最新矿井通风系统优化
煤矿通风系统优化与效能提升

煤矿通风系统优化与效能提升煤矿通风系统在矿山生产中起着重要的作用,它不仅可为矿工提供良好的工作环境,还能保障矿山安全生产。
针对当前煤矿通风系统存在的问题,本文将探讨通风系统优化的方法以提升其效能。
一、现状分析目前我国煤矿通风系统存在以下问题:1. 通风网络结构复杂,布局不合理,导致通风效果差;2. 通风系统功率消耗大,能源利用率低;3. 通风主机技术较落后,无法满足现代化生产需求。
二、通风系统优化为了解决上述问题,我们可以采取以下措施进行通风系统的优化:1. 优化通风网络结构。
通过分析矿井的地质条件和工作面的布局,合理调整通风道路和风门的位置,改善通风系统的顺畅性。
2. 引入变频调速技术。
将传统的恒频调速方式改为变频调速,根据矿井内的气流需求实时调整通风量,提高通风系统的能源利用率。
3. 推广高效节能通风设备。
采用高效节能的通风主机和风机,提高整个通风系统的运行效率和能源利用效率。
4. 引入自动化控制系统。
通过引入自动化控制系统,实现对通风系统的智能化管理,提高通风系统的操作效率和稳定性。
5. 加强通风系统维护与管理。
加强对通风设备的定期检查和维护,及时发现和解决故障,确保通风系统的正常运行。
三、效能提升通过通风系统的优化,可以实现以下效能提升:1. 提高矿井通风效果。
优化通风网络结构和采用高效节能设备,可以改善通风系统的气流分布,提高通风效果,为矿工创造一个更加安全、稳定的工作环境。
2. 降低能源消耗。
引入变频调速技术和高效节能设备,可以有效减少通风系统的功率消耗,降低能源浪费,实现节能减排的目标。
3. 提高通风系统的稳定性和可靠性。
通过引入自动化控制系统和加强维护管理,可以提高通风系统的操作效率,降低故障发生率,确保通风系统的稳定运行。
四、总结煤矿通风系统的优化与效能提升是提高矿山安全生产水平和节能减排的重要举措。
通过合理调整通风网络结构、引入先进技术设备和加强管理维护,可以提高通风效果,降低能源消耗,提高通风系统的稳定性和可靠性。
矿井通风系统的与优化

0引言矿井通风系统是矿井生产系统的重要组成部分,它服务于生产系统,同时又制约着生产系统。
矿井通风系统的优劣,直接影响着矿井的安全生产、灾害防治和经济效益。
在实际生产中,往往由于矿井通风系统的不合理,影响了矿井的正常生产和矿井的抗灾能力,导致矿井经济效益的严重滑坡。
为确保矿井安全生产、稳产和高产,提高矿井的抗灾能力,最终提高矿井的经济效益,通风系统必须保持最佳运行状态。
因此,矿井通风系统的分析及优化改造具有重要意义,它是矿井设计过程和通风管理工作中的一项主要任务和内容。
1现有矿井通风系统存在的问题矿井通风网络在矿井开采过程中不断发生变化,新矿井投产初期,生产量尚未达到设计水平,通风阻力较小,通风系统如按设计参数投入运行,将造成风量过大,导致能源浪费。
投产后,矿井通风网络通风阻力的实际值与设计值偏差也较大,当设计值大于实际值时,则风量偏小,导致通风困难;当设计值小于实际值时,则风量偏大,导致能源浪费。
且随着近几年矿山形式好转,改扩建矿井日益增多,矿井通风系统问题日益突出,已严重影响矿井的安全生产,所以对矿井通风系统的分析与优化迫在眉睫。
2通风系统优化矿井通风系统的优化问题归纳起来主要包括如下几类:矿井通风系统阻力影响、矿井通风网络优化研究、矿井通风系统安全可靠性优化、矿井通风系统通风机优化。
2.1矿井通风系统阻力优化降低矿井通风阻力技术措施的研究对于矿井通风系统优化有着至关重要的作用,直接关系到矿井的安全生产和经济效益。
矿井通风阻力的影响因素较多,主要有三个方面:1)风量对阻力的影响;2)分支风阻对通风阻力的影响;3)网络结构对阻力的影响。
降低矿井通风阻力,对保证矿井安全生产和提高经济效益具有重要意义。
