并.(1),(2),(3),(4),分析:化成最简二次根式后,被开方数相同的二次根式可以合并.解:(1)=3与不能合并;(2)=与能合并;(3)=5,=10,5与10不能合并;(4)与不能合并.点拨:二次根式合并的方法1.将二次根式都化为最简二次根式;2.把被开方数相同的二次根式合并.【例2】计算:(1)+2+-.(2)a+-.分析:先把各二次根式化成最简二次根式,再把被开方数相同的二次根式合并.解:(1)+2+-=++2-=++2-=+.(2)a+-=+2-+=+(2+1)=+3.总结:二次根式加减的步骤:1.化简:将每一个二次根式都化为最简二次根式.2.判断:判断哪些二次根式的被开方数相同,把被开方数相同的二次根式结合在一起.3.合并:合并被开方数相同的二次根式,将二次根式的系数相加,被开方数不变.三、交流反思这节课我们学习了二次根式的加减运算,在运算时要注意按照:“一化二找三合并”的步骤进行,细心运算.四、检测反馈1.计算:-=________.A.B.2 C.D.2+2.化简-(-1)的结果是()A.2-1B.2-C.1D.2+3.下列根式中,不能与合并的是()A.B.C.D.4.计算-9的结果是()A.-B.C.-D.5.下列计算正确的是()A.4-3=1B.+=C.2=D.3+2=56.已知最简二次根式与能合并,则a的值可以是()A.5B.3C.7D.87.请确定下列二次根式是否能合并,说明理由.(1)和;(2)和;(3)和.8.计算:(1)-(2)+6-3x五、布置作业教科书第15页习题16.3第1,2,3题六、板书设计七、教学反思本节课学习了二次根式加减,关键是掌握二次根式加减的步骤:(1)化:将每一个二次根式都化为最简二次根式;(2)找:找出被开方数相同的二次根式,把被开方数相同的二次根式结合在一起;(3)合并:将被开方数相同的二次根式的系数相加,被开方数不变.并能运用步骤进行计算.。

16.3《二次根式的加减》教案

16.3《二次根式的加减》教案
c.在实际问题中,识别并分解出二次根式进行运算;
-难点解析:学生需要学会从复杂的实际问题中抽象出二次根式,然后进行加减运算;
d.理解二次根式加减运算的顺序,避免计算错误;
-难点解析:学生在计算过程中可能会忽略运算顺序,导致最终结果错误;
e.熟练运用二次根式的加减法则,解决混合运算问题;
-难点解析:混合运算涉及多个步骤,学生需要清晰掌握每一步的运算规则。
3.重点难点解析:在讲授过程中,我会特别强调合并同类二次根式和二次根式加减的顺序这两个重点。对于难点部分,我会通过举例和步骤分解来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与二次根式相关的实际问题,如计算不同形状的面积或体积。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,通过剪纸或模型来演示二次根式的基本原理。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《二次根式的加减》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算不规则形状的面积或体积的情况?”(如计算花园的面积、不规则玻璃的面积等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索二次根式加减的奥秘。
1.加强课堂引导,确保教学内容与实际应用紧密结合;
2.注重学生个体差异,提高课堂教学的针对性;
3.创设更多互动环节,激发学生的学习兴趣和积极性;
4.加强课后辅导,帮助学生巩固所学知识。
4.学生小组讨论中,我发现大部分学生能够积极参与,勇于表达自己的观点。但也有部分学生显得较为沉默,可能是因为他们对这个话题不够熟悉或者缺乏自信。在今后的教学中,我要关注这部分学生,鼓励他们多发言,增强他们的自信心。

新版新课标人教版八年级数学下册16.3二次根式的加减教材习题解析

新版新课标人教版八年级数学下册16.3二次根式的加减教材习题解析

新版新课标人教版八年级数学下册《16.3二次根式的加减》教材习题解析XX版资料《16.3二次根式的加减》教材习题解析湖北省咸宁市温泉中学廖文涛P13练习 1.解析:本题考查二次根式的合并.答案:(1)不正确,;(2)不正确,(3)正确。

