双相不锈钢的发展历史
双相钢2205(S31803)介绍

等.
4.双相不锈钢的发展动向
值得关注的是低合金含锰双相不锈钢的开发.近十年来有关国家如美国,南非等研究以
锰
代镍双相不锈钢的开发,但除铸件外,所开发的新钢种多具有介稳的奥氏体,藉冷变形后马氏
体
的转变 提高强度,很难作焊接件使用,也很难适应某些环境,例如会产生应力腐蚀的环境,这
样
使用很局限.近年瑞典开发的低锰低镍双相不锈钢则比较成熟,目标明确,为了节镍以取代用
途
很广的304,甚至可能代替价格与304相当,目前使用并不广的2304双相不锈钢,具有实际推
广的
价值,值得注意.
瑞典Avesta Polarit AB开发的LDX2101双相不锈钢%Cr, 5%Mn, %Ni, %N)
PREN值〉40
(探PREN耐孔蚀指数PREN=Cr%+Mo%+18N%)
低合金型UNS S32304不含钼,在耐应力腐蚀方面可代替AISI304或316使用.
中合金型UNS S31803的耐蚀性能介于AISI 316L和6%Mo+噢氏体不锈钢之间.
高合金型,一般含25%Cr,还含有钼和氮,有的还含有铜和钨,这类钢的耐蚀性能高于22%Cr
3
高合金型
S32550
25
6
3
2
超级DSS
S32750
25
7
4
从表中可以看岀:S32205是由S31803派生岀的钢种,在ASTM A 240/240M-99a标准中
是在
1999年才纳标的,它的Cr、Mo和N元素的区间都比较窄,容易达到相的平衡(即两相约各占一 半)
,改善了钢的强度,耐腐蚀性和焊接性能,多用于性能要求较高和需要焊接的材料,如油气管
不锈钢发展简史

不锈钢发展简史不锈钢的发明是世界冶金史上的一项重大成就。
20世纪初,吉耶(L.B.Guillet)于1904年—1906年和波特万(A.M.Portevin)于1909—1911年在法国;吉森(W.Giesen)于1907—1909年在英国分别发现了Fe—Cr和Fe—Cr-Ni合金的耐腐蚀性能。
蒙纳尔茨(P.Monnartz)于1908-1911年在德国提出了不锈性和钝化理论的许多观点。
工业用不锈钢的发明者有:布里尔利(H.Brearly)1912—1913年在英国开发了含Cr12%—13%的马氏体不锈钢;丹齐曾(C.Dantsizen)1911—1914年在美国开发了含Cr14%—16%,C 0.07% —0.15%的铁素体不锈钢;毛雷尔(E.Maurer)和施特劳斯(B.Strauss)1912—1914年在德国开发了含C<1%,Cr 15%—40%,Ni<20%的奥氏体不锈钢。
1929年,施特劳斯(B.Strauss)取得了低碳18-8(Cr-18%,Ni-8%)不锈钢的专利权。
为了解决18-8钢的敏化态晶间腐蚀,1931年德国的霍德鲁特(E.Houdreuot)发明了含Ti的18-8不锈钢(相当于现在的1Cr18Ni9Ti或AISI 321)。
几乎与此同时,在法国的Unieux 实验室发现了奥氏体不锈钢中含有铁素体时,钢的耐晶间腐蚀性能会得到明显改善,从而开发了γ+α双相不锈钢。
1946年,美国的史密斯埃塔尔(R.Smithetal)研制了马氏体沉淀硬化型不锈钢17-4PH;随后既具有高强度又可进行冷加工成形的半奥氏体沉淀硬化不锈钢17-7PH和PH15-7Mo等相继问世。
至少,不锈钢家族中的主要钢类,即马氏体、铁素体、奥氏体、α+γ双相以及沉淀硬化型等不锈钢*便基本齐全了,且一直延续到现在。
当然,40-50年代,节Ni的Cr-Mn-N 和Cr-Mn-Ni-N不锈钢,超低碳(C≤0.03%)奥氏体不锈钢;60年代,γ:α近于1的α+γ双相不锈钢和C+N≤150ppm的高纯铁素体不锈钢以及马氏体时效不锈钢的出现,虽然也属于不锈钢领域内的重大进展,但是,这些新钢种本质上仍属于前述五大类不锈钢,仅仅是具体钢类中某些钢种的新发展。
