Ultra-Wideband Radar Sensors for Short-Range Vehicular Applications
一种超宽带等效采样接收机的设计与实现

一种超宽带等效采样接收机的设计与实现吴兵;夏浩淼;李武建【摘要】脉冲超宽带雷达回波信号由于带宽大而难以直接采样,通常采用等效时间采样方法来进行模数转换.传统的等效采样接收机大都是基于改变ADC采样时钟的时延来实现等效采样,采样时钟对触发信号会产生亚稳态时序,不可避免地会出现数据误对齐,必须添加辅助的在线或离线校正设计.针对这一问题,设计了一种基于FPGA内置延迟线的超宽带等效采样接收机,FPGA产生延时可调的发射触发信号去控制波形产生系统,基于高速采样保持器和ADC完成回波接收,实现了超宽带射频信号的等效采样,而无数据误对齐问题.接收机的等效采样速率为12.8 GS/s,-3 dB 采样带宽为6.4 GHz,满足脉冲超宽带雷达的应用需求.%It is hard to directly sample the ultra-wideband radar echoes due to its large bandwidth.The equivalent time sampling method is often used to carry out analog to digital conversion (ADC).Traditional equivalent sampling receivers are mostly based on changing the delay of ADC sampling clock to realize equivalent sampling.Due to the metastable state between sampling clock and trigger signal,the received da-ta is misaligned inevitably and the correction algorithm online or offline must be added.To solve this prob-lem,an ultra-wideband equivalent sampling receiver based on internal delay line of FPGA is designed.Based on the received echoes of high speed sample-and-hold and ADC,the equivalent sampling of ultra-wideband RF signal is realized without data misaligning when using the delay-tunable transmitting signal generating by FPGA to control the waveform generating system.The equivalent sampling rate is 12.8 GS/s and - 3 dBsampling bandwidth is 6.4 GHz,meeting the application requirements of UWB radar.【期刊名称】《雷达科学与技术》【年(卷),期】2017(015)004【总页数】6页(P443-448)【关键词】等效采样;数字延迟线;数字接收机;采样保持器【作者】吴兵;夏浩淼;李武建【作者单位】中国电子科技集团公司第三十八研究所,安徽合肥 230088;中国电子科技集团公司第三十八研究所,安徽合肥 230088;中国电子科技集团公司第三十八研究所,安徽合肥 230088【正文语种】中文【中图分类】TN9570 引言脉冲超宽带雷达有着固有的高距离分辨率及良好的穿透特性,可实现对非金属障碍物后面隐藏目标的探测和定位,在军事、反恐、安检、救灾和医疗等领域有着重大的应用前景[1-2]。
基于超表面的超宽带隐身天线罩的仿真设计

现代电子技术Modern Electronics Technique2023年12月1日第46卷第23期Dec. 2023Vol. 46 No. 230 引 言频率选择表面(Frequency Selective Surface, FSS )是一种由周期性排列的金属片或任意几何形状的孔径元件组成的周期结构[1⁃2],因其具有独特的频率选择特性而引起研究者们的广泛关注,它广泛应用于空间滤波器[3]、偏振器[4]、隐身天线罩[5⁃6]。
在隐身领域,由于天线通常是强散射源,因此降低整个天线系统的雷达横截面(Radar Scattering Section, RCS )至关重要。
当外部电磁波照射天线系统时,将天线工作波段外的电磁信号反射到某些方向,缩减了天线的单站RCS 。
同时,FSS 天线罩对天线工作频率范围内的信号具有全传输特性,保证了工作频段内天线的正常通信。
然而,这种反射带外电磁波的方法仅适用于单站雷达,对于双站或多站雷达而言并没有较好的隐身效果。
近年来形成了一种结合FSS 和吸波器的设计思路,它被称为频率选择性吸波体(FSA )。
FSA 通常能够吸收带外的入射电磁波,并且由一个传输波段来传输通信信号。
FSA 的概念首先在文献[5]中被提到,它一般由两层结构组成,即上层的吸波结构和下层的FSS 结构。
上层的吸波结构通常由金属结构和损耗元件构成,下层的FSS 由孔径元件组成。
根据吸波波段与传输波段位置基于超表面的超宽带隐身天线罩的仿真设计熊 杰, 杨宝平(黄冈师范学院 物理与电信学院, 湖北 黄冈 438000)摘 要: 为了减小飞行器的多基站雷达散射截面,增加天线系统的隐身功能,提出一种基于超表面的超宽带隐身天线罩模型,该模型具有低频吸收、高频传输的特性。
提出的天线罩由位于上层的吸波结构和位于下层的频率选择结构组成。
上层由两个π型金属结构与工型金属结构组合而成,中间通过电阻元件连接,下层由“X ”字型周期缝隙结构组成,每个周期结构中一个电阻层结构对应4个“X ”字型FSS 结构。
一种超宽带雷达信号模拟器的设计

