浙教版七年级下数学《第三章整式的乘除》单元检测试卷含答案

合集下载

浙教版2019-2020学年七年级数学下学期 第三章整式的乘除 单元测试题(含答案)

浙教版2019-2020学年七年级数学下学期 第三章整式的乘除 单元测试题(含答案)

浙教版七年级数学下册第三章整式的乘除单元检测第Ⅰ卷(选择题)一.选择题(共10小题,3*10=30)1.下列计算正确的是( )A .a 3+a 3=a 6B .3a -a =3C .(a 3)2=a 5D .a·a 2=a 32.若a =2b -2,则(a -2b +1)999+(2b -a)0的值为( )A .-1B .0C .1D .无法确定3.下列计算:①a 9÷(a 7÷a)=a 3;②3x 2yz÷(-xy)=-3xz ;③(10x 3-16x 2+2x)÷2x =5x 2-8x ;④(a -b)6÷(a -b)3=a 3-b 3,其中运算结果错误的是( )A .①②B .③④C .①④D .②③4.20a 7b 6c÷(-4a 3·b 2)÷ab 的值为( )A .-5a 5b 2B .-5a 5b 5C .5a 5b 2D .-5a 3b 3c5.下列计算错误的有( )①(-12)-3=8;②(3-π)0=1;③39÷3-3=3-3;④9a -3·4a 5=36a 2;⑤5x 2÷(3x)×13x=5x 2. A .①③④ B .②③④ C .①②③ D .①③⑤6.下列计算正确的是( )A .(2x +y)(3x -y)=x 2y 2B .(-x +2y)2=x 2-4xy +4y 2C .(2x -12y)2=4x 2-xy +14y 2 D .(-4x 2+2x)·(-7x)=28x 3-14x 2+7x 7.若(-5a m +1b 2n -1)·(2a n b m )=-10a 4b 4,则m -n 的值为( ) A .-1 B .1 C .-3 D .38.要使多项式(x 2-px +2)(x -q)不含x 的二次项,则p 与q 的关系是( )A .相等B .互为相反数C .互为倒数D .乘积为-19.若a +b =3,a -b =7,则ab 的值是( )A .-10B .-40C .10D .4010.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是( )A .y =2n +1B .y =2n +nC .y =2n +1+n D .y =2n +n +1第Ⅱ卷(非选择题)二.填空题(共6小题,3*6=18)11.已知x 2+2x -1=0,则3x 2+6x -2=____.计算 (-5)0×(43)-1+0.5-100×(-2)-102=____. 12.630 700 000用科学记数法表示为_____________;0.000 000 203 8用科学记数法表示为____________;-5.19×10-5用小数表示为_____________. 13.已知x m =9-4,x n =3-2,则计算式子x m-3n 的值为_________;如果(-3x m +n y n )3=-27x 15y 9,那么(-2m)n 的值是_________. 14.若要(m -4)m-1=1成立,则m =__________________.化简(-3x 2y 2z)·x(x 2y)2÷(3x 2y 2)2 =__________________.15.已知A =813,B =274,比较A 与B 的大小,则A________B .(填“>”“=”“<”)16.如图是四张形状、大小完全相同的长方形纸片拼成的图形,请利用图中的空白部分面积的不同表示方法,写出一个关于a ,b 的恒等式___________________.三.解答题(共7小题,52分)17.(6分)计算:(1)a 2b(ab -3)-3ab(a 2b -a).(2)(y +2x)(2x -y)+(x +y)2-2x(2x -y).(3)-2-2-(-2)-2+(23)-1+(3-π)0.18.(6分)用简便方法计算:(1)99×101.(2)752+252-50×75.19.(6分)先化简,再求值:(2+a)(2-a)+a(a -5b)+3a 5b 3÷(-a 2b)2,其中ab =-12.20.(8分)已知x 2-x -1=0,求式子x 3-2x +1的值.21.(8分)观察下列等式:①1×3-22=-1;②2×4-32=-1;③3×5-42=-1;④__________________……(1)请你按以上规律写出第4个等式;(2)把这个规律用含字母n的等式表示出来;(n为正整数)(3)你认为(2)中所写出的等式一定成立吗?并说明理由.22.(8分)甲、乙二人共同计算2(x+a)(x+b),由于甲抄错了第一个多项式中a的符号,得到的结果为2x2+4x-30;由于乙漏抄了2,得到的结果为x2+8x+15.(1)求a,b的值;(2)求出正确的结果.23.(10分)已知21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,……(1)请你据此推测出264的个位数字是几?(2)利用上面的结论,求(2+1)(22+1)(24+1)(28+1)…(232+1)的个位数字.参考答案:1-5DBBDD 6-10 BABAB11.1, 112. 6.307×108,2.038×10-7,-0.0000519 13. 19,-64 14. 1或3或5,-13x 3z 15. =16. (a +b)2-4ab =(a -b)217.解:(1)原式=a 3b 2-3a 2b-3a 3b 2+3a 2b=-2a 3b 2(2) 原式=4x 2-y 2+x 2+2xy+y 2-4x 2+2xy=x 2+4xy(3) 原式=-14-14+32+1=2 18. 解:原式=(100-1)(100+1)=9999 解:原式=(75-25)2=250019. 解:原式=4-2ab.当ab =-12时,原式=4+1=5 20. 解:∵x 2-x -1=0,∴x 2=x +1,∴x 3-2x +1=x·x 2-2x +1=x(x +1)-2x +1=x 2-x +1=1+1=221. 解:(1)4×6-52=-1(2)n·(n +2)-(n +1)2=-1(3)因为左边=n 2+2n -(n 2+2n +1)=-1,所以(2)中所写的等式一定成立22. 解:(1)依题意得2(x -a)(x +b)=2x 2+2(-a +b)x -2ab =2x 2+4x -30,∴2(-a +b)=4,即-a +b =2①,(x +a)(x +b)=x 2+(a +b)x +ab =x 2+8x +15,∴a +b =8②,由①,②得a =3,b =5(2)正确结果是2(x +3)(x +5)=2x 2+16x +3023. 解:(1)∵64÷4=16,∴264的个位数字与24的个位数字相同,是6(2)原式=(2-1)(2+1)(22+1)(24+1)(28+1)...(232+1)=(22-1)(22+1)(24+1)(28+1) (232)1)=(24-1)(24+1)(28+1)…(232+1)=…=264-1,∴此式结果的个位数字是5。

浙教版初中数学七年级下册第三单元《整式的乘除》单元测试卷(较易)(含答案解析)

浙教版初中数学七年级下册第三单元《整式的乘除》单元测试卷(较易)(含答案解析)

浙教版初中数学七年级下册第三单元《整式的乘除》单元测试卷(较易)(含答案解析)考试范围:第三单元;   考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项)1. 计算a·a5−(2a3)2的结果为( )A. a6−2a5B. −a6C. a6−4a5D. −3a62. 计算:(xy2)3=x3(y2)3=x3y6,其中,第一步的运算依据是( )A. 积的乘方法则B. 分配律C. 同底数幂的乘法法则D. 幂的乘方法则3. 下列计算中,正确的是( )A. 6a2⋅3a3=18a5B. 3x2⋅2x3=5x5C. 2x3⋅2x3=4x9D. 3y2⋅2y3=5y64. 若单项式−8x a y和1x2y b的积为−2x5y6,则ab的值为.( )4A. 2B. 30C. −15D. 155. 根据图1的面积可以说明多项式的乘法运算(2a+b)(a+b)=2a2+3ab+b2,那么根据图2的面积可以说明多项式的乘法运算是( )A. (a+3b)(a+b)=a2+4ab+3b2B. (a+3b)(a+b)=a2+3b2C. (b+3a)(b+a)=b2+4ab+3a2D. (a+3b)(a−b)=a2+2ab−3b26. x可以分别取1,2,3,4,5这五个数,其中能使代数式(x−1)(x−2)(x+3)的值为0的有( )A. 1个B. 2个C. 3个D. 4个7. 为了便于直接运用平方差公式计算,应将(x+y−z)(x−y+z)变形为( )A. [(x+y)−z][(x−y)+z]B. [x+(y−z)][x−(y−z)]C. [(x−z)+y][(x+z)−y]D. [(x+y)+z][(x−y)−z]8. 能够用下图中已有图形的面积说明的等式是( )A. a(a+4)=a2+4aB. (a+4)(a−4)=a2−16C. (a+2)(a−2)=a2−4D. (a+2)2=a2+4a+49. 若x=y+6,xy=11,则x2−5xy+y2的值为( )A. 3B. 5C. 17D. 2√5−310. 计算(−a)3÷a结果正确的是.( )A. a2B. −a2C. −a3D. −a411. 下列各式中计算结果为x6的是( )A. x2+x4B. x8−x2C. x2⋅x4D. x12÷x212. 计算(x3y)3÷(2xy)3的结果是( )A. 12x6 B. 18x6 C. 18x4y D. 18x2y第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 若x=2m,y=3+4m,用含x的代数式表示y,则y=.14. 已知A是关于x的三次多项式,B是关于x的四次多项式,则下列结论: ①A+B是七次式; ②A−B是一次式; ③A⋅B是七次式; ④A−B是四次式,其中正确的是(填序号).15. 若(x+2019)(x+2018)=1009,则(x+2018)2+(x+2019)2=.16. 若关于x的多项式(17x2−3x+4)−(ax2+bx+c)除以5x,所得商恰好为2x+1,则a+ b+c=____.三、解答题(本大题共9小题,共72.0分。