2205双相钢

2205双相钢双相不锈钢2205合金是由21%铬,2.5%钼及4.5%镍氮合金构成的复式不锈钢。
它具有高强度、良好的冲击韧性以及良好的整体和局部的抗应力腐蚀能力。
特点:1.双相不锈钢2205合金与316L和317L奥氏体不锈钢相比,2205合金在抗斑蚀及裂隙腐蚀方面的性能更优越,它具有很高的抗腐蚀能力,与奥氏体相比,它的热膨胀系数更低,导热性更高。
2.双相不锈钢2205合金与奥氏体不锈钢相比,它的耐压强度是其两倍,与316L和317L相比,设计者可以减轻其重量。
2205合金特别适用于—50°F/+600°F温度范围内,在严格限制的情况下(尤其对于焊接结构),也可以用于更低的温度。
化学成分:C≤0.030 Mn≤2.00 Si≤1.00 p≤0.030 S≤0.020 Cr 22.0~23.0 Ni 4.5~6.5 Mo3.0~3.5 N0.14~0.20(奥氏体-铁素体型)双相不锈钢(Duplex stainless steel)双相不锈钢是一种铁素体相和奥氏体相共存的不锈钢,同时也是集优良的耐蚀性能、高强度和易于加工制造等诸多优异性能于一身的钢种。
双相不锈钢已经有60多年的历史,世界上第一批双相不锈钢于1930年在瑞典生产出来并用于亚硫酸盐造纸工业。
1968年不锈钢精炼工艺——氩氧脱碳工艺(AOD)的发明,使一系列新的不锈钢的产生成为可能。
AOD工艺带来的诸多进步之一就是合金元素N的添加。
双相不锈钢添加N元素可以使焊接状态下热影响区的韧性和耐蚀性能接近于基体金属的性能,还可以降低有害金属间相的形成速率。
双相不锈钢同奥氏体不锈钢一样,是一种按腐蚀性能排序的钢种,腐蚀性能取决于它们的合金成分。
双相不锈钢一直在不断发展,现代的双相不锈钢可以分为四种类型:1、不含Mo的低级双相不锈钢2304;2、标准双相不锈钢2205,占双相钢总量的80%以上;3、25%Cr的双相不锈钢,典型代表合金255,可归为超级双相不锈钢;4、超级双相不锈钢,含25-26%Cr,与255合金相比Mo和N的含量增加。
双相不锈钢加工实用指南

锻造奥氏体不锈钢 304L 316L 317L
317 LMN 904L
254 SMO 6% Mo
S30403 S31603 S31703 S31726 N08904 S31254 Various
1.4307 1.4404 1.4438 1.4439 1.4539 1.4547 Various
0.030 0.030 0.030 0.030 0.020 0.020 0.030
18.0- 20.0 16.0-18.0 18.0-20.0 17.0-20.0 19.0-23.0 19.5-20.5 19.5-22.0
铸造双相不锈钢 CD4MCuN Grade 1B CD3MN Cast 2205 Grade 4A CE3MN Atlas 958 Cast 2507 Grade 5A CD3MWCuN
0.10 0.10 0.10 0.10 0.10 0.18-0.22 0.18-0.25
0.10-0.25
0.10-0.30
0.10-0.30
0.20-0.30
--
--
Cu
--1.00-2.00
---0.20-0.80 0.50-3.00 1.50-2.50 0.20-0.80 0.50 0.50-1.00
3.2 双相不锈钢中合金元素的作用 以下简单介绍几个最重要的合金元素对双相不锈钢
的力学性能、物理性能和腐蚀性能的影响。 铬:钢中最少含 10.5%Cr 才能形成保护钢不受大