主要措施有:2.1.1并联通风根据并联风路阻力比串联网路阻力小得多的原理(风量相同),可以通过计算机通风系统模拟或实际通风阻力测定的方法,找出通风系统网络的高阻力区段,采取新掘巷道或者启封旧巷道的方法,实现并联通风,降低通风系统总阻力。
矿井通风系统的设计与优化

矿井通风系统的设计与优化矿井是人类开采矿藏的重要场所,其中矿井通风系统的设计与优化对确保安全生产至关重要。
本文将探讨矿井通风系统设计的关键要素以及如何进行优化,以提高矿工和设备的安全性和效率。
一、矿井通风系统的设计要素1. 矿井特征分析在进行通风系统设计之前,需要对矿井的地质条件、开采规模、矿井深度等进行全面的特征分析。
这些特征将决定通风系统的基本参数,如通风量、风速等。
2. 通风需求计算通过计算待设计矿井的通风需求,确定所需的通风量和风速。
通风需求计算需要考虑矿井的开采活动、作业区域的工作状况等因素,以确保室内的空气质量和温度。
3. 通风网络设计通风网络是通风系统的骨架,它由主风井、支风井、回风井等组成。
通过合理设计通风网络,可以实现矿井内空气的流动,将排放的有害气体及时排除。
4. 风机和风门选择风机是矿井通风系统的核心设备,其功率和性能直接影响通风系统的效果。
根据通风需求计算的结果选择合适的风机,并设置适当的风门控制通风量和风速。
二、矿井通风系统的优化方法1. 通风网络调整通过对通风网络进行调整来优化通风系统,可以改善矿井内的空气流动,提高通风效果。
例如,在主要开采区域增设支风井、回风井,以增加气流通道,优化气流分布。
2. 空气流动模拟利用计算流体力学(CFD)等模拟方法,对矿井内的空气流动进行模拟和分析。
通过模拟分析,可以发现通风系统中的瓶颈和不足之处,并提出相应的改进方案。
3. 智能控制系统应用利用智能控制系统对矿井通风系统进行自动化控制,可以实现对通风量、风速等参数的实时监测和调整。
智能控制系统可以根据矿井内的工况变化,自动调整通风系统以提高整体效率。
4. 设备的改进与优化通过对通风设备的改进和优化,如改进风机叶片设计,降低噪音和能耗;优化风门结构,提高调节精度和可靠性等,可以进一步提高通风系统的性能和效率。
三、矿井通风系统优化的效益矿井通风系统的设计与优化不仅可以提高矿工和设备的安全性,还能带来一系列经济和环境效益。
2024年通风系统优化调整制度(三篇)

2024年通风系统优化调整制度1、每月初由通防技术人员对井下各用风地点的风量进行核算,并按照“以风定产”的原则,核定矿井的生产能力。
2、每季未由通防技术人员对井下各用风地点的通风阻力进行核算,合理分配风量。
3、井下备用面形成后,要进行通风阻力核算,选择通风阻力小的巷道,合理建筑通风设施。
4、各采掘工作面施工前需要编制通风设计及安全措施,杜绝不符合规定的串联通风、扩散通风。
5、每月对矿井的有效风量率进行计算,每季度对矿井的外部漏风率进行测定。
6、对北三瓦斯异常区瓦斯涌出情况进行分析,合理调整通风系统。
2024年通风系统优化调整制度(二)____年通风系统优化调整制度引言:通风系统在建筑物中起到非常重要的作用,它可以提供室内空气的新鲜和循环,保证建筑物内部的空气质量。
然而,在当前情况下,由于人们越来越重视室内空气质量和健康,对通风系统的需求也在不断提高。
因此,在____年,我们有必要优化和调整通风系统,以满足人们对优质室内环境的需求。
一、加强通风系统的设计标准在____年的通风系统设计中,我们应该考虑更高的空气质量要求。
有以下几个方面需要加强:1. 设计通风系统的负载能力:应确保通风系统具备足够的负载能力,能够在高峰期间为建筑物提供足够的新鲜空气。
此外,还应考虑到通风系统的灵活性,以适应建筑物功能的变化。