浙教版七年级数学下册第三章整式的乘除单元检测试题(含答案)

浙教版七年级数学下册第三章整式的乘除单元检测试题(含答案)

七年级数学下册第三章整式的乘除单元检测试题姓名:__________ 班级:__________一、单选题(共10题;共30分)1.如果多项式y2+ky+4是一个完全平方式,那么k=()A. ±2B. 2C. ±4D. 42.下列运算正确的是()A. a3+a2=2a5B. a6÷a2=a3C. a4•a3=a7D. (ab2)3=a2b53.若3x=5,3y=4,则32x-y等于( )A. B. 6 C. 21 D. 204.下列关系式中,正确的是()A. (a﹣b)2=a2﹣b2B. (a+b)(a﹣b)=a2﹣b2C. (a+b)2=a2+b2D. (a+b)2=a2﹣2ab+b25.在边长为a的正方形中挖去一个边长为b的小正方形(a>b),如图1-8-1(1),把余下的部分拼成一个矩形如图1-8-1(2),根据两个图形中阴影部分的面积相等,可以验证()A.B.C.D.6.若二次三项式为完全平方式,则m的值为()A. ±2B. 2C. ±1D. 17.计算3y3•(﹣y2)2•(﹣2y)3的结果是()A. ﹣24y10B. ﹣6y10C. ﹣18y10D. 54y108.已知x2n=3,则(x3n)2•4(x2)2n的值是()A. 12B.C. 27D.9.计算(a2b)3的结果是()A. a6b3B. a2b3C. a5b3D. a6b10.不论x、y为什么实数,代数式x2+y2+2x﹣4y+7的值()A. 总不小于2B. 总不小于7C. 可为任何实数D. 可能为负数二、填空题(共8题;共24分)11.若a m=8,a n=2,则a m﹣n=________.12.若(x+k)(x﹣2)的积中不含有x的一次项,则k的值为________ .13.计算:82015×(﹣0.125)2016=________.14.若m2﹣n2=12,且m﹣n=2,则m+n=________ .15.计算(-2)6÷(-2)2 =________16.若x、y互为相反数,则(5x)2·(52)y=________.17.如图所示的正方形和长方形卡片若干张,拼成一个长为(a+3b),宽为(2a+b)的矩形,需要这三类卡片共________ 张.18.在2001、2002、…、2010这10个数中,不能表示成两个平方数差的数有________个。

浙教版七年级数学下册第三章整式的乘除测试题及答案

浙教版七年级数学下册第三章整式的乘除测试题及答案

第三章 整式的乘除单元测试卷一、选择题(共10小题,每小题3分,共30分) 1.下列计算正确的是( ).A .2x 2·3x 3=6x 6B .2x 2+3x 3=5x 5C .(-3x 2)·(-3x 2)=9x 4D .54x n ·25x m =12x mn2.下列各式中,能用平方差公式计算的是 ( )A 、))((b a b a +--B 、))((b a b a ---C 、))((c b a c b a +---+D 、))((b a b a -+- 3.设()()A b a b a +-=+223535,则A=( )A. 30abB. 60abC. 15abD. 12ab 4.已知,3,5=-=+xy y x 则=+22y x ( )A. 25. B 25- C 19 D 、19-5.已知,5,3==bax x 则=-ba x23( ) A 、2527 B 、109 C 、53D 、52 6. .如图,甲、乙、丙、丁四位同学给出了四 种表示该长方形面积的多项式: ①(2a +b )(m +n ); ②2a (m +n )+b (m +n ); ③m (2a +b )+n (2a +b ); ④2am +2an +bm +bn , 你认为其中正确的有A 、①②B 、③④C 、①②③D 、①②③④ ( )7.如(x+m)与(x+3)的乘积中不含x 的一次项,则m 的值为( ) A 、 –3B 、3C 、0D 、18.已知.(a+b)2=9,ab= 32-,则a²+b 2的值等于( ) A 、84 B 、78 C 、12 D 、6 9.计算(a -b )(a+b )(a 2+b 2)(a 4-b 4)的结果是( ) A .a 8+2a 4b 4+b 8 B .a 8-2a 4b 4+b 8 C .a 16-b 16 D .a 8-b 8nm a ba10.已知m m Q m P 158,11572-=-=(m 为任意实数),则P 、Q 的大小关系为( ) A 、Q P > B 、Q P = C 、Q P < D 、不能确定 二、填空题(共6小题,每小题4分,共24分)11.设12142++mx x 是一个完全平方式,则m =_______。

浙教版七年级数学下册第3章整式的乘除单元测试卷(含答案)

浙教版七年级数学下册第3章整式的乘除单元测试卷(含答案)

浙教版七下数学第3章《整式的乘除》单元测试题满分120分一、选择填空(每小题3分,共30分)1、计算32a (-2) 的结果是( ) A 、58a - B 、68a - C 、64a D 、664a 2、用科学记数法表示0.000 091 7 为( )A 、49.1710-⨯ B 、59.1710-⨯ C 、69.210-⨯ D 、791.710-⨯ 3、如果0122014(2014),(0.01),(),2013a b c --=-=-=-那么,,a b c 三数的大小关系正确的为( ) A 、a b c >> B 、c a b >> C 、a c b >> D 、c b a >>4、若232,(3)3,xyx y-=-=则 3 的值为 ( )A 、29 B 、92- C 、29- D 、925、如果整式29x mx ++ 恰好是一个整式的平方,那么 m 的值是( ) A 、±3 B 、±4.5 C 、±6 D 、9 6、下列各式中,能用完全平方公式计算的是( )222222221414①a +4ab+b ; ②4a -4ab+b ;③4a +4ab+b ; ④a +ab+bA 、①②B 、①③C 、②④D 、③④7、一个正方形的边长增加了2cm ,面积相应增加了322c m ,则原正方形的边长为 ( ) A 、5cm B 、6cm C 、7cm D 、8cm 8、要使等式22(2)(2)x y A x y -+=+ 成立,代数式A 应是( ) A 、4xy B 、4xy - C 、8xy D 、8xy - 9、下列运算中错误的是( ).A 、223(2)5xy x xy xy x --=- B 、235(2)105x x y x xy -=- C 、225(231)10151mn m n m n mn +-=+- D 、223422()(2)2ab ab c a b a b c -=-10、如果四个不同的正整数,,,m n p q 满足(5m)(5n)(5p)(5q)4----= ,则m n p q +++等于( )A 、4B 、10C 、12D 、20二、填空(每小题3分,共24分)11、计算:a n •a n •a n =________;(﹣x )(﹣x 2)(﹣x 3)(﹣x 4)=________. 12、若5320x y --= ,则528x y÷= ________13、若0,0,a b >> 且3252,x a x b ==,则x 的值为 ________14、已知2A x = ,B 为多项式,在计算B+A 时,小明同学把B+A 看成了B ÷A,结果为212x + ,则B+A= ________ 15、若13x x -= ,则221x x+= ________ 16、若代数式232x x ++ 可以表示为2(x 1)(x 1)b a -+-+ 的形式,则a b += ________17、定义新运算“⊗”规定:2143a b a ab ⊗=-- 则3(1)⊗-= ___________ 18、若(1)1mm -= ,则m = ________三、解答与计算题(总计66分) 19、(本题10分)计算与化简: (1)20142011(1)()()2 3.14π--+--- (2)2(x y)(2x y)(2x)y ⎡⎤+-+÷-⎣⎦20、(本题10分)解方程:(1)2x(2x 1)2(x 7)1--+= (2)25(x 1)5(x 2)(x 2)x 3--+-=+21、(本题8分)化简求值222()()(2)(62)2x y x y x y x y xy y +-----÷ ,其中2,1x y =-=- .22、(本题8分)说明代数式2(x y)(x y)(x y)(2)y y ⎡⎤--+-÷-+⎣⎦ 的值与y 的值无关。