2.解析:本题考查二次根式的加减运算,注意运算前先把各因式化为最简二次根式.答案:(1)原式;(2)原式;(3)原式;(4)原式. 3.解析:本题考查二次根式在实际中的运用.答案:设大圆的半径为R,小圆的半径为r,则,得,,则. P14练习 1.解析:本题考查二次根式的加减乘除混合运算,注意运算顺序.答案:(1)原式;(2)原式;(3)原式;(4)原式. 2.解析:本题考查运用乘法公式在二次根式运算中的运用.答案:(1)原式;(2)原式;(3)原式;(4)原式. P15习题6.3 复习巩固 1.解析:本题考查二次根式的合并.答案:(1)不正确,已是最简结果.(2)不正确,不符合二次根式的加减法运算法则;(3)不正确,;(4)不正确,.. 2.解析:本题考查二次根式的加法运算,注意运算顺序是先将各因式化为最简二次根式再合并二次根式.答案:(1)原式;(2)原式;(3)原式;(4)原式. 3.解析:本题考查二次根式加减混合运算,注意运算顺序.答案:(1)原式;(2)原式;(3)原式;(4)原式. 4.解析:本题考查二次根式的加减乘除混合运算,注意运算顺序及乘法公式在二次根式运算中的运用.答案:(1)原式;(2))原式;(3)原式;(4)原式.综合运用 5.解析:本题考查求近似值的问题.答案:; 6.解析:本题考查求代数式的值,其中要利用整式的乘法公式,先将多项式进行因式分解,然后代入求值.答案:(1),.当时,原式.(2),当时,原式. 7.解析:本题考查二次根式在实际中的运用,本题要用“算两次”的方法,利用面积相等求边长.答案:过点C作CD⊥AB于点D,∵CB=CA,∴AD=DB,∠A=∠B.又∵∠C=900,∴∠A=450,∴∠ACD=∠A=450,∴CD=AD.∴CD=AB.∵S△ABC=CB·CA=CD·AB,,∴AB=(舍负值),∴AB=. 8.解析:本题考查运用乘法公式求代数式的值.答案:∴,∴,∴∴. 9.解析:本题是关于一元二次方程的解的问题,其中方程的解是用二次根式的形式表示的无理数,为后面学习一元二次方程作了一定的铺垫.答案:(1)是原方程的解;(2)是原方程的解.XX版资料《16.3二次根式的加减》教材习题解析湖北省咸宁市温泉中学廖文涛P13练习 1.解析:本题考查二次根式的合并.答案:(1)不正确,;(2)不正确,(3)正确。

16.3(1)二次根式的加法和减法

16.3(1)二次根式的加法和减法

1、什么是最简二次根式?
1)被开方数不含分母 2)被开方数的各因式的指数为1 2、下列各组里的二次根式是不是同类二次 根式?(题中字母都为正数)
问题
怎样计算 a ?
2
a 2 8a 50a 2 a 2 a
3
二次根式加减运算的步骤:
(1)把各个二次根式化成最简二次根式
(2)把同类二次根式分别合并
(1)把各个二次根式化成最简二次根式
(2) 再把同类二次根式分别合并
(不是同类二次根式不能合并)
• 教学反思: • 此节教学的难点是正确化简二次根式尤其 是被开方数比较复杂的二次根式的化简.解 含二次根式的一元一次方程、不等式也容 易出错.
16.3(1) 二次根式的加法和减法
• 教学目标: • 掌握二次根式的加减法运算法则; • 在二次根式的加减法运算法则的学习过程 中,渗透分析、概括、类比等数学思想方 法,提高学生的思维品质和学习兴趣. • 教学重点和难点: • 掌握二次根式的加减法运算法则.
学情分析:
学生已掌握最简二次根式、同类二次根式的概念以及 合并同类项等知识,通过将合并同类二次根式与合并 同类项类比,将二次根式的加减与整式加减类比,掌握 二次根式加减法运算法则。
练习1
判断题
(1)3 2 2 3 5 3 ( (2)2 3 2 3 ( (3)3 3 3 3 ( ) )
)
(4)2 x x 3x x x (
) )
1 1 (5)a x x (a ) x ( b b
练习2
计算 : (1)6 3 0.12 48
x 2 (2) 8 x 2 2x 2 9x 3a (3)2a 3ab (b 27a 2ab ) (b 0) 4

人教版八年级下册16.3《二次根式的加减》课件(共33张PPT)

人教版八年级下册16.3《二次根式的加减》课件(共33张PPT)