气腐蚀的稳定的含铬钝化膜。不锈钢的耐蚀性随含铬量的 增加而增加。铬是铁素体形成元素,钢中加铬能使具有体 心立方晶格的铁组织稳定。钢中含铬量较高时,需要加入
这些第一代双相不锈钢有良好的性能特点,但在焊 接状态下有局限性。焊缝的热影响区由于铁素体过多而韧 性低,并且耐腐蚀性明显低于基体金属。这些局限因素使 第一代双相不锈钢的应用仅限于非焊接状态下的一些特定 应用。
双相不锈钢基本特性

第一类属低合金型,代表牌号UNS S32304(),钢中不含钼,PREN值为24-25,在耐应力腐蚀方面可代替AISI304或316使用。
第二类属中合金型,代表牌号是UNS S31803(),PREN值为32-33,其耐蚀性能介于AISI 316L 和6%Mo+N奥氏体不锈钢之间。
第三类属高合金型,一般含25%Cr,还含有钼和氮,有的还含有铜和钨,标准牌号UNSS32550(),PREN值为38-39,这类钢的耐蚀性能高于22%Cr的双相不锈钢。
第四类属超级双相不锈钢型,含高钼和氮,标准牌号UNS S32750(),有的也含钨和铜,PREN 值大于40,可适用于苛刻的介质条件,具有良好的耐蚀与力学综合性能,可与超级奥氏体不锈钢相媲美。
国内外主要双相不锈钢牌号的近似对照见表2。
表1 双相不锈钢(DSS)代表牌号的主要化学成分和孔蚀抗力当量值Representative Duplex Stainless Steel Types,MainChemical Analysis and Pitting Resistance Equivalent Number表2 各国主要双相不锈钢牌号的近似对照Comparison of Main Duplex Stainless Steels Of Different Countries工业事业部五分厂2008年8月5日双相不锈钢是指不锈钢中同时具有奥氏体和铁素体两种金相组织结构的不锈钢。
不锈钢一般是不锈钢和耐酸钢的总称。
不锈钢是指耐大气、蒸汽和水等弱介质腐蚀的钢,而耐酸钢则是指耐酸、碱、盐等化学浸蚀性介质腐蚀的钢。
不锈钢自本世纪初问世,到现在已有90多年的历史。
不锈钢的发明是世界冶金史上的重大成就,不锈钢的发展为现代工业的发展和科技进步奠定了重要的物质技术基础。
不锈钢钢种很多,性能各异,它在发展过程中逐步形成了几大类。
按组织结构分,分为马氏不锈钢(包括沉淀硬化不锈钢)、铁素体不锈钢、奥氏体不锈钢和奥氏体加铁素体双相不锈钢等四大类;按钢中的主要化学成分或钢中的一些特征元素来分类,分为铬不锈钢、铬镍不锈钢、铬镍钼不锈钢以及低碳不锈钢、高钼不锈钢、高纯不锈钢等;按钢的性能特点和用途分类,分为耐硝酸不锈钢、耐硫酸不锈钢、耐点蚀不锈钢、耐应力腐蚀不锈钢、高强不锈钢等;按钢的功能特点分类,分为低温不锈钢、无磁不锈钢、易切削不锈钢、超塑性不锈钢等。
特超级双相不锈钢的发展现状及趋势

特超级双相不锈钢的发展现状及趋势双相不锈钢(DSS)是固溶组织中铁素体相和奥氏体相各占约一半的双相组织的不锈钢。
由于其独特的组织特点,通过正确控制化学成分和热处理工艺,将奥氏体不锈钢所具有的优良韧性与铁素体不锈钢所具有的较高强度和耐氯化物应力腐蚀性能相结合,使得双相不锈钢兼具两相的优点,在全世界范围内获得越来越广泛的应用。
目前世界双相不锈钢的产量为15万~40万t,虽只占不锈钢总产量的1%~3%,但最近10年年均增长迅猛,仅2005年到2008年期间即增长了6倍,目前广泛用于油气、化工、淡水净化、造纸和纸浆、食品和轻工业以及建筑、楼房等结构件方面。