浙教版七年级数学下册第3章整式的乘除单元达标测试题(word解析版)

浙教版七年级数学下册第3章整式的乘除单元达标测试题(word解析版)

浙教版七年级数学下册《第3章整式的乘除》单元达标测试题(附答案)一、选择题(本题共计10小题,每题3分,共计30分,)1.下列计算正确的是()A.(2a﹣1)2=4a2﹣1B.3a6÷3a3=a2C.(﹣ab2)4=﹣a4b6D.﹣2a+(2a﹣1)=﹣12.若m、n、p是正整数,则(x m•x n)p=()A.x m•x np B.x mnp C.x mp+np D.x mp•np3.下列各式运算正确的是()A.5a2﹣3a2=2B.a2⋅a3=a6C.(a10)2=a20D.x(a﹣b+1)=ax﹣bx4.若5x=a,5y=b,则52x﹣y=()A.B.a2b C.D.2ab5.计算(ab2)3的结果,正确的是()A.a3b6B.a3b5C.ab6D.ab56.下列四个算式:①63+63;②(2×63)×(3×63);③(22×32)3;④(33)2×(22)3中,结果等于66的是()A.①②③B.②③④C.②③D.③④7.若x2+2mx+16是完全平方式,则(m﹣1)2+2的值是()A.11B.3C.11或27D.3或118.若2a=3,2b=5,2c=15,则()A.a+b=c B.a+b+1=c C.2a+b=c D.2a+2b=c9.若x+m与x+乘积的值不含x项,则m的值为()A.B.4C.﹣D.﹣410.下列计算中,正确的是()A.(﹣2a﹣5)(2a﹣5)=25﹣4a2B.(a﹣b)2=a2﹣b2C.(x+3)(x﹣2)=x2﹣6D.﹣a(2a2﹣1)=﹣2a3﹣a二、填空题(本题共计7小题,每题3分,共计21分,)11.已知2a2+2b2=10,a+b=3,则ab=.12.已知x+y=﹣4,x﹣y=2,则x2﹣y2=.13.已知(x﹣a)(x+a)=x2﹣9,那么a=.14.若n为正整数,且x2n=5,则(3x3n)2﹣45(x2)2n的值为.15.已知x﹣y=5,xy=3,则(x+y)2=.16.有9张边长为a的正方形纸片,9张边长分别为a,b(a<b)的长方形纸片,10张边长为b 的正方形纸片,从其中取出若干张纸片,每种纸片至少取一张,把取出的这些纸片拼成一个正方形(按原纸张进行无空隙、无重叠拼接),则拼成的正方形的边长最长为.17.如图,在边长为a的正方形中剪去一个边长为b的小正方形(a>b),把剩下的部分拼成一个梯形,分别计算这两个图形阴影部分的面积,验证了公式.三、解答题(本题共计8小题,共计69分,)18.若(x﹣2)x+1=1,求x的值.19.若5x﹣3y+2=0,求(102x)3÷(10x•103y)的值.20.计算:(3x3y2z﹣1)﹣2•(5xy﹣2z3)2.21.计算(1)(﹣a2b3)3•(﹣2a2b)3;(2)(a2)5+(﹣a2•a3)2+(﹣a2)5﹣a•a9;(3)2(x+1)+x(x+2)﹣(x﹣1)(x+5)22.先化简,再求值:[(x﹣2y)2+(x﹣2y)(x+2y)﹣2x(2x﹣y)]÷2x,其中x=﹣1,y=﹣2023.23.计算(×××…××1)10•(10×9×8×7×…×3×2×1)10.24.乘法公式的探究及应用.(1)如图1,是将图2阴影部分裁剪下来,重新拼成的一个长方形,面积是;如图2,阴影部分的面积是;比较图1,图2阴影部分的面积,可以得到乘法公式;(2)运用你所得到的公式,计算下列各题:①103×97;②(2x+y﹣3)(2x﹣y+3).25.数学活动课上,老师准备了图1中三种不同大小的正方形与长方形,拼成了一个如图2所示的正方形.(1)请用两种不同的方法表示图2中阴影部分的面积和.方法1:;方法2:.(2)请你直接写出三个代数式:(a+b)2,a2+b2,ab之间的等量关系.(3)根据(2)题中的等量关系,解决如下问题:①已知m+n=5,m2+n2=20,求mn和(m﹣n)2的值;②已知(x﹣2021)2+(x﹣2023)2=34,求(x﹣2022)2的值.参考答案一、选择题(本题共计10小题,每题3分,共计30分,)1.解:A、原式=4a2﹣4a+1,不符合题意;B、原式=a3,不符合题意;C、原式=a4b8,不符合题意;D、原式=﹣2a+2a﹣1=﹣1,符合题意,故选:D.2.解:(x m•x n)p=(x m+n)p=x(m+n)p=x mp+np,故选:C.3.解:∵5a2﹣3a2=2a2≠2,故选项A错误;a2⋅a3=a5≠a6,故选项B错误;(a10)2=a20,故选项C正确;x(a﹣b+1)=ax﹣bx+x≠ax﹣bx,故选项D错误;故选:C.4.解:52x﹣y=52x÷5y=5x×5x÷5y已知5x=a,5y=b,所以上式=.故选:A.5.解:(ab2)3=a3b6.故选:A.6.解:①63+63=2×63;②(2×63)×(3×63)=6×66=67;③(22×32)3=(62)3=66;④(33)2×(22)3=36×26=66.所以③④两项的结果是66.故选:D.7.解:∵x2+2mx+16是完全平方式.∴m2=16.∴m=±4.当m=4时,(m﹣1)2+2=9+2=11.当m=﹣4时(m﹣1)2+2=25+2=27.故答案为:C.故选:C.8.解:∵2a×2b=2a+b=3×5=15=2c,∴a+b=c,故选:A.9.解:(x+m)(x+)=x2+(m+)x+m,∵乘积中不含x项,∴m+=0,即m=﹣.故选:C.10.解:A、(﹣2a﹣5)(2a﹣5)=25﹣4a2,正确;B、(a﹣b)2=a2﹣2ab+b2,错误;C、(x+3)(x﹣2)=x2+x﹣6,错误;D、﹣a(2a2﹣1)=﹣2a3+a,错误,故选:A.二、填空题(本题共计7小题,每题3分,共计21分,)11.解:∵2a2+2b2=10,∴a2+b2=5,∵a+b=3,∴(a+b)2=9,∴a2+2ab+b2=9,∴5+2ab=9,∴2ab=4,∴ab=2,故答案为:2.12.解:当x+y=﹣4,x﹣y=2时,原式=(x+y)(x﹣y)=﹣4×2=﹣8.故答案为:﹣8.13.解:根据平方差公式,(x﹣a)(x+a)=x2﹣a2,由已知可得,a2=9,所以,a=±=±3.故答案为:±3.14.解:当x2n=5时,原式=9x6n﹣45x4n=9(x2n)3﹣45(x2n)2=9×53﹣45×52=9×53﹣9×53=0.故答案为:0.15.解:将x﹣y=5两边平方得:(x﹣y)2=25,即(x+y)2=x2+y2+2xy=x2+y2﹣2xy+4xy=(x﹣y)2+4xy,把xy=3代入得:(x+y)2=(x﹣y)2+4xy=25+4×3=37.故答案为:37.16.解:假设正方形的边长为xa+yb,其中x、y为正整数.则(xa+yb)2≤9a2+9b2+10ab,x2a2+2xyab+y2b2≤9a2+9b2+10ab,即(9﹣x2)a2+(9﹣y2)b2+(10﹣2xy)ab≥0.∵a<b,∴9﹣y2≥0,y≤3.当y取最大值3时,由10﹣2xy≥0,得x≤1,即x取最大值1.∴拼成得正方形边长最长为:3b+a.故答案为:3b+a.17.解:a2﹣b2=(a+b)(a﹣b).三、解答题(本题共计9小题,共计69分,)18.解:①依题意得:x+1=0,且x﹣2≠0解得x=﹣1.②依题意得:x﹣2=1,即x=3时,也符合题意;③依题意得:当x﹣2=﹣1即x=1时,也符合题意.综上所述,x的值是﹣1或3或1.19.解:5x﹣3y+2=0则5x﹣3y=﹣2.原式=106x÷10x+3y=106x﹣x﹣3y=105x﹣3y=10﹣2=.20.解:原式=3﹣2x﹣6y﹣4z2•25x2y﹣4z6=(×25)•x﹣6+2•y﹣4﹣4•z2+6=.21.解:(1)(﹣a2b3)3•(﹣2a2b)3=﹣a6b9•(﹣8a6b3)=a12b12;(2)(a2)5+(﹣a2•a3)2+(﹣a2)5﹣a•a9=a10+a10﹣a10﹣a10=0;(3)2(x+1)+x(x+2)﹣(x﹣1)(x+5)=2x+2+x2+2x﹣x2﹣5x+x+5=7.22.解:[(x﹣2y)2+(x﹣2y)(x+2y)﹣2x(2x﹣y)]÷2x =(x2﹣4xy+4y2+x2﹣4y2﹣4x2+2xy)÷2x=(﹣2x2﹣2xy)÷2x=﹣x﹣y,当x=﹣1,y=﹣2023时,原式=1+2023=2022.23.解:(×××…××1)10•(10×9×8×7×…×3×2×1)10=(×××…××1×10×9×8×7×…×3×2×1)10=110=1;24.解:(1)由拼图可知,图形1的长为(a+b),宽为(a﹣b),因此面积为(a+b)(a﹣b),图形2的阴影部分的面积为两个正方形的面积差,即a2﹣b2,由图形1,图形2的面积相等可得,(a+b)(a﹣b)=a2﹣b2,故答案为:(a+b)(a﹣b),a2﹣b2,(a+b)(a﹣b)=a2﹣b2;(2)①103×97=(100+3)(100﹣3)=1002﹣32=10000﹣9=9991;②原式=(2x+y﹣3)=(2x)2﹣(y﹣3)2=4x2﹣(y2﹣6y+9)=4x2﹣y2+6y﹣9.25.解:(1)阴影两部分求和为a2+b2,用总面积减去空白部分面积为(a+b)2﹣2ab,故答案为:a2+b2,(a+b)2﹣2ab;(2)由题意得,a2+b2=(a+b)2﹣2ab;(3)①由(2)题结论a2+b2=(a+b)2﹣2ab可得ab=,∴m+n=5,m2+n2=20时,mn===,(m﹣n)2=m2﹣2mn+n2;=20﹣2×=20﹣5=15;②设a=x﹣2021,b=x﹣2023,可得a+b=(x﹣2021)+(x﹣2023)=x﹣2021+x﹣2023=2x﹣4044=2(x﹣2022),由(2)题结论a2+b2=(a+b)2﹣2ab可得,(a+b)2=a2+2ab+b2,又∵(a﹣b)2=[(x﹣2021)﹣(x﹣2023)]2=22=4,且由(a﹣b)2=a2﹣2ab+b2,可得2ab=(a2+b2)﹣(a﹣b)2=(x﹣2021)2+(x﹣2023)2﹣[(x﹣2021)﹣(x﹣2023)]2=34﹣4=30,∴(x﹣2022)2=()2====16.。