合作探究
问题2
形成知识
怎样计算
8 + 18

如果看不出 化,先看算式 3
3 2-
8 + 18 22
能否化简,我们不妨把问题简
能否化简.
2
2 =( 3 - 1 ) 2 = 2
用分配 律合并
整式 加减
你能得到这样的两个二次根式加减的方法吗? 将同类二次根式用分配律合并.
合作探究
算式
形成知识
8 + 1 8 与算式 3 22
合作探究 形成知识
例1
( ( 1)
计算:
8+ 3)
8+ 48 +
6 ;
3) 18 = 4
(4 ( 2)
6 = 8
2 -3
6 +
6) 2
3 6
2 .
解: ( 1) (
=
3+3
2;
思考:(1)中,每一步的依据是什么? 第一步的依据是:分配律或多项式乘单项式; 第二步的依据是:二次根式乘法法则; 第三步的依据是:二次根式化简.
( 48 +
2 0 )( 12 -
5 )= 4
3+2
5-2
3+
5 =2
3 +3 5
化成最简 二次根式
合并被开方 数相同的二 次根式
自主学习 复习引入
思考:二次根式加减,分为几个步骤?
二次根式的加减主要归纳为两个步骤: 第一步,先将二次根式化成最简二次根式; 第二步,再将被开方数相同的二次根式进行合并.
的结果是
B.
20 3
330 2 3
30 3
3 C.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

16.3 二次根式的加减(1)
第一课时
教学内容
二次根式的加减
教学目标
理解和掌握二次根式加减的方法.
先提出问题,分析问题,在分析问题中,渗透对二次根式进行加减的方法的理解.再总结经验,用它来指导根式的计算和化简.
重难点关键
1.重点:二次根式化简为最简根式.
2.难点关键:会判定是否是最简二次根式.
教学过程
一、复习引入
学生活动:计算下列各式.
(1)2x+3x;(2)2x2-3x2+5x2;(3)x+2x+3y;(4)3a2-2a2+a3
教师点评:上面题目的结果,实际上是我们以前所学的同类项合并.同类项合并就是字母不变,系数相加减.
二、探索新知
学生活动:计算下列各式.
(1)(2)
(3(4)
老师点评:
(1当成x,不就转化为上面的问题吗?
=(2+3
(2y;
(2-3+5
(3当成z;
(1+2+3
(4x看为y.
=(3-2+
因此,二次根式的被开方数相同是可以合并的,如表面上看是不相同的,
但它们可以合并吗?可以的.
(板书)
所以,二次根式加减时,可以先将二次根式化成最简二次根式,•再将被开方数相同的二次根式进行合并.
例1.计算
(1(2
分析:第一步,将不是最简二次根式的项化为最简二次根式;第二步,将相同的最简二次根式进行合并.
解:(1=(2+3
(2(4+8
例2.计算
(1)
(2++
解:(1)=(12-3+6
(2++
三、巩固练习
教材练习1、2.
四、应用拓展
例3.已知4x 2+y 2-4x-6y+10=0,求(23+y 2
-(x )的值. 分析:本题首先将已知等式进行变形,把它配成完全平方式,得(2x-1)2+(y-3)2=0,即x=12
,y=3.其次,根据二次根式的加减运算,先把各项化成最简二次根式,•再合并同类二次根式,最后代入求值.
解:∵4x 2+y 2-4x-6y+10=0
∵4x 2-4x+1+y 2-6y+9=0
∴(2x-1)2+(y-3)2=0
∴x=12
,y=3
原式=
23
当x=12
,y=3时,
原式=
12 五、归纳小结
本节课应掌握:(1)不是最简二次根式的,应化成最简二次根式;(2)相同的最简二次根式进行合并.
六、布置作业
1.教材习题21.3 1、2、3、5.
2.选作课时作业设计.
第一课时作业设计
一、选择题
1是( ).
A .①和②
B .②和③
C .①和④
D .③和④
2.下列各式:①②
1
7=1;,其中错误的有( ).
A .3个
B .2个
C .1个
D .0个
二、填空题
1类二次根式的有________.
2.计算二次根式的最后结果是________.
三、综合提高题
1. 2.236,求-的值.(结果精确到0.01) 2.先化简,再求值.
(-(x=32
,y=27.
答案:
一、1.C 2.A
二、1.
三、1.原式35451251515×2.236≈0.45
2.原式(=(6+3-4-6
当x=
32,y=27时,原式92。

相关文档
最新文档