当前双相不锈钢的发展已经历经3代:第1代DSS以20世纪60年代中期瑞典开发的3RE60钢为代表,该钢可用作耐氯离子应力腐蚀环境,但有焊接热影响区的问题;第2代DSS为20世纪70年代后,结合AOD、VOD精炼技术的发展,具有超低碳和含氮的特征,其代表牌号为瑞典开发的SAF2205,点蚀当量指数(PRE)为32~39;第3代DSS为20世纪80年代后期发展的超低碳、高钼、高氮含量的超级双相不锈钢(SuperDSS,SDSS),其代表牌号有SAF2507、UR52N+、ZERON100等,PRE值大于40。
自第3代超级双相不锈钢开发以来,由于它们在兼具优良的力学性能和高耐蚀性的同时,与拥有相近性能的超级奥氏体不锈钢和镍基合金材料相比,又具有成本优势,因此在诸如油气田、石化及化学处理等工业中的应用迅速增长。
尽管如此,在腐蚀环境更为苛刻的领域,如热海水中长期服役的工况环境,以及对耐蚀/力学性能的综合性能有更高要求的海洋及深海领域,如改良油气回采方法的井口控制系统和深海海底管道和管道缆等工况环境,双相不锈钢的耐蚀性能和力学性能仍无法完全满足使用要求。
另外,从成本控制角度来讲,通过设计厚度的减薄,终端用户可以降低成本,这就对更高强度的材料提出了需求。
因此,随着近年来人们不断提高的要求及双相不锈钢的发展,强度更高、耐蚀性能更优的新一代双相不锈钢材料---特超级双相不锈钢应运而生并得到发展应用。
不锈钢基础知识
.第二部分不锈钢基础知识一、不锈钢的定义在空气中或化学腐蚀介质中能够抵抗腐蚀的一种高合金钢,不锈钢具有美观的表面和耐腐蚀性能好,不必经过镀色等表面处理,而发挥不锈钢所固有的表面性能,通常称为不锈钢。
代表性的有13铬钢,18铬镍钢等。
二、不锈钢的发展历史1904-1906,法国人Guillet首先对Fe-Cr-Ni合金的冶金和力学性能进行了开创性的基础研究1907-1911年,法国人Portevin和英国人Gissen发现了Fe-Cr和Fe-Cr-Ni合金的耐蚀性并完成了Guillet的研究工作1908—1911年,德国人Monnartz 揭示了钢的耐蚀性原理并提出了钝化的概念1912~1914年,Brearley发明了含12-13%Cr的马氏体不锈钢并获得专利1911-1914年,美国人Dant-sizen发明了含14-16%Cr,0.07%~0.15%C的铁素体不锈钢;德国人Maurer和Strauss发明含1.0%C,15-20%Cr,<20%Ni的奥氏体不锈钢,1934年,美国人Folog获得了沉淀硬化不锈钢专利中国不锈钢生产起步较晚,工业化生产开始于1952年。
1949年以后,电弧炉大量生产不锈钢系1958年,向AISI 204钢中加入Mo2%-3%,研制了1Cr18Mn10Ni5Mo3N(204+Mo), 1959年,开始仿制以Mn、N代Ni的1Cr17Mn6Ni5N和1Cr18Mn8Ni5N50年代末到60年代初,工业试制1Cr17Ti、1Cr17Mo2Ti和1Cr25Mo3Ti等无镍铁素体不锈钢,并开始研究耐发烟硝酸腐蚀的高硅不锈钢1Cr17Ni14Si4ALTi(相当于苏联牌号ЭИ654),此钢种实际上是一种α+γ双相不锈钢。
60年代开始,新钢种17-4PH,17-7PH,PH15-7Mo等沉淀硬化不锈钢研制成功并投入了生产。
70年代起,一些α+γCr-Ni双相不锈钢相继研制完成并正式生产和应用到80年代,第二代α+γ双相不锈钢研制完成并正式生产和应用1985—1990,进行低碳、超低碳不锈钢的开发、生产与应用三、不锈钢的种类不锈钢按用途分为:不锈钢,耐酸钢;按供应状态可分为:热轧,冷轧,锻制及热处理状态;按组织类型可分为:铁素体型:400,409;奥氏体-铁素体型(双相不锈钢):1.4362,2205;马氏体型:420,430;奥氏体型:201 ,202 ,321,304,304L,309S,310S等。