浙教新版七年级下册数学第3章《整式的乘除》测试卷【答案+解析】

浙教新版七年级下册数学第3章《整式的乘除》测试卷时间:100分钟;满分:100分班级:___________姓名:___________座号:___________成绩:___________一.选择题(共10小题,共30分)1.计算﹣(﹣m2)•(﹣m)3•(﹣m),正确的是()A.﹣m3B.m5C.m6D.﹣m6 2.下列运算正确的是()A.a3•a3=a9B.a3+a2=a5C.(a2)3=a5D.(a4)3=a12 3.计算(﹣x3)2÷(﹣x)所得结果是()A.x5B.﹣x5C.x6D.﹣x64.计算(π﹣3)0÷3×(﹣)的结果是()A.﹣1B.﹣C.1D.95.下列计算中,正确的是()A.4a3•2a2=8a6B.2x4•3x4=6x8C.3x2•4x2=6x2D.3y4•5y4=15y206.计算:15a3b÷(﹣5a2b)等于()A.﹣3ab B.﹣3a3b C.﹣3a D.﹣3a2b 7.若(x+a)(x+b)的积中不含x的一次项,那么a与b一定是()A.互为相反数B.互为倒数C.相等D.a比b大8.如果(2a+2b﹣3)(2a+2b+3)=40,则a+b的值为()A.B.﹣C.D.±39.若要使等式(3x+4y)2=(3x﹣4y)2+A成立,则A等于()A.24xy B.48xy C.12xy D.50xy 10.已知y2+my+1是完全平方式,则m的值是()A.2B.±2C.1D.±1二.填空题(共5小题,共20分)11.若a4•a2m﹣1=a11,则m=.12.计算:20+(﹣)﹣1=.13.若a2b=2,则代数式2ab(a﹣2)+4ab=.14.如果表示3xyz表示﹣2a b c d,则÷3mn2=.15.如图,有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为3和15,则正方形A,B的面积之和为.三.解答题(共8小题,共50分)16.计算:(1)(x+y)3•(x+y)•(x+y)2;(2)(m﹣n)2•(n﹣m)2•(n﹣m)3;(3)x3•x n﹣1﹣x n﹣2•x4+x n+2;(4)﹣(﹣p)3•(﹣p)3•(﹣p)2.17.求值(1)已知2x+5y+3=0,求4x•32y的值;(2)已知2×8x×16=223,求x的值.18.先化简,再求值:(m+2n)(m﹣2n)﹣(m﹣n)2+(3m2n﹣4mn2)÷(﹣m),其中m =2,n=﹣1.19.已知:x m=4,x n=8.(1)求x2m的值;(2)求x m+n的值;(3)求x3m﹣2n的值.20.已知(x2+mx+3)(x2﹣3x+n)的展开式中不含x2项和x3项.(1)求m,n的值.(2)求(m+n)(m2﹣mn+n2)的值.21.(1)已知x+y=5,xy=3,求x2+y2的值;(2)已知x﹣y=5,x2+y2=51,求(x+y)2的值;(3)已知x2﹣3x﹣1=0,求x2+的值.22.我们知道,图形是一种重要的数学语言,它直观形象,能有效地表现一些代数中的数量关系,而运用代数思想也能巧妙的解决一些图形问题.(1)如图1所示,甲同学从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),求矩形的面积;(2)乙同学用如图2所示不同颜色的正方形与长方形纸片拼成了一个如图3所示的正方形.①用不同的代数式表示图中阴影部分的面积,你能得到怎样的等式,试用乘法公式说明这个等式成立;②根据①中的结论计算:已知(2016﹣m)(2018﹣m)=2009,求(2018﹣m)2+(m﹣2016)223.动手操作:如图①是一个长为2a,宽为2b的长方形,沿图中的虚线剪开分成四个大小相等的长方形,然后按照图②所示拼成一个正方形.提出问题:(1)观察图②,请用两种不同的方法表示阴影部分的积:,;(2)请写出三个代数式(a+b)2,(a﹣b)2,ab之间的一个等量关系:;(3)问题解决:根据上述(2)中得到的等量关系,解决下列问题:已知x+y=8,xy=7,求(x﹣y)2的值.参考答案与试题解析部分一.选择题(共10小题)1.计算﹣(﹣m2)•(﹣m)3•(﹣m),正确的是()A.﹣m3B.m5C.m6D.﹣m6【分析】根据同底数幂的乘法法则计算即可.【解答】解:﹣(﹣m2)•(﹣m)3•(﹣m)=﹣(﹣m2)•(﹣m3)•(﹣m)=m2+3+1=m6.故选:C.2.下列运算正确的是()A.a3•a3=a9B.a3+a2=a5C.(a2)3=a5D.(a4)3=a12【分析】分别根据同底数幂的乘法法则,合并同类项的法则以及幂的乘方运算法则逐一判断即可.【解答】解:a3•a3=a6,故选项A不合题意;a3与a2不是同类项,所以不能合并,故选项B不合题意;(a2)3=a6,故选项C不合题意;(a4)3=a12,正确,故选项D符合题意.故选:D.3.计算(﹣x3)2÷(﹣x)所得结果是()A.x5B.﹣x5C.x6D.﹣x6【分析】先算乘方,再算除法即可.【解答】解:(﹣x3)2÷(﹣x)=x6÷(﹣x)=﹣x5,故选:B.4.计算(π﹣3)0÷3×(﹣)的结果是()A.﹣1B.﹣C.1D.9【分析】先算零次幂,再算乘除即可.【解答】解:原式=1××(﹣)=﹣,故选:B.5.下列计算中,正确的是()A.4a3•2a2=8a6B.2x4•3x4=6x8C.3x2•4x2=6x2D.3y4•5y4=15y20【分析】根据单项式乘单项式的法则计算,判断即可.【解答】解:A、4a3•2a2=8a5,本选项错误;B、2x4•3x4=6x8,本选项正确;C、3x2•4x2=12x4,本选项错误;D、3y4•5y4=15y8,本选项错误;故选:B.6.计算:15a3b÷(﹣5a2b)等于()A.﹣3ab B.﹣3a3b C.﹣3a D.﹣3a2b【分析】根据单项式除以单项式的法则计算即可.【解答】解:15a3b÷(﹣5a2b)=15÷(﹣5)•a3﹣2•b1﹣1=﹣3a.故选:C.7.若(x+a)(x+b)的积中不含x的一次项,那么a与b一定是()A.互为相反数B.互为倒数C.相等D.a比b大【分析】原式利用多项式乘以多项式法则计算,根据结果中不含x的一次项,求出a与b 的关系即可.【解答】解:(x+a)(x+b)=x2+ax+bx+ab=x2+(a+b)x+ab,由结果中不含x的一次项,得到a+b=0,即a与b一定是互为相反数.故选:A.8.如果(2a+2b﹣3)(2a+2b+3)=40,则a+b的值为()A.B.﹣C.D.±3【分析】先根据平方差公式进行计算,再求出(a+b)2的值,最后求出答案即可.【解答】解:∵(2a+2b﹣3)(2a+2b+3)=40,∴(2a+2b)2﹣32=40,∴4(a+b)2=49,∴(a+b)2=,∴a+b=±,故选:C.9.若要使等式(3x+4y)2=(3x﹣4y)2+A成立,则A等于()A.24xy B.48xy C.12xy D.50xy【分析】利用A=(3x+4y)2﹣(3x﹣4y)2,然后利用完全平方公式展开合并即可.【解答】解:∵(3x+4y)2=9x2+24xy+16y2,(3x﹣4y)2=9x2﹣24xy+16y2,∴A=9x2+24xy+16y2﹣(9x2﹣24xy+16y2)=48xy.故选:B.10.已知y2+my+1是完全平方式,则m的值是()A.2B.±2C.1D.±1【分析】利用完全平方公式的结构特征判断即可求出m的值.【解答】解:∵y2+my+1是完全平方式,∴m=±2,故选:B.二.填空题(共5小题)11.若a4•a2m﹣1=a11,则m=4.【分析】根据同底数幂的乘法法则解答即可.【解答】解:∵a4•a2m﹣1=a11,∴4+(2m﹣1)=11,解得m=4.故答案为:4.12.计算:20+(﹣)﹣1=﹣1.