经典计量经济学模型
计量经济学第三版课后习题答案第二章 经典单方程计量经济学模型:一元线性回归模型

第二章经典单方程计量经济学模型:一元线性回归模型一、内容提要本章介绍了回归分析的基本思想与基本方法。
首先,本章从总体回归模型与总体回归样本回归模型与样本回归函数这两组概念开始,在现实中只能先从总体中抽取一个样本,本章的一个重点是如何获取线性的样本回归函数,主要涉及到普通最小二乘法(本章的另一个重点是对样本回归函数能否代表总体回归函数进行统计推断,即进行所统计检验包括两个方面,本章还有三方面的内容不容忽视。
其一,若干基本假设。
样本回归函数参数的估计以参数估计量统计性质的分析,例1、令kids运用样本回归函数进行预测,建立了回归分析的基本思想。
由总体回归模型在若干基本假设下得到,获得样本回归函数,ML)以及矩估计法(一是先检验样本回归函数与样本点的Goss-markov包括被解释变量条件均值与个educ表示该妇女接受过教育的年数。
生总体回但它只是并用它对总OLS)MM)。
“拟合优度”,t检验完成;第二,OLS估计量1函数、归函数是对总体变量间关系的定量表述,建立在理论之上,体回归函数做出统计推断。
的学习与掌握。
同时,也介绍了极大似然估计法(谓的统计检验。
第二是检验样本回归函数与总体回归函数的“接近”程度。
后者又包括两个层次:第一,检验解释变量对被解释变量是否存在着显著的线性影响关系,通过变量的检验回归函数与总体回归函数的“接近”程度,通过参数估计值的“区间检验”完成。
及对参数估计量的统计性质的分析以及所进行的统计推断都是建立在这些基本假设之上的。
其二,包括小样本性质与大样本性质,尤其是无偏性、有效性与一致性构成了对样本估计量优劣的最主要的衡量准则。
定理表明是最佳线性无偏估计量。
其三,值的预测,以及预测置信区间的计算及其变化特征。
二、典型例题分析表示一名妇女生育孩子的数目,育率对教育年数的简单回归模型为(1)随机扰动项包含什么样的因素?它们可能与教育水平相关吗?(2)上述简单回归分析能够揭示教育对生育率在其他条件不变下的影响吗?请解释。
第五章经典单方程计量经济学模型

E(Yi | X i , Di 0) 0 1 X i
企业男职工的平均薪金为:
E(Yi | X i , Di 1) ( 0 2 ) 1 X i
几何意义:
• 假定2>0,则两个函数有相同的斜率,但有不同 的截距。意即,男女职工平均薪金对教龄的变化 率是一样的,但两者的平均薪金水平相差2。
1 D1 0
高中 其他
1 D2 0
大学及其以上 其他
模型可设定如下:
Yi 0 1 X i 2 D1 3 D2 i
在E(i)=0 的初始假定下,高中以下、高中、大 学及其以上教育水平下个人保健支出的函数:
• 高中以下:
E(Yi | X i , D1 0, D2 0) 0 1 X i
则冷饮销售模型变量为:
Yt 0 1 X1t k X kt 1D1t 2 D2t 3 D3t 4 D4t t
其矩阵形式为:
Y (X,D)α β μ
如果只取六个观测值,其中春季与夏季取了 两次,秋、冬各取到一次观测值,则式中的:
一个以性别为虚拟变量考察企业职工薪金的模型:
Yi 0 1 X i 2 Di i
其中:Yi为企业职工的薪金,Xi为工龄, Di=1,若是男性,Di=0,若是女性。
二、虚拟变量的引入
• 虚拟变量做为解释变量引入模型有两种基本方式: 加法方式和乘法方式。
1、加法方式
上述企业职工薪金模型中性别虚拟变量的引入采 取了加法方式。
• 1990年后: Yi=1+2Xi+2i
i=1,2…,n2
则有可能出现下述四种情况中的一种:
计量经济学--几种常用的回归模型课件

计量经济学--几种常用的回归模型
18
• 半对数模型的斜率系数度量了解释变量一个单位 的绝对变化,对应的因变量的相对变化量。
• P166例6.4
计量经济学--几种常用的回归模型
19
对数到线性模型(解释变量对数形式)
计量经济学--几种常用的回归模型
20
Yi 1 2 ln X i i
计量经济学--几种常用的回归模型
9
半对数模型
• 只有一个变量以对数形式出现
计量经济学--几种常用的回归模型
10
2. 半对数模型
• 线性到对数模型(因变量对数形式) • 对数到线性模型(解释变量对数形式)
计量经济学--几种常用的回归模型
11
• 线性到对数模型(因变量对数形式)
计量经济学--几种常用的回归模型
12
Yt Y0(1 r )t
ln Yi 2 ln X i i
计量经济学--几种常用的回归模型
4
2的含义?