双相不锈钢
2.需要掌握双相不锈钢的组织转变规律,熟悉每一个钢种的TTT和CCT转变曲线,这是正确指导制定双相不锈 钢热处理,热成型等工艺的关键,双相不锈钢脆性相的析出要比奥氏体不锈钢敏感的多。
3.双相不锈钢的连续使用温度范围为-50~250℃,下限取决于钢的脆性转变温度,上限受到475℃脆性的限 制,上限温度不能超过300℃。
根据耐腐蚀性、接头韧性的要求不同来选择与母材化学成分相匹配的焊条,如焊接Cr22型双相不锈钢,可选 用Cr22Ni9Mo3型焊条,如E2209焊条。采用酸性焊条时脱渣优良,焊缝成形美观,但冲击韧性较低,当要求焊缝 金属具有较高的冲击韧性,并需进行全位置焊接时,应采用碱性焊条。当根部封底焊时,通常采用碱性焊条。当 对焊缝金属的耐腐蚀性能具有特殊要求时,还应采用超级双相钢成分的碱性焊条。
(1)含钼双相不锈钢在低应力下有良好的耐氯化物应力腐蚀性能。一般18-8型奥氏体不锈钢在60°C以上中 性氯化物溶液中容易发生应力腐蚀断裂,在微量氯化物及硫化氢工业介质中用这类不锈钢制造的热交换器、蒸发 器等设备都存在着产生应力腐蚀断裂的倾向,而双相不锈钢却有良好的抵抗能力。
(2)含钼双相不锈钢有良好的耐孔蚀性能。在具有相同的孔蚀抗力当量值(PRE=Cr%+3.3Mo%+16N%)时, 双相不锈钢与奥氏体不锈钢的临界孔蚀电位相仿。双相不锈钢与奥氏体不锈钢耐孔蚀性能与AISI 316L相当。含 25%Cr的,尤其是含氮的高铬双相不锈钢的耐孔蚀和缝隙腐蚀性能超过了AISI 316L。
4双相不锈钢超塑性
-1
1000 900 800 700 600 500 400 300 200 100 0 750 800 850
2×10-3s-1
5×10-3s-1
/s-1
900 950 ◆超塑性材料的特点是在低应力下显示 出巨大的超塑性。利用高压、高速或者 超声波的叠加也可能增大塑性。
1.2 超塑性的分类
◆微细晶粒超塑性 ◆相变超塑性 ◆其它超塑性
(1)微细晶粒超塑性
(恒温超塑性、结构超塑性) ◇组织细小 ◇变形温度 ◇应变速率
(2)相变超塑性
T
相变温度
σ t
σ
渗碳深度 (mm) 0.57 1.75 4.5
原时间 2小时 10小时 100小时
现时间 28秒 85秒 320秒
◆尤其是美国学者Underwood、Davies分 别在1962年、1970年就这一学科做了详细 评述之后,超塑性这一术语目前已成为冶 金学的专门词汇。 ◆目前,在国内外学者的共同努力下,超 塑性材料及其成形技术的研究已经取得了 重要的进展。
◆几十年来对金属超塑性进行了大量研究
纺纱槽筒 腹鳍
火箭发动机部件
晶内滑移
属于常规变形速度区域。
蠕 变
10-4
10-3
10-2
1.4 超塑性的发展
◆金属及合金超塑性的发现应归功于皮尔逊 (Pearson)的工作,他在1934年研究Pb-Sn和 Bi-Sn合金的某些力学性质时,观察到其近乎无 颈缩的延伸率达2000%。 ◆至于通常所说的“超塑性”是1945年由前苏 联学者包赤瓦尔(Боивор)等人首次引入的, 随后又得到了前苏联学者的沿用
◆日本NAS- Murdock公司采用这种双相不锈 钢超塑性材料成功地制造出了波音737客机用 盥洗盆。该产品长1100mm,宽350mm深270mm, 是目前最大的不锈钢超塑成形制品,代表了 不锈钢超塑性成形的最高水平。 ◆ 1988年前原与 小沟又对双相不锈 钢超塑性材料的扩 散连接进行了研究。
国内外双相不锈钢研究进展及发展方向
国内外双相不锈钢研究进展及发展方向1、双相不锈钢简介双相不锈钢是指在其固溶组织由铁素体与奥氏体双相组成,而且其中一相比例约为4 5%~55%(量少相至少占30%)的不锈钢。