【分析】直接利用零指数幂的性质以及负整数指数幂的性质分别化简得出答案.【解答】解:原式=1﹣2=﹣1.故答案为:﹣1.13.若a2b=2,则代数式2ab(a﹣2)+4ab=4.【分析】根据单项式与多项式相乘的运算法则把原式化简,代入计算即可.【解答】解:2ab(a﹣2)+4ab=2a2b﹣4ab+4ab=2a2b,当a2b=2时,原式=2×2=4,故答案为:4.14.如果表示3xyz表示﹣2a b c d,则÷3mn2=﹣4m3n,.【分析】原式根据题中的新定义计算即可求出值.【解答】解:解:根据题中的新定义得:原式=6mn•(﹣2n2m3)÷3mn2=﹣4m3n,故答案为﹣4m3n.15.如图,有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为3和15,则正方形A,B的面积之和为18.【分析】设正方形的边长,根据方程的思想,正方形的面积公式和已知阴影部分的面积构建一个方程组,数形结合,整体法求出正方形A、B的面积之和为18.【解答】解:如图所示:设正方形A、B的边长分别为x,y,依题意得:,化简得:由①+②得:x2+y2=18,∴,故答案为18.三.解答题(共8小题)16.计算:(1)(x+y)3•(x+y)•(x+y)2;(2)(m﹣n)2•(n﹣m)2•(n﹣m)3;(3)x3•x n﹣1﹣x n﹣2•x4+x n+2;(4)﹣(﹣p)3•(﹣p)3•(﹣p)2.【分析】根据同底数幂的乘法法则计算即可.【解答】解:(1)(x+y)3•(x+y)•(x+y)2=(x+y)3+1+2=(x+y)6;(2)(m﹣n)2•(n﹣m)2•(n﹣m)3=(n﹣m)2+2+3=(n﹣m)7;(3)x3•x n﹣1﹣x n﹣2•x4+x n+2=x n+2﹣x n﹣2+4+x n+2=x n+2;(4)﹣(﹣p)3•(﹣p)3•(﹣p)2=﹣p3+3+2=﹣p8.17.求值(1)已知2x+5y+3=0,求4x•32y的值;(2)已知2×8x×16=223,求x的值.【分析】(1)直接利用幂的乘方运算法则以及同底数幂的乘法运算法则将原式变形得出答案;(2)直接利用幂的乘方运算法则以及同底数幂的乘法运算法则将原式变形得出答案.【解答】解:(1)∵2x+5y+3=0,∴2x+5y=﹣3,∴4x•32y=22x•25y=22x+5y=2﹣3=;(2)∵2×8x×16=223,∴2×23x×24=223,∴1+3x+4=23,解得:x=6.18.先化简,再求值:(m+2n)(m﹣2n)﹣(m﹣n)2+(3m2n﹣4mn2)÷(﹣m),其中m =2,n=﹣1.【分析】根据平方差公式、完全平方公式、多项式除单项式的运算法则把原式化简,代入计算即可.【解答】解:(m+2n)(m﹣2n)﹣(m﹣n)2+(3m2n﹣4mn2)÷(﹣m)=m2﹣4n2﹣m2+2mn﹣n2﹣3mn+4n2=﹣n2﹣mn,当m=2,n=﹣1时,原式=﹣1+2=1.19.已知:x m=4,x n=8.(1)求x2m的值;(2)求x m+n的值;(3)求x3m﹣2n的值.【分析】(1)直接利用幂的乘方运算法则计算得出答案;(2)直接利用同底数幂的乘法运算法则计算得出答案;(3)直接利用幂的乘方运算法则以及同底数幂的除法运算法则计算得出答案.【解答】解:(1)∵x m=4,x n=8,∴x2m=(x m)2=16;(2)∵x m=4,x n=8,∴x m+n=x m•x n=4×8=32;(3)∵x m=4,x n=8,∴x3m﹣2n=(x m)3÷(x n)2=43÷82=1.20.已知(x2+mx+3)(x2﹣3x+n)的展开式中不含x2项和x3项.(1)求m,n的值.(2)求(m+n)(m2﹣mn+n2)的值.【分析】(1)根据整式的运算法进行化简后即可求出答案;(2)先将原式化简,然后将m与n代入原式即可求出答案.【解答】解:(1)原式=x4﹣3x3+nx2+mx3﹣3mx2+mnx+3x2﹣9x+3n=x4﹣3x3+mx3+nx2﹣3mx2+3x2+mnx﹣9x+3n=x4+(m﹣3)x3+(n﹣3m+3)x2+mnx﹣9x+3n由于展开式中不含x2项和x3项,∴m﹣3=0且n﹣3m+3=0,∴解得:m=3,n=6,(2)由(1)可知:m+n=9,mn=18,∴(m+n)2=m2+2mn+n2,∴81=m2+n2+36,∴m2+n2=45,∴原式=9×(45﹣18)=24321.(1)已知x+y=5,xy=3,求x2+y2的值;(2)已知x﹣y=5,x2+y2=51,求(x+y)2的值;(3)已知x2﹣3x﹣1=0,求x2+的值.【分析】(1)将x2+y2变形为(x+y)2﹣2xy,然后将x+y=5,xy=3代入求解即可;(2)由x﹣y=5可得x2+y2﹣2xy=25,结合x2+y2=51,可得2xy=26,由完全平方公式计算结果;(3)利用完全平方公式求值即可.【解答】解:(1)因为x+y=5,xy=3,所以x2+y2=(x+y)2﹣2xy=25﹣6=19;即x2+y2的值是19;(2)∵x﹣y=5,∴(x﹣y)2=x2+y2﹣2xy=25,又∵x2+y2=51,∴2xy=26,∴(x+y)2=x2+y2+2xy=51+26=77;即(x+y)2的值是77;(3)解:∵x2﹣3x﹣1=0∴x﹣3﹣=0,∴x﹣=3,∴x2+=(x﹣)2+2=11,即x2+的值是11.22.我们知道,图形是一种重要的数学语言,它直观形象,能有效地表现一些代数中的数量关系,而运用代数思想也能巧妙的解决一些图形问题.(1)如图1所示,甲同学从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),求矩形的面积;(2)乙同学用如图2所示不同颜色的正方形与长方形纸片拼成了一个如图3所示的正方形.①用不同的代数式表示图中阴影部分的面积,你能得到怎样的等式,试用乘法公式说明这个等式成立;②根据①中的结论计算:已知(2016﹣m)(2018﹣m)=2009,求(2018﹣m)2+(m﹣2016)2【分析】(1)根据矩形的面积公式计算;(2)①根据正方形的面积公式表示出阴影部分的面积,根据图形表示出阴影部分的面积,得到等式,根据完全平方公式证明结论;②根据①的结论计算即可.【解答】解:(1)矩形的面积=(a+4)2﹣(a+1)2=a2+8a+16﹣a2﹣2a﹣1=6a﹣15;(2)①如图2,阴影部分的面积=a2+b2,如图3,阴影部分的面积=(a+b)2﹣2ab,则得到等式a2+b2=(a+b)2﹣2ab,证明:(a+b)2﹣2ab=a2+2ab+b2﹣2ab=a2+b2;②(2018﹣m)2+(m﹣2016)2=(2018﹣m+m﹣2016)2﹣2×(m﹣2016)(2018﹣m)=4+2009×2=4022.23.动手操作:如图①是一个长为2a,宽为2b的长方形,沿图中的虚线剪开分成四个大小相等的长方形,然后按照图②所示拼成一个正方形.提出问题:(1)观察图②,请用两种不同的方法表示阴影部分的积:(a+b)2﹣4ab,(a ﹣b)2;(2)请写出三个代数式(a+b)2,(a﹣b)2,ab之间的一个等量关系:(a+b)2﹣4ab =(a﹣b)2;(3)问题解决:根据上述(2)中得到的等量关系,解决下列问题:已知x+y=8,xy=7,求(x﹣y)2的值.【分析】(1)第一种方法为:大正方形面积﹣4个小长方形面积,第二种表示方法为:阴影部分正方形的面积;(2)化简后可知:相等;(3)利用(a+b)2﹣4ab=(a﹣b)2可求解.【解答】解:(1)(a+b)2﹣4ab或(a﹣b)2,故答案为:(a+b)2﹣4ab,(2)∵(a+b)2﹣4ab=a2﹣2ab+b2=(a﹣b)2;故答案为:(a+b)2﹣4ab=(a﹣b)2;(3)由(2)知:(x﹣y)2=(x+y)2﹣4xy,∵x+y=8,xy=7,∴(x﹣y)2=64﹣28=36.。