• 其测度了Y对X的弹性,即X变动百分之一引起Y变 动的百分数。
• 例如,Y为某一商品的需求量,X为该商品的价格, 那么斜率系数为需求的价格弹性。
计量经济学--几种常用的回归模型
5
证明:
d(ln Y ) dY Y 2 d(ln X ) dX X
计量经济学--几种常用的回归模型
8
ห้องสมุดไป่ตู้意
• 是产出对资本投入的(偏)弹性,度量
在保持劳动力投入不变的情况下资本投入 变化1%时的产出变动百分比;
• 是产出对劳动投入的(偏)弹性,度量
在保持资本投入不变的情况下劳动力投入 变化1%时的产出变动百分比;
• 给出了规模报酬信息
七章经典计量经济学应用模型

⑵ 规模报酬 • 所有要素的产出弹性之和 • 规模报酬不变 • 规模报酬递增 • 规模报酬递减 • 为什么经常将规模报酬不变作为生产函数必
须满足的条件?
⒊ 要素替代弹性(Elasticity of Substitution)
⑴ 要素的边际产量(Marginal Product)
• 求得“等价数量”,作为生产函数模型的样本观 测值,以这样的方法来引入技术进步因素。
• 所谓广义技术进步,除了要素质量的提高外,还 包括管理水平的提高等对产出量具有重要影响的 因素,这些因素是独立于要素之外的。
• 在生产函数模型中需要特别处理广义技术进步。
⑵ 中性技术进步
• 假设在生产活动中除了技术以外,只有资本 与劳动两种要素,定义两要素的产出弹性之 比为相对资本密集度,用ω表示。即:
EL / EK
• 如果技术进步使得ω越来越大,即劳动的产出弹 性比资本的产出弹性增长得快,则称动的产出弹性比资本的产出弹性增长得慢, 则称之为节约资本型技术进步;如果技术进步 前后ω不变,即劳动的产出弹性与资本的产出弹 性同步增长,则称之为中性技术进步。
济学理论体系的一部分,与特定的生产理论与环 境相联系。
• 西方国家发展的生产函数模型可以被我们所应用:
生产函数反应的是生产中投入要素与产出量 之间的技术关系;
生产函数模型的形式是经验的产物;不能照搬。
⒉ 要素产出弹性(Elasticity of Output) ⑴ 要素的产出弹性
• 某投入要素的产出弹性被定义为,当其他投入 要素不变时,该要素增加1%所引起的产出量的 变化率。 Y K f K EK Y K K Y Y L f L EL Y L L Y
• 退化为C-D生产函数。为什么?