2. 提高通风系统的排放标准:通风系统应当采用高效过滤器,并且能够过滤空气中的颗粒物和污染物,以确保室内空气质量达到标准。
3. 采用节能通风系统:在通风系统的设计中,应考虑节能因素,选择能耗较低的通风设备,并在运行中采取合理的节能措施。
4. 考虑可持续发展因素:通风系统在设计中要考虑可持续发展的因素,例如采用可再生能源作为通风设备的动力源,减少对非可再生能源的依赖。
二、加强通风系统的管理和维护通风系统在使用过程中需要定期进行管理和维护,以确保其正常运行和提供优质的室内环境。
在____年,我们应加强通风系统的管理和维护,有以下几个方面需要注意:1. 建立健全的管理制度:建立通风系统的管理制度,包括系统操作规程、维护记录、定期检查等,确保通风系统的正常运行。
煤矿通风系统的优化方案

煤矿通风系统的优化方案煤矿作为我国的重要能源产业,其安全生产一直备受关注。
通风系统作为煤矿安全生产中不可或缺的组成部分,对于确保矿井内空气的流通、降低有害气体浓度、减少火灾和瓦斯爆炸等事故的发生具有重要意义。
本文将对煤矿通风系统进行优化方案的探讨。
一、现状分析在进行通风系统的优化方案之前,首先需要对现状进行分析。
通过实地考察和数据分析,我们发现煤矿通风系统存在以下问题:1. 通风系统设计不合理:存在部分通风道路过长、支护不力等问题,导致系统阻力增大、通风效率低下。
2. 部分通风设备老化:煤矿通风设备的老化导致设备运行效率下降,无法满足实际需求。
3. 安全监测手段不完善:通风系统内的安全监测手段不完善,无法及时准确地掌握矿井内的气体浓度和温湿度等参数。
二、优化方案针对以上问题,提出以下煤矿通风系统的优化方案:1. 通风系统设计优化:结合矿井的实际情况,对通风系统进行设计优化。
通过减少通风道路长度、优化支护结构,降低系统阻力,提高通风效率。
2. 设备更新升级:对通风设备进行更新升级,采用先进的风机、加强型换气机等设备,提高设备的运行效率和可靠性。
3. 安全监测系统改进:引入先进的安全监测技术,如实时气体监测仪、温湿度自动监测仪等,实现对矿井内气体浓度、温湿度等参数的实时监测和报警功能。
4. 通风系统运行管理优化:建立完善的通风系统运行管理制度,加强对通风系统的定期巡检和维护,及时发现和解决潜在的问题,确保通风系统的稳定运行。
三、优化方案的效果通过对煤矿通风系统的优化方案实施,预计可以获得以下效果:1. 提高通风效率:通过优化通风系统的设计和设备升级,降低系统阻力,提高通风效率,保障矿井内空气的流通,有效降低有害气体浓度。
2. 提升安全监测能力:通过改进安全监测系统,实现对矿井内气体浓度、温湿度等参数的实时监测和报警功能,提升对安全状况的监测能力。
3. 减少事故发生率:通过优化通风系统的运行管理,加强巡检和维护,及时发现和解决潜在问题,减少事故的发生概率,提高矿井的安全性。
矿井通风系统调整计划及措施正式版

矿井通风系统调整计划及措施正式版一、调整目标1.提高通风系统的风量和风速,保证矿井的空气质量2.优化通风系统的布局和管道的设计,减少能耗和噪音3.安装新的通风设备或更新旧的设备,提高通风系统的性能和可靠性4.强化通风系统的监控与维护,确保及时发现和解决问题二、调整措施1.优化通风系统布局和管道设计a.根据矿井的采矿工艺和空间限制,重新规划通风系统的布局,确保通风风道畅通,减少通风阻力。
b.对通风系统中的主要管道进行检测和清理,清除积尘和堵塞,提高通风效果。
c.根据矿井的实际情况,合理设置分岔管道和调节阀门,实现对不同工作面和巷道的精细调节。
2.提高通风系统的风量和风速a.安装新的风机或更换老化的风机,提高通风系统的风量和风速。
b.配备高效的风机叶轮和电机,降低能耗并提高风机的吹风效果。
c.进行风机变频调速,根据矿井的实际情况动态调整风量和风速。