浙教版七年级下册数学第三章整式的乘除单元测试卷(含答案)

浙教版七下数学第三单元测试卷(含答案)一、单选题1.下列计算中,不正确的是()A.5x5-x5=4x5B.x3÷x=x2C.(-2ab)3=-6a3b3D.2a•3a=6a22.下列运算正确的是()A.x2+x2=x4B.(a﹣b)2=a2﹣b2C.(﹣a2)3=﹣a6D.3a2•2a3=6a63.三个连续奇数,若中间的一个为n,则这三个连续奇数之积为()A.4n3﹣nB.n3﹣4nC.8n2﹣8nD.4n3﹣2n4.下列计算正确的是()A.x(x2﹣x﹣1)=x3﹣x﹣1B.ab(a+b)=a2+b2C.3x(x2﹣2x﹣1)=3x3﹣6x2﹣3xD.﹣2x(x2﹣x﹣1)=﹣2x3﹣2x2+2x5.下列能用平方差公式计算的是()A.(-x+y)(x-y)B.(x-1)(-1-x)C.(2x+y)(2y-x)D.(x-2)(x+1)6.多项式4x2+1加上一个单项式后,使它能成为一个整式的完全平方,则加上的单项式不可以是()A.4xB.-4xC.4x4D.-4x47.已知P=m−1,Q=m2−m(m为任意实数),则P、Q的大小关系为()A.P>QB.P=QC.P<QD.不能确定8.长度单位1纳米=10-9米,目前发现一种新型病毒直径为25100纳米,用科学记数法表示该病毒直径是()A.2.51×10-5米B.25.1×10-6米C.0.251×10-4米D.2.51×10-4米9.计算4a6÷(﹣a2)的结果是()A.4a4B.﹣4a4C.﹣4a3D.4a310.在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的弦图,它是由四个全等的直角三角形和中间的小正方形拼成的大正方形,如图所示,如果大正方形的面积是100,小正方形的面积为20,那么每个直角三角形的周长为()A.10+6B.10+10C.10+4D.24二、填空题11.计算:a2•a3=________.12.若4x2•□=8x3y,则“□”中应填入的代数式是________ .13.若a+b=6,ab=4,则a2+b2=________ .14.夏老师发现,两位同学将一个二次三项式分解因式时,聪聪同学因看错了一次项而分解成3(x﹣1)(x ﹣9),江江同学因看错了常数项而分解成3(x﹣2)(x﹣4),那么,聪明的你,通过以上信息可以知道,原多项式应该是被因式分解为________ .15.若9x2﹣kxy+4y2是一个完全平方式,则k的值是________.16.若2m=3,4n=8,则23m﹣2n+3的值是________17.已知A=2x,B是多项式,在计算B+A时,小马虎同学把B+A看成B÷A,结果得x+,则B+A=________18.请看杨辉三角(1),并观察下列等式(2):根据前面各式的规律,则(a+b)6= ________三、解答题19.计算:(1)(+﹣)×|﹣12|;(2)2(x2)3+3(﹣x3)2.20.已知x n=2,y n=3,求(x2y)2n的值.21.若(x﹣1)(x+2)(x﹣3)(x+4)+a是一个完全平方式,求a的值.22.把几个图形拼成一个新的图形,再通过图形面积的计算,常常可以得到一些有用的式子,或可以求出一些不规则图形的面积.(1)如图1,是将几个面积不等的小正方形与小长方形拼成一个边长为a+b+c的正方形,试用不同的方法计算这个图形的面积,你能发现什么结论,请写出来.(2)如图2,是将两个边长分别为a和b的正方形拼在一起,B、C、G三点在同一直线上,连接BD和BF,若两正方形的边长满足a+b=10,ab=20,你能求出阴影部分的面积吗?答案部分第 1 题:【答案】C第 2 题:【答案】C第 3 题:【答案】B第 4 题:【答案】C第 5 题:【答案】B第 6 题:【答案】 D第7 题:【答案】C第8 题:【答案】A第9 题:【答案】B第10 题:【答案】A第11 题:【答案】a5第12 题:【答案】2xy第13 题:【答案】28第14 题:【答案】3(x﹣3)2第15 题:【答案】k=±12第16 题:【答案】27第17 题:【答案】2x2+3x第18 题:【答案】a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6 第19 题:【答案】解:(1)原式=6+8﹣3=11;(2)原式=2x6+3x6=5x6.第20 题:【答案】解:∵x n=2,y n=3,∴(x2y)2n=x4n y2n=(x n)4(y n)2=24×32=144.第21 题:【答案】解:原式=(x2+x﹣2)(x2+x﹣12)+a=(x2+x)2﹣14(x2+x)+a+24,由结合为完全平方式,得到a+24=49,解得:a=25.第22 题:【答案】解(1)(a+b+c)2=a2+b2+c2+2ab+2bc+2ac(2)∵a+b=10,ab=20,∴S阴影=a2+b2﹣(a+b)•b﹣a2=a2+b2﹣ab=(a+b)2﹣ab=×102﹣×20=50﹣30=20.。