由于两相组织的特征使双相不锈钢兼有铁素体不锈钢和奥氏体不锈钢的优点,与铁素体不锈钢比,其韧性高、脆性转变温度低、耐晶间腐蚀和焊接性能好,同时保留了铁素体钢导热系数高、膨胀系数小的优点。
与奥氏体不锈钢相比,其屈服强度是奥氏体不锈钢的两倍,耐氯化物应力腐蚀断裂能力均明显高于300系列的奥氏体不锈钢,耐孔蚀和缝隙腐蚀的能力类似与316不锈钢。
双相不锈钢由于其优异的力学性能和耐腐蚀性能广泛应用于油气、石化、化肥、桥梁、建筑以及化学品船等行业。
2、双相不锈钢国外研究进展双相不锈钢的发展开始于20世纪30年代,1936年名为Uranus 50的钢种在法国获得第一个双相不锈钢专利,至今双相不锈钢已发展了三代。
第一代双相不锈钢以瑞典的3RE60,美国的AISI329为代表钢种。
3RE60是专为提高耐氯化物应力腐蚀断裂性能而研制的双相不锈钢。
AISI 329型双相不锈钢广泛用于硝酸装置的热交换器管道。
第一代双相不锈钢有良好的性能特点,但在焊接状态下有局限性。
焊缝的热影响区由于铁素体过多而韧性低,并且耐腐蚀性明显低于基体金属。
这些局限因素使第一代双相不锈钢的应用仅限于非焊接状态下的一些特定应用。
1968年不锈钢精炼工艺--氩氧脱碳(AOD)的发明,使一系列新不锈钢钢种的产生成为可能。
AOD所带来的诸多进步之一便是合金元素氮的添加。
双相不锈钢添加氮可以使焊接状态下热影响区的韧性和耐腐蚀性接近于基体金属的性能,氮还降低了有害金属间相的形成速率。
含氮的双相不锈钢被称为第二代双相不锈钢。
2205是第二代双相钢的代表钢种并广泛应用于海上石油平台、化工、造纸等多个领域。
20世纪80年代后期发展的超级双相不锈钢(Super DSS)属于第三代双相不锈钢,代表牌号有SAF2507,UR52N,Zeron100等,这类钢的特点是含碳量低(0.01~0.02%),含高钼和高氮(Mo 1~4%,N 0.1~0.3%)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双相不锈钢的发展历史
(壹佰钢铁网推荐)双相不锈钢组织中铁素体相和奥氏体相各占50%,一般较少相含量最少也需要达到30%。
双相不锈钢的开发始于20世纪30年代,当时是为了解决高碳奥氏体不锈钢的晶间腐蚀问题。
到目前为止,双相不锈钢已经发展到第3代:
1、第1代:以美国在20世纪40年代开发的329型不锈钢为代表,被广泛应用于硝酸装置的热交换器管道。
20世纪60年代中期,瑞典开发了专为提高耐氯化物腐蚀断裂的3RE 60型双相钢(00Cr18Ni5Mo3N),但因碳含量较高,一般用于铸锻件。
2、第2代:20世纪70年代以来,随着二次精炼技术(AOD)、真空精炼技术(VOD)及连铸技术的普及发展,超低碳(w(C)≤0.03%)钢的生产较易实现,00Cr22Ni5Mo3N是第2代双相不锈钢的代表。
该钢种在20世纪70年代由瑞典研制成功,材料牌号为SAF 2205,对应的美国牌号为UNS S31803。
3、第3代:20世纪80年代后期,第3代双相不锈钢开发成功,主要牌号有SAF2507等。
其特点是超低碳、高钼、高氮(w(C)=0.01%~0.02%, w(Mo)=4.0%, w(N)=0.3%),具有优良耐孔蚀性能,其耐点蚀当量PREN大于40。
21世纪,双相不锈钢主要朝两个方向发展:一是节镍,如S32101、S32003钢等,该钢种既有较好的耐腐蚀性,又具有较低的生产成本,能替代304、316不锈钢。
二是更具有耐腐蚀性,如2507、2906超级双相不锈钢等,具有良好的耐点蚀、耐应力腐蚀性能,可替代904L奥氏体不锈钢、镍基合金等。
(壹佰钢铁网推荐)。