3.安装新的通风设备或更新旧的设备a.安装局部通风装置,在有毒有害气体较集中的地方增加局部排风设备,保证矿工的身体健康和工作安全。
b.更新老化的通风设备,如瓦斯抽放器和风门,保证设备的正常运行。
c.安装新的通风监测设备,提高对矿井通风系统的监控能力,及时预警和处理问题。
4.强化通风系统的监控与维护a.建立完善的通风系统运行记录和维护档案,记录通风系统的运行状况、维护记录、故障处理等信息。
b.加强对通风系统的巡视和检查,定期清理风道、更换滤清器和检修设备。
c.配备专业的通风系统维护人员,及时发现和处理通风系统的故障。
三、调整计划1.制定调整计划并明确目标和时间节点。
2.调动相关部门和技术人员的力量,组成专项调整小组,负责统筹协调和实施调整计划。
3.分阶段进行调整,先优化布局和管道设计,再提高风量和风速,最后安装新设备和加强监控与维护。
4.在每个阶段结束后,进行评估和总结,及时调整和优化后续的调整计划。
总结:通过以上调整计划和措施,可以有效提高矿井通风系统的性能和可靠性,保证矿工的工作安全和身体健康。
煤矿通风系统优化技巧

煤矿通风系统优化技巧煤矿通风系统在煤矿安全生产中起着至关重要的作用。
优化通风系统可以有效地改善矿井内的气体环境,降低矿井事故的发生率,并提高矿工的工作效率。
本文将介绍一些煤矿通风系统优化的技巧,以帮助矿企提高通风系统的性能与安全性。
一、风量分配优化通风系统的风量分配对于矿井内部的气体流动非常重要。
合理分配风量可以减少气体的滞留和积聚,提高矿井内空气的新鲜度。
优化风量分配需要考虑到矿井内部的气体分布情况、矿井结构布局以及工作面的安全标准等因素,并结合通风模拟软件进行模拟分析。
通过调整通风风门的开启程度,合理调整矿井内的气体流动路径,以保证工作面通风良好,并降低有害气体的浓度。
二、煤矿进风通道的优化设计煤矿进风通道的设计对于保证通风系统的正常运行起着至关重要的作用。
优化设计包括进风口的位置、大小和数量等方面。
为了提高通风系统的效率,进风口的位置应根据矿井内的气体流动方向和风载荷进行合理布置。
进风口的大小可以根据各个区域的通风需求进行调整,以满足矿井内各区域的通风要求。
此外,进风通道的数量也应根据通风系统的实际需要进行规划,以确保通风效果的最大化。
三、合理设置排风系统煤矿通风系统中的排风系统是通风系统的重要组成部分,它可以将矿井内的有害气体和热量排出。
合理设置排风系统可以有效地降低气体浓度和温度,提高矿井的舒适性和安全性。
在排风系统的设计中,应考虑到矿井的结构布局和有害气体的排放量,合理设置排风机的数量、位置和功率等参数。
同时,应定期对排风系统进行维护和检修,确保其正常运行,以保证整个通风系统的正常运转。
四、有效利用风机性能曲线风机的性能曲线反映了风机在不同工况下的流量和扬程关系。
通过合理利用风机的性能曲线,可以最大限度地提高通风系统的效率。
在通风系统的设计和运行中,应根据风机的性能曲线选择合适的工作状态,以达到最佳的通风效果。
此外,根据风机的性能曲线,对风机进行故障诊断和效率评估,可以及时发现问题并进行修复,提高通风系统的可靠性和稳定性。
矿井通风系统的优化设计与应用

矿井通风系统的优化设计与应用1. 引言矿井通风系统是煤矿安全管理中至关重要的一部分,它对矿井内的空气质量、瓦斯抽放、矿井火灾事故防治等具有重要的影响。
传统的矿井通风系统在设计和应用上存在一些问题,如通风阻力大、通风效果不理想等。
因此,对矿井通风系统进行优化设计和应用,可以提高矿井的通风效果和安全性。
2. 优化设计方法2.1. 矿井通风系统参数优化矿井通风系统参数的优化是改善矿井通风效果的关键。
在优化设计中,需要考虑以下几个方面:2.1.1. 大气压力和温度矿井通风系统的设计需要根据矿井所处的海拔高度和气象条件来确定大气压力和温度。