计量经济学回归分析模型

计量经济学回归分析模型计量经济学是经济学中的一个分支,通过运用数理统计和经济理论的工具,研究经济现象。
其中回归分析模型是计量经济学中最为常见的分析方法之一、回归分析模型主要用于确定自变量与因变量之间的关系,并通过统计推断来解释这种关系。
回归分析模型中的关系可以是线性的,也可以是非线性的。
线性回归模型是回归分析中最为常见和基础的模型。
它可以表示为:Y=β0+β1X1+β2X2+...+βkXk+ε其中,Y代表因变量,X1,X2,...,Xk代表自变量,β0,β1,β2,...,βk代表回归系数,ε代表随机误差项。
回归模型的核心是确定回归系数。
通过最小二乘法估计回归系数,使得预测值与实际观测值之间的差异最小化。
最小二乘法通过使得误差的平方和最小化来估计回归系数。
通过对数据进行拟合,我们可以得到回归系数的估计值。
回归分析模型的应用范围非常广泛。
它可以用于解释和预测经济现象,比如价格与需求的关系、生产力与劳动力的关系等。
此外,回归分析模型还可以用于政策评估和决策制定。
通过分析回归系数的显著性,可以判断自变量对因变量的影响程度,并进行政策建议和决策制定。
在实施回归分析模型时,有几个重要的假设需要满足。
首先,线性回归模型要求因变量和自变量之间存在线性关系。
其次,回归模型要求自变量之间不存在多重共线性,即自变量之间没有高度相关性。
此外,回归模型要求误差项具有同方差性和独立性。
在解释回归分析模型的结果时,可以通过回归系数的显著性来判断自变量对因变量的影响程度。
显著性水平一般为0.05或0.01,如果回归系数的p值小于显著性水平,则说明该自变量对因变量具有显著影响。
此外,还可以通过确定系数R^2来评估模型的拟合程度。
R^2可以解释因变量变异的百分比,值越接近1,说明模型的拟合程度越好。
总之,回归分析模型是计量经济学中非常重要的工具之一、它通过分析自变量和因变量之间的关系,能够解释经济现象和预测未来走势。
在应用回归分析模型时,需要满足一定的假设条件,并通过回归系数和拟合优度来解释结果。
2 经典线性计量经济学模型(1)

描出散点图发现:随着收入的增加,消费 “平均地说”也在增加,且Y的条件均值均落在 平均地说” 平均地说 一根正斜率的直线上。这条直线称为总体回归线 总体回归线。 总体回归线
3500 每 月 消 费 支 出 Y (元) 3000 2500 2000 1500 1000 500 0 500 1000 1500 2000 2500 3000 3500 4000 每月可支配收入X(元)
2.1
线性回归模型概述
2.1.1 变量间的关系 经济变量之间的关系,大体可分为两类:
(1)确定性关系 函数关系:研究的是确定现象,非 确定性关系或函数关系 确定性关系 函数关系: 随机变量间的关系。 相关关系: (2)统计依赖 相关关系:研究的是随机现象,随机 )统计依赖或相关关系 变量间的关系。
2.1.2 2.1.2 回归分析的基本概念
回归分析(regression analysis)是研究一个变量关于另一 回归分析 是研究一个变量关于另一 变量的具体依赖关系的计算方法和理论。 个(些)变量的具体依赖关系的计算方法和理论 其用意:在于通过后者的已知或设定值,去估计和( 其用意:在于通过后者的已知或设定值,去估计和(或) 预测前者的(总体)均值。 预测前者的(总体)均值 这里:前一个变量被称为被解释变量(Explained 被解释变量( 被解释变量 Variable)或应变量(Dependent Variable), 应变量( ),后一个(些) ) 应变量 ), 变量被称为解释变量(Explanatory Variable)或自变量 解释变量( 解释变量 ) 自变量 (Independent Variable)。 ) 高尔顿与回归分析 回归分析构成计量经济学方法的基础,其主要内容包括: 回归分析构成计量经济学方法的基础,其主要内容包括: (1)根据样本观察值对经济计量模型的参数进行估计,求得 回归方程; 回归方程; (2)对回归方程、参数估计值进行显著性检验; ) (3)利用回归方程进行分析、评价及预测。
建立经典单方程计量经济学模型的步骤和要点
建立经典单方程计量经济学模型的步骤和要点
1、确定研究对象和目标:首先需要明确研究的目的和研究对象,
并确定需要解决的问题和实现的目标。
2、收集数据:收集与研究对象和目标相关的数据,包括宏观经济
指标、市场数据、公司财务数据等。
3、确定自变量和因变量:根据研究目的和收集到的数据,选择合
适的自变量和因变量,自变量是影响因变量的变量,因变量是受自变量影响变化的变量。
4、模型设定和假设:根据经济学理论和实际情况,设定经典单方
程计量经济学模型的方程形式和假设条件,考虑线性或非线性关系、时间趋势、季节性等因素。
5、数据预处理:对收集到的数据进行预处理,包括缺失值填充、
异常值处理、数据转换等,以确保数据的准确性和可靠性。
6、模型拟合和参数估计:使用统计软件或编程语言进行模型拟合