第3章 整式的乘除 浙教版数学七年级下册单元测试卷(含答案)

第3章整式的乘除测试卷时间:100分钟满分:120分班级:________姓名:________一、选择题(每小题3分,共30分)1.计算a3·(-a)的结果是( )A.a2B.-a2C.a4D.-a42.下列计算正确的是( )A.3a+2b=5ab B.(a3)2=a6C.a6÷a3=a2D.(a+b)2=a2+b23.以下计算正确的是( )A.(-2ab2)3=8a3b6B.3ab+2b=5abC.(-x2)·(-2x)3=-8x5D.2m(mn2-3m2)=2m2n2-6m3 4.生活在海洋中的蓝鲸,又叫长须鲸或剃刀鲸,它的体重达到150吨,它体重的万亿分之一用科学记数法可表示为( )A.1.5×10-10B.1.5×10-11C.1.5×10-12D.1.5×10-95.若2a-3b=-1,则代数式4a2-6ab+3b的值为( ) A.-1 B.1 C.2 D.36.下列运算正确的是( )A.a2·a2=2a2B.a2+a2=a4C.(1+2a)2=1+2a+4a2D.(-a+1)(a+1)=1-a27.如果(x+4)(x-5)=x2+px+q,那么p,q的值为( )A.p=1,q=20 B.p=1,q=-20C.p=-1,q=-20 D.p=-1,q=208.已知多项式ax+b与2x2-x+2的乘积展开式中不含x的一次项,且常数项为-4,则ab的值为( )A.-2 B.2 C.-1 D.19.如图,长方形ABCD的两边之差为4,以长方形的四条边分别为边向外作四个正方形,且这四个正方形的面积和为80,则长方形ABCD的面积是( )A.12 B.21C.24 D.3210.已知P=2x2+4y+13,Q=x2-y2+6x-1,则代数式P,Q的大小关系是( )A.P≥Q B.P≤Q C.P>Q D.P<Q二、填空题(每小题4分,共24分)11.若(1-x)1-3x=1,则满足条件的x值为____.12.(1)若M÷(-4ab)=2ab2,则代数式M=____;(2)若3ab2×□=-a2b5c,则□内应填的代数式为__ __.13.阅读理解:引入新数i,新数i满足分配律、结合律、交换律.已知i2=-1,那么(1+i)(1-i)=_____.14.若(a+b)2=9,(a-b)2=4,则ab=______.15.已知2a=5,18b=20,则(a+3b-1)3的值为____.16.如图,两个正方形的边长分别为a和b,如果a-b=2,ab=26,那么阴影部分的面积是_____.三、解答题(共66分)17.(6分)计算:(1)(3.14-π)0+(13 )-2; (2)(2x 2)3-x 2·x 4.18.(6分)计算:(1)(6a 3b 3-4a 2b 2c +2ab 2)÷(2ab 2); (2)(x -1)2-x (x -2).19.(6分)用简便方法计算:(1)299×301;(2)2 0202-2×2 020+1-2 018×2 020.20.(6分)已知x 6=2,求(3x 9)2-4(x 4)6的值.21.(10分)先化简,再求值:(1)(x -2)(x +2)-x (x -1),其中x =3;(2)[(3x-2y)2-9x2]÷(-2y),其中x=1,y=-2.22.(10分)(1)解方程:3(x+5)2-2(x-3)2-(x+9)(x-9)=180.(2)已知x2-2x-1=0,求代数式(2x-1)2-(x+6)(x-2)-(x+2)(2-x)的值.23.(10分)周末,小强常常到城郊爷爷家的花圃去玩.有一次爷爷给小强出了道数学题,爷爷家的花圃呈长方形,宽为x m,长比宽多2 m.爷爷想将花圃的长和宽分别增加a m.(1)用x,a表示这个花圃的面积将增加多少平方米?(2)当x=5,a=2时,求花圃的面积将增加多少平方米?(3)当a=3时,花圃的面积将增加39 m2,求花圃原来的长和宽各是多少米?24.(12分)图①是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)图②中的阴影部分的面积为________;(2)观察图②,三个代数式(m+n)2,(m-n)2,mn之间的等量关系是________________;(3)观察图③,你能得到怎样的等式呢?(4)试画出一个几何图形,使它的面积能表示(m+n)(m+3n).参考答案一、选择题(每小题3分,共30分)1.D2. B3. D4. A5. B6. D7. C8. B9. A10. C二、填空题(每小题4分,共24分)11. 1312.-8a 2b 3(2)-13 ab 3c13. 214. 5415.-2716. 30三、解答题(共66分)17.(6分)计算:(1) 解:原式=10; (2) 解:原式=7x 6.18.(6分)计算:(1)解:原式=3a2b-2ac+1; (2) 解:原式=1.19.(6分)用简便方法计算:(1) 解:原式=(300-1)(300+1)=90 000-1=89 999;(2)解:原式=(2 020-1)2-(2 019-1)(2 019+1)=2 0192-(2 0192-1)=2 0192-2 0192+1=1.20.解:∵x6=2,∴(3x9)2-4(x4)6=9x18-4x24=9(x6)3-4(x6)4=9×23-4×24=9×8-4×16=72-64=8.21.(1) 解:原式=x2-4-x2+x=-4+x,当x=3时,原式=-4+3=-1;(2)解:原式=(9x2-12xy+4y2-9x2)÷(-2y)=(-12xy+4y2)÷(-2y)=6x-2y,当x=1,y=-2时,原式=6×1-2×(-2)=10.22.解:去括号,得3x2+30x+75-2x2+12x-18-x2+81=180,化简,得42x=42,解得x=1.(2) 解:原式=4x2-4x+1-(x2+4x-12)-(4-x2)=4x2-4x+1-x2-4x+12-4+x2=4x2-8x+9,∵x2-2x-1=0,∴x2-2x=1,则4x2-8x=4,∴原式=4+9=13.23.解:(1)根据题意,面积将增加:(x+a)(x+2+a)-x(x+2)=x2+2x+ax+ax+2a+a2-x2-2x=2ax+2a+a2.答:花圃的面积将增加(2ax+2a+a2)m2.(2)当x=5,a=2时,2ax+2a+a2=2×2×5+2×2+22=28(m2).答:花圃面积将增加28 m2.(3)根据题意,得6x+6+9=39,解得x=4,∴x+2=6.答:花圃原来的长是6 m,宽是4 m.24.解:(1)(m-n)2;(2)(m+n)2-(m-n)2=4mn;(3)(m+n)(2m+n)=2m2+3mn+n2;(4)∵(m+n)(m+3n)=m2+3mn+mn+3n2=m2+4mn+3n2.由此可画出几何图形,答案不唯一,如图所示.。