合理确定大气压力和温度可以保证矿井通风系统的设计满足实际条件。
2.1.2. 通风风量和风速通风风量和风速是矿井通风系统的重要参数。
合理确定通风风量和风速可以确保矿井内的空气质量和瓦斯抽放效果。
通风风量和风速的计算可以通过使用数值模拟方法或经验公式来进行。
2.1.3. 矿井通风系统的布置矿井通风系统的布置需要考虑到矿井的地质条件和矿井巷道的结构。
合理布置通风系统可以减小通风阻力,提高通风效果。
2.2. 通风系统设备优化通风系统设备的优化也是提高矿井通风效果的重要途径。
在设备的选型、安装和维护上,可以采取以下措施:2.2.1. 选用高效设备选择高效的通风设备可以减小通风阻力,提高通风效果。
在设备选型中,需要考虑设备的风量和风压参数,以及设备的能耗和使用寿命等方面。
2.2.2. 设备的合理安装设备的合理安装可以确保通风系统的正常运行。
在安装过程中,需要考虑设备的位置选择、管道连接和密封等方面。
合理安装设备可以降低系统的阻力损失,提高通风效果。
2.2.3. 定期维护和检修定期维护和检修通风系统设备可以延长设备的使用寿命,保证通风系统的正常运行。
维护和检修工作包括设备的清洁、润滑、紧固和更换等。
定期维护和检修可以及时发现和排除设备故障,保证通风系统的可靠性和安全性。
3. 优化设计的应用案例3.1. 某煤矿矿井通风系统优化设计某煤矿矿井通风系统优化设计案例,对矿井通风系统进行了全面的优化和改造。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.双Z型通风系统
其中间巷与上、下平巷分别在工作面的两侧。
(1)后退式双Z型通风系统:上、下进风巷布置在煤体中,漏风携出的 瓦斯不进入工作面,比较安全。
(2)前进式双Z型通风系统:上、下进风巷维护在采空区中,漏风携出
1.Y型通风系统 根据进、回风巷的数量和位置不同,Y型通风系统可以有多种不同 的方式。生产实际中应用较多的是在回风侧加入附加的新鲜风流,与 工作面回风汇合后从采空区侧流出的通风系统。Y型通风系统会使回 风道的风量加大,但上隅角及回风道的瓦斯不易超限,并可以在上部 进风侧抽放瓦斯。
2.W型通风系统
(1)后退式W型通风系统:用于高瓦斯的长工作面或双工作面。该系 统的进、回风平巷都布置在煤体中,当由中间及下部平巷进风、上部 平巷回风时,上、下段工作面均为上行通风,但上段工作面的风速高, 对防尘不利,上隅角瓦斯可能超限,所以,瓦斯涌出量很大时,常采 用上、下平巷进风,中间平巷回风的W型通风系统,或者反之,采用 由中间平巷进风,上、下平巷回风的通风系统以增加风量,提高产量。 在中间平巷内布置钻孔抽放瓦斯时,抽放钻孔由于处于抽放区域的中 心,因而抽放率比采用U型通风系统的工作面提高了50%。
z列前进式通风系统的作面的入风侧沿采空区能抽放瓦斯,采空 区的瓦斯易涌向工作面,特别是上隅角,回风侧不能抽放瓦 斯。
Z型通风系统的采空区漏风,介于采用U型后退式和U型前进 式通风系统之间。该通风系统需沿空支护巷道和控制经过来 空区的漏风,其难度较大。
2.Y型、W型及双Z型通风系统
这三种通风系统均为两进一回或一进两回的采煤工作面通风系统。 该类型的通风系统如图所示:
U型前进式通风系统:
优点:巷道的的掘进量小,不存在采掘工作面串联通风问题, 在巷旁支护好、漏风不大时,具有一定优越性。采用U型前进式 通风系统的工作面,采空区瓦斯不涌向工作面,而是涌向回风 顺槽。
Z型通风系统
Z型后退式通风系统的工作面的采空区瓦斯不会涌入工作面,而 是涌向回风顺槽,
工作面采空区回风侧能用钻孔抽放顶底板瓦斯,但入风侧不能 抽放瓦斯;
的瓦斯可能使工作面的瓦斯超限。
3.H型通风系统