和参数估计,根据设定的方程形式和假设条件,计算出自变量和因变量之间的参数估计值和误差等指标。
7、模型检验和调整:对拟合后的模型进行检验和调整,包括统计
显著性检验、经济意义检验、模型的多重共线性检验等,对不符合要求的模型进行修正和改进。
8、应用和解释:根据拟合好的经典单方程计量经济学模型,进行
应用和解释,包括预测未来趋势、政策评估、结构分析等。
计量经济学模型整理大全
1
E
需要
0
E
对变形后的模型做 OLS 估计即可
1
先忽略异方差做普通的 OLS,得到 ,然
后用 代替 来回归变形之后的模型
可以减小异方差
做平常的 OLS,然后在认为有异方差的情
况下,用 代替 ,进而得到一致估计量
∗
⇔
∗
∗ ∗
∗
方法:OLS 使得∑ ∗ 最小
∗
∑ ∑
∑ ∑
Var
∗
∑ ∑
∑
1
∑
∑ ∑
∑
性质
未知
E
E
1
对数法
怀特稳健
标准误
内
生
性
1
1
1
′
∑ 1
Var
∑
可线性化的模型
模型/用途
可
线
性
化
的
模
型
双对数
不变弹性模型
线性-对数
衡量增长率
设定
计量经济学第二章经典线性回归模型
Yˆ
Xβ
1.β 的均值
β ( X X )1 X Y
( X X )1 X ( Xβ u)
( X X )1 X Xβ ( X X )1 X u
β ( X X ) 1 X u
27
E(β) β ( X X )1 X E(u) (由假设3)
β
(由假设1)
即
E
β
β
0 1
...
β K
Yi = α+ β +Xiui , i = 1, 2, ...,n (2.4) 即模型对X和Y的n对观测值(i=1,2,…,n)成立。
(2.3)式一般用于观测值为时间序列的情形,在横截 面数据的情形,通常采用(2.4) 式。
5
二、 多元线性回归模型
在许多实际问题中,我们所研究的因变量的变动 可能不仅与一个解释变量有关。因此,有必要考虑线 性模型的更一般形式,即多元线性回归模型:
...... ......
u1un
u2un
.................................
unu1 unu2 ...... un2
显然, E(uu) 2In 仅当
E(ui uj)=0 , i≠j E(ut2) = σ2, t=1,2,…,n 这两个条件成立时才成立,因此, 此条件相当前面条件 (2), (3)两条,即各期扰动项互不相关,并具有常数方差。 14
P
食品价格平减指数 总消费支出价格平减指数
100,(1972
100)
7
多元线性回归模型中斜率系数的含义
上例中斜率系数的含义说明如下: 价格不变的情况下,个人可支配收入每上升10
亿美元(1个billion),食品消费支出增加1.12亿 元(0.112个 billion)。
计量经济学的模型
计量经济学的模型
计量经济学是一门运用数学、统计学和经济学理论来分析经济数据的学科。
它的核心是建立经济变量之间的数学模型,并利用实际数据进行估计和验证。
计量经济学模型通常由一组方程式组成,这些方程式描述了经济变量之间的关系。
其中,最常见的模型是线性回归模型,它假设因变量与自变量之间存在线性关系。
在建立计量经济学模型时,需要考虑许多因素,例如变量的选择、数据的收集和处理、模型的假设和限制等。
为了确保模型的可靠性和有效性,需要进行一系列的统计检验和诊断,例如拟合优度检验、异方差性检验、自相关检验等。
计量经济学模型可以用于预测经济变量的未来走势、评估政策的效果、检验经济理论的正确性等。
它在宏观经济、金融市场、产业经济等领域都有广泛的应用。
总之,计量经济学是一门重要的经济学分支,它通过建立数学模型来分析经济数据,为政策制定和经济决策提供了科学依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由于方程中引入了随机项,成为计量经济模型,因此 也称为样本回归模型(sample regression model)。
2013-8-15
17
▼回归分析的主要目的:根据样本回归函数SRF,估计 总体回归函数PRF。 即,根据
(2)统计依赖或相关关系:研究的是非 确定现象随机变量间的关系。
2013-8-15 3
二、总体回归函数
由于变量间关系的随机性,回归分析关心的是根 据解释变量的已知或给定值,考察被解释变量的总体 均值,即当解释变量取某个确定值时,与之统计相关 的被解释变量所有可能出现的对应值的平均值。 例1:一个假想的社区有100户家庭组成,要研究 该社区每月家庭消费支出Y与每月家庭可支配收入X 的关系。 即如果知道了家庭的月收入,能否预测该社 区家庭的平均月消费支出水平。 为达到此目的,将该100户家庭划分为组内收入差 不多的10组,以分析每一收入组的家庭消费支出。
总体的信息往往无法掌握,现实的情况只能是在 一次观测中得到总体的一个样本。
问题:能从一次抽样中获得总体的近似的信息吗? 如果可以,如何从抽样中获得总体的近似信息? 例2在例1的总体中有如下一个样本,
问:能否从该样本估计总体回归函数PRF?