浙教版初中数学七年级下册第三单元《整式的乘除》单元测试卷(标准难度)(含答案解析)

浙教版初中数学七年级下册第三单元《整式的乘除》单元测试卷(标准难度)(含答案解析)考试范围:第三单元; &nbsp; 考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项)1. 已知a=833,b=1625,c=3219,则有( )A. a<b<cB. c<b<aC. c<a<bD. a<c<b2. 下列等式中,错误的是( )A. (2mn)2=4m2n2B. (−2mn)2=4m2n2C. (2m2n2)3=8m6n6D. (−2m2n2)3=−8m5n53. 若(a m+1b n+2)⋅(−a2n−1b2m)=−a3b5,则m+n的值为( )A. 1B. 2C. 3D. −34. 已知一个长方形的长为3x2y,宽为2xy3,则它的面积为.( )A. 5x 3y 4B. 6x 2y 3C. 6x 3y 4D. 3xy225. 下列各式中,计算结果是x3+4x2−7x−28的是( )A. (x2+7)(x+4)B. (x2−2)(x+14)C. (x+4)(x2−7)D. (x+7)(x2−4)6. 若M=(x−3)(x−4),N=(x−1)(x−6),则M与N的大小关系为( )A. M>NB. M=NC. M<ND. 由x的取值而定7. 已知4y2+my+9是完全平方式,则m为( )A. 6B. ±6C. ±12D. 128. 如图,点C是线段BG上的一点,以BC,CG为边向两边作正方形,面积分别是S1和S2,两正方形的面积和S1+S2=40,已知BG=8,则图中阴影部分面积为( )A. 6B. 8C. 10D. 129. 若将下表从左到右在每个格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子中的数是( )A. 3B. 2C. 0D. −110. 下列运算正确的是( )A. a6÷a2=a3B. (a2b)3=a8b3C. 3a2b−ba2=2a2bD. (1−3a)2=1−9a211. 已知25a⋅52b=56,4b÷4c=4,则代数式a2+ab+3c值是( )A. 3B. 6C. 7D. 812. 在幼发拉底河岸的古代庙宇图书馆遗址里,曾经发掘出大量的黏土板,美索不达米亚人在这些黏土板上刻出来乘法表、加法表和平方表.用这些简单的平方表,他们很快算出两数的乘积.例如:对于95×103,美索不达米亚人这样计算:第一步:(103+95)÷2=99;第二步:(103−95)÷2=4;第三步:查平方表,知99的平方是9801;第四步:查平方表,知4的平方是16;第五步:9801−16=9785=95×103.请结合以上实例,设两因数分别为a和b,写出蕴含其中道理的整式运算( )A. (a+b)2−(a−b)22=ab B. (a+b)2−(a2+b2)2=abC. (a+b2)2−(a−b2)2=ab D. (a+b2)2+(a−b2)2=ab第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 已知2m=a,16n=b,则23m+8n=____(用含a,b的式子表示).14. 一个长方体的长、宽、高分别是(3x−4)米,(2x+1)米和(x−1)米,则这个长方体的体积是.15. 已知a−b=2,ab=1,则(a−2b)2+3a(a−b)=.16. 将4个数a,b,c,d排成2行、2列,两边各加一条竖线段记成|a bc d |,定义|a bc d|=ad−bc,上述记号就叫做二阶行列式.若|x+11−x1−x x+1|=8,则x=.三、解答题(本大题共9小题,共72.0分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章整式的乘除单元检测卷
姓名:__________ 班级:__________
一、选择题(共9题;每小题4分,共36分)
1.若(x2+px﹣q)(x2+3x+1)的结果中不含x2和x3项,则p﹣q的值为()
A. 11
B. 5
C. -11
D. -14
2.下列计算正确的是()
A. (﹣2)3=8
B. ()﹣1=3
C. a4•a2=a8
D. a6÷a3=a2
3.(mx+8)(2﹣3x)展开后不含x的一次项,则m为()
A. 3
B.
C. 12
D. 24
4.下列关系式中,正确的是()
A. B. C. D.
5.下列运算正确的是()
A. a2•a3=a6
B. a5+a5=a10
C. a6÷a2=a3
D. (a3)2=a6
6.若a+b=﹣3,ab=1,则a2+b2=()
A. -11
B. 11
C. -7
D. 7
7.如图中,利用面积的等量关系验证的公式是()
A. a2﹣b2=(a+b)(a﹣b)
B. (a﹣b)2=a2﹣2ab+b2
C. (a+2b)(a﹣b)=a2+ab﹣2b2
D. (a+b)2=a2+2ab+b2
8.计算(﹣ a2b)3的结果正确的是()
A. a4b2
B. a6b3
C. ﹣ a6b3
D. ﹣ a5b3
9.已知,则的值是()
A. 5
B. 6
C. 8
D. 9
二、填空题(共10题;共30分)
10.计算:a n•a n•a n=________;(﹣x)(﹣x2)(﹣x3)(﹣x4)=________.
11.你能化简(x﹣1)(x99+x98+…+x+1)吗?遇到这样的复杂问题时,我们可以先从简单的情形入手,然后归纳出一些方法,分别化简下列各式并填空:(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1
…根据上述规律,可得(x﹣1)(x99+x98+…+x+1)=________
请你利用上面的结论,完成下面问题:
计算:299+298+297+…+2+1,并判断末位数字是________
12.如果(x+q)(x+ )的结果中不含x项,那么q=________.
13.若5x=12,5y=4,则5x-y=________.
14.若x n=4,y n=9,则(xy)n=________
15.m(a﹣b+c)=ma﹣mb+mc.________.
16.若x2+kx+25是完全平方式,那么k的值是________.
17.若x+2y﹣3=0,则2x•4y的值为________.
18.计算:(﹣π)0+2﹣2=________.
19.(________ )÷7st2=3s+2t;(________ )(x﹣3)=x2﹣5x+6.
三、解答题(共3题;共34分)
20.解不等式:(x﹣6)(x﹣9)﹣(x﹣7)(x﹣1)<7(2x﹣5)
21.当a=3,b=﹣1时
(1)求代数式a2﹣b2和(a+b)(a﹣b)的值;
(2)猜想这两个代数式的值有何关系?
(3)根据(1)(2),你能用简便方法算出a=2008,b=2007时,a2﹣b2的值吗?
22.已知:2x+3y﹣4=0,求4x•8y的值.
参考答案
一、选择题
B B
C B
D D D C B
二、填空题
10.a3n;x1011.x100﹣1;5 12.﹣
13.3 14.36 15.正确16.±10
17.8 18.19.21s2t2+14st3;x﹣2
三、解答题
20.解:原不等可化为:x2﹣15x+54﹣x2+8x﹣7<14x﹣35,
整理得:﹣21x<﹣82,
解得:x>,
则原不等式的解集是x>.
21.解:(1)a2﹣b2=32﹣(﹣1)2=9﹣1=8(a+b)(a﹣b)=(3﹣1)(3+1)=8;(2)a2﹣b2=(a+b)(a﹣b);
(3)a2﹣b2=(a+b)(a﹣b)=(2008+2007)(2008﹣2007)=4015.
22.解:∵2x+3y﹣4=0,∴2x+3y=4,
∴4x•8y=22x•23y=22x+3y=24=16,
∴4x•8y的值是16。

相关文档
最新文档