在H型通风系统中,有两进两回通风系统和三进一回通风系统。如图 所示。 优点:工作面风量大,采空区的瓦斯不涌向工作面,气候条件好,增加了 工作面的安全出口,工作面机电设备都在新鲜风流中,通风阻力小,在采 空区的回风巷中可以抽放瓦斯,易控制上隅角的瓦斯。 缺点:沿空护巷困难;由于有附加巷道,可能影响通风的稳定性,管理复 杂。 适用条件:当工作面和采空区的瓦斯涌出量都较大,在进风侧和回风侧都 需增加风量稀释工作面瓦斯时,可考虑采用H型通风系统。
如图所示为某综采 采工作面采用U型通风 系统时的等瓦斯浓度分 布线。从图中可以看出, 采空区的瓦斯大部分上 隅角附近涌出,从而造 成上隅角瓦斯浓度超限。
《煤矿安全规程》采区回风巷,采掘工作面回风巷风流中瓦斯浓度 超过1.5%时,必须停止工作,撤出人员,进行处理。
采用U型通风系的工作而的所需风量应按下式计算:
建立完整的矿井通风系统是矿井安全生产的基本保证。 目前用通风方法排除井下瓦斯、粉尘和热量的平均能力。
U型通风系统 工作面通风系统只有—条进风巷道和一条回风巷道。
U型后退式通风系统在我国使用比较普遍。
优点:结构简单,巷道施工维修量小,工作面漏风小,风流稳 定,易于管理等;
缺点:上隅角瓦斯易越限,工作面进、回风巷要提前掘进,维 护工作量大。
Q u 1 0 0 k[a 1 (1 )b ]q
2.U+L型(U型加排瓦斯尾巷)通风系统
为了解决高瓦斯 工作面上隅角频繁出 现的沼气超限问题, 可采用U+L型通风系 统。
该种通风系统其实质是使工作面的部分风流流向采空区方向、通过上隅 角经联络檄巷进入尾巷,以改变采空区瓦斯在上隅角处的流动方向,使其不 断被稀释,尔后经尾巷排出,同时进入采空区的风流携带采空区内的部分瓦 斯也经尾巷排出,以减少上隅角的瓦斯涌出量。此通风系统队的主要问题是 尾巷中存在高浓度瓦斯。
高瓦斯矿井工作面有条件的应首先进行瓦斯抽放,同时应有一个 利于稀释和排放瓦斯的通风系统。高瓦斯矿井工作面的瓦斯来源于 开采煤层和邻近层。实践证明,来自开采层的瓦斯和工作面的通风 系统关系不大,而邻近层的瓦斯而用和工作面的通风系统关系十分 密切。目前,我高瓦斯矿井工作面主实采用U型、U+L型、Y型及W 型通风系统。
一、高瓦斯工作面的通风系统 1.U型通风系统
假设采空区无任何漏风,形成一源一汇流场,则其流场分 布如图所示。
从图中可以看出,风流除沿工作面流动外, 有一部分进入采空区而沿流线力向流动,这 样积存于采空区内的瓦斯即以对流扩散的形 式与风流进行质量交换,由于流进采空区内 的风流携带瓦斯从上隅角涌出,加之上隅角 附近存在风流漩涡区,因而工作面上隅角易 积累瓦斯。在工作面瓦斯涌出量不大的情况 下,尚能维持正常生产。
高瓦斯矿井工作面有条件的应首先进行瓦斯抽放,同时应 有一个利于稀释和排放瓦斯的通风系统。高瓦斯矿井工作 面的瓦斯来源于开采煤层和邻近层。实践证明,来自开采 层的瓦斯和工作面的通风系统关系不大,而邻近层的瓦斯 而用和工作面的通风系统关系十分密切。
目前,我高瓦斯矿井工作面主实采用U型、U+L型、Y型 及W型通风系统。
矿井通风系统优化
定义: 矿井通风系统是矿井生产系统的主要组成部分,是矿 井通风方式、通风方法和通风网络的总称。
矿井通风方式是指进风井(或平硐)和回风井(或平硐)的 布置方式,即所谓中央式、对角式、区域式和混合式 等; 矿井通风方法是指产生通风动力的方法,有自然通风 法和机械通风法(压入式,抽出式); 矿井通风网络是指井下各风路按各种形式联接而成的 网络。
几种通风方式对比图:
第二节 高瓦斯矿井的通风系统
高瓦斯矿井工作面的通风系统应满足以下要求: ➢ 分源稀释瓦斯。即按瓦斯涌出的不同来源,以不同的新鲜风流分
别稀释和排放; ➢ 通风系统所确定的巷道布置,要有利于煤层瓦斯抽放和突出危险
煤层的开采; ➢ 应能排除上隅角高浓度瓦斯,防止瓦斯局部积聚; ➢ 能为工作面创造良好的气象条件。