回答:能
2013-8-15 14
核样本的散点图(scatter diagram):
共计
2013-8-15
2420
21450 21285
15510
5
分析:
(1)由于不确定因素的影响,对同一收入水平X,不同家 庭的消费支出不完全相同; (2)但由于调查的完备性,给定收入水平X的消费支出Y的 分布是确定的,即以X的给定值为条件的Y的条件分布 (Conditional distribution)是已知的,如: P(Y=561|X=800)=1/4。
记
i Yi E (Y | X i )
称i为观察值Yi围绕它的期望值E(Y|Xi)的离差 (deviation),是一个不可观测的随机变量,又 称为随机干扰项(stochastic disturbance)或随 机误差项(stochastic error)。
2013-8-15 11
例中,个别家庭的消费支出为:
^
[ (Yi 0 1 X i ) 2 ] 1
2013-8-15 15
注意: 这里将样本回归线看成总体回归线的近似替代
则
2013-8-15
16
样本回归函数的随机形式/样本回归模型:
同样地,样本回归函数也有如下的随机形式:
ˆ ˆ ˆ ˆ Yi Yi i 0 1 X i ei
式中, ei 称为(样本)残差(或剩余)项( residual) ,代表
因此,给定收入X的值Xi,可得消费支出Y的条件 均值(conditional mean)或条件期望 (conditional expectation): E(Y|X=Xi) 该例中:E(Y | X=800)=605
2013-8-15 6
.
收入 水平 . 条件 概率 条件 均值 800 1100 1400 1700 2000 2300 2600 2900 3200 3500 1/4 605 1/6 1/11 1/13 1/13 1/14 1/13 1/10 1/9 1/6
500 0
500 1000 1500 2000 2500 3000 3500 4000 每月可支配收入X(元)
2013-8-15
8
• 概念:
在给定解释变量Xi条件下被解释变量Yi的期望 轨迹称为总体回归线(population regression line),或更一般地称为总体回归曲线 (population regression curve)。
2013-8-15 4
表 2.1.1 某社区家庭每月收入与消费支出统计表 每月家庭可支配收入X(元) 800 每 月 家 庭 消 费 支 出 Y (元) 561 594 627 638 1100 638 748 814 847 935 968 1400 869 913 924 979 1012 1045 1078 1122 1155 1188 1210 1700 1023 1100 1144 1155 1210 1243 1254 1298 1331 1364 1408 1430 1485 2000 1254 1309 1364 1397 1408 1474 1496 1496 1562 1573 1606 1650 1716 2300 2600 2900 1969 1991 2046 2068 2101 2189 2233 2244 2299 2310 3200 2090 2134 2178 2266 2354 2486 2552 2585 2640 3500 2299 2321 2530 2629 2860 2871 1408 1650 1452 1738 1551 1749 1595 1804 1650 1848 1672 1881 1683 1925 1716 1969 1749 2013 1771 2035 1804 2101 1870 2112 1947 2200 2002 4950 11495 16445 19305 23870 25025
24
案例分析
某地个人储蓄Y,个人可支配收入X。
根据经济理论建立计量经济模型
2013-8-15
25
图形检验
2013-8-15
26
二、参数的普通最小二乘估计(OLS)
给定一组样本观测值(Xi, Yi)(i=1,2,…n) 要求样本回归函数尽可能好地拟合这组值. 普通最小二乘法(Ordinary least squares, OLS)给出的判断标准是:二者之差的平方和
2013-8-15
19
单方程计量经济学模型分为两大类: 线性模型和非线性模型 •线性模型中,变量之间的关系呈线性关系 •非线性模型中,变量之间的关系呈非线性关系 一元线性回归模型:只有一个解释变量
Yi 0 1 X i i
i=1,2,…,n
Y为被解释变量,X为解释变量,0与1为待估 参数, 为随机干扰项
经典计量经济学模型
.
2013-8-15
1
第一节 回归分析概述
一、变量间的关系及回归分析的基本概念
二、总体回归函数 三、随机扰动项 四、样本回归函数(SRF)
2013-8-15
2
回归分析概述
一、变量间的关系及回归分析的基本概念 1、变量间的关系
经济变量之间的关系,大体可分为两类:
(1)确定性关系或函数关系:研究的是 确定现象非随机变量间的关系。
2013-8-15 12
随机误差项主要包括下列因素的影响:
1)在解释变量中被忽略的因素的影响; 2)变量观测值的观测误差的影响; 3)模型关系的设定误差的影响; 4)其它随机因素的影响。
产生并设计随机误差项的主要原因: 1)理论的含糊性; 2)数据的欠缺; 3)节省原则。
2013-8-15 13
四、样本回归函数(SRF)
E (Y | X i ) 0 1 X i
为一线性函数。其中,0,1是未知参数,称为 回归系数(regression coefficients)。
2013-8-15 10
三、随机扰动项
总体回归函数说明在给定的收入水平Xi下,该社 区家庭平均的消费支出水平。 但对某一个别的家庭,其消费支出可能与该平 均水平有偏差。
样本散点图近似于一条直线,画一条直线以尽好地拟合该 散点图,由于样本取自总体,可以该线近似地代表总体回归线。 该线称为样本回归线(sample regression lines)。
记样本回归线的函数形式为: ˆ ˆ ˆ Yi f ( X i ) 0 1 X i
称为样本回归函数(sample regression function,SRF)。
(*) 即,给定收入水平Xi ,个别家庭的支出可表示为两部分之和: (1)该收入水平下所有家庭的平均消费支出E(Y|Xi),称为 系统性(systematic)或确定性(deterministic)部分。 (2)其他随机或非确定性(nonsystematic)部分i。
(*)式称为总体回归函数(方程)PRF的随机设 定形式。表明被解释变量除了受解释变量的系统性影 响外,还受其他因素的随机性影响。 由于方程中引入了随机项,成为计量经济学模型, 因此也称为总体回归模型。
ˆ ˆ ˆ Q (Yi Yi ) (Yi ( 0 1 X i )) 2
2 1 1 n n
最小。
2013-8-15
27
2013-8-15
28
求平方和的极值
Q 0
^
[ (Yi 0 1 X i ) ]
2
^
^
0
^ ^
^
2 (Yi 0 1 X i ) Q 1
2013-8-15
23
另外,在进行模型回归时,还有两个暗含的 假设:
假设5:随着样本容量的无限增加,解释变 量X的样本方差趋于一有限常数。即
( X i X ) 2 / n Q , n
假设6:回归模型是正确设定的
假设5旨在排除时间序列数据出现持续上升或下降的变 量作为解释变量,因为这类数据不仅使大样本统计推断变 得无效,而且往往产生所谓的伪回归问题(spurious regression problem)。 假设6也被称为模型没有设定偏误(specification error) 2013-8-15
825 1045 1265 1485 1705 1925 2145 2365 2585
2013-8-15
7ቤተ መጻሕፍቲ ባይዱ
描出散点图发现:随着收入的增加,消费 “平均地说”也在增加,且Y的条件均值均落在 一根正斜率的直线上。这条直线称为总体回归线。