一种超宽带雷达信号模拟器的设计占超;蔡新举;刘双青【摘要】为满足雷达装备不断增长的保障需求,研制了一套便携式雷达装备检测系统,该检测系统的核心组成部分是超宽带雷达信号模拟器。
模拟器采用低频段基带信号与高频段本振信号2次混频来模拟产生0.05~16 GHz范围内多种体制的雷达信号,最后完成了电路实现,经过信号测试各项指标均达到设计要求。
%In order to meet the needs of a certain type of radar equipment increased security requirements, a set of portable radar equipment detection system was developed, the ultra wideband radar signal simulator was the core of the detection system. The baseband signal of low frequency was mixed with the vibration signal of high frequency band twice to generate many kinds of radar signal simulation system in the range of 0.05~16GHz in the simulator. Finally, the circuit implementa⁃tion was completed. After signal test, the indicators of radar signal simulator reached the design requirements.【期刊名称】《海军航空工程学院学报》【年(卷),期】2015(000)002【总页数】5页(P116-119,124)【关键词】信号模拟器;直接数字频率合成;现场可编程门阵列【作者】占超;蔡新举;刘双青【作者单位】海军航空工程学院电子信息工程系,山东烟台264001; 92515部队,辽宁葫芦岛125001;海军航空工程学院电子信息工程系,山东烟台264001;91341部队,辽宁东港118300【正文语种】中文【中图分类】TN955传统的维护保障体制已不能满足目前雷达装备的作战保障需求,为了解决装备维护与出勤率之间的矛盾,开发研制了一套便携式雷达装备检测设备,而雷达信号模拟器是整套检测系统的关键设备。
低辐射超宽带雷达的室内人员边缘检测系统

敬请登录网站在线投稿(t o u ga o .m e s n e t .c o m.c n )2021年第4期71低辐射超宽带雷达的室内人员边缘检测系统*鲍润晗,阳召成,赖佳磊,周建华(深圳大学电子与信息工程学院,深圳518060)*基金项目:广东省自然科学基金(N o .2019A 1515011517);深圳市基础研究项目(N o .J C Y J 20190808142803565);国家自然科学基金(N o .61771317)㊂摘要:本文为弥补基于传感器方法的检测系统存在的不足,基于低辐射UW B 雷达系统设计了一套室内人员边缘检测系统㊂本系统可对少数目标情况下(目标数ɤ2)的人员进行有效跟踪;人员数目估计精度(含错误ʃ1)可达95%以上;日常活动识别分类精度可达86%㊂关键词:边缘计算;雷达检测技术;数字信号处理;低功耗超宽带雷达中图分类号:T P 31 文献标识码:AI n d o o r P e r s o n n e l E d g e D e t e c t i o n S ys t e m B a s e d o n L o w -r a d i a t i o n U l t r a -w i d e b a n d R a d a r B a o R u n h a n ,Y a n g Z h a o c h e n g,L a i J i a l e i ,Z h o u J i a n h u a (D e p a r t m e n t o f E l e c t r o n i c s a n d I n f o r m a t i o n E n g i n e e r i n g ,S h e n z h e n U n i v e r s i t y,S h e n z h e n 518060,C h i n a )A b s t r a c t :I n o r d e r t o s o l v e t h e s h o r t c o m i n g s e n c o u n t e r e d b y t h e d e t e c t i o n s y s t e m ,a s e t o f i n d o o r p e r s o n n e l e d g e d e t e c t i o n s y s t e m r e l y i n go n t h e l o w -r a d i a t i o n UW B r a d a r s y s t e m i s d e s i g n e d .T h i s s y s t e m c a n e f f e c t i v e l y t r a c k p e o p l e w i t h f e w t a r g e t s (n u m b e r o f t a r ge t s ɤ2).T h e e s t i m a t i o n a c c u r a c y of t h e n u m b e r o f p e r s o n n e l (i n c l u d i ng e r r o r ʃ1)c a n r e a ch m o r e t h a n 95%.T h e r e c o gn i t i o n a n d c l a s s i f i c a t i o n a c c u r a c y o f d a i l y ac t i v i t i e s c a n r e a c h 86%.K e yw o r d s :e d g e c a l c u l a t i o n ;r a d a r d e t e c t i o n t e c h n o l o g y ;d i g i t a l s i g n a l p r o c e s s i n g ;l o w -p o w e r u l t r a -w i d e b a n d r a d a r 0 引 言在现今通信技术与数据处理技术飞速发展的环境下,各类场景的智能化建设也在飞速发展㊂与此同时,人员信息(区域人数㊁目标位置㊁活动特征等)作为大多场景的基础数据,在诸如智能安防㊁智慧城市以及智能家居等方面的建设中起到重要作用㊂例如在消防救灾中,救援人员可以利用各个区域的人员活动信息来规划搜救线路,节省搜救时间;地铁车厢内可以根据车厢内的人员数目来调整空调的温度,以此达到节能的目的㊂总之,区域人员信息可以有效地推动各类场景信息化㊁智能化的进程㊂按照传感器方法分类,市面上的人员探测产品包括基于被动红外探测的产品(H O N E YW E L L ㊁德国西门子安防)㊁基于视觉传感的产品(海康威视㊁大华)㊁基于射频识别(R a d i o F r e q u e n c y Id e n t i f i c a t i o n ,R F I D )传感的产品(北京琛达射频识别)以及W i F i 局域网(协成智慧科技)㊂由于应用场景的多样复杂以及传感器特性的限制,基于上述传感器的方法均存在不足之处㊂例如:基于红外的方式[1]动作检测灵敏度低㊁易受光照和温度影响;基于视觉传感的方式[2]易受阴影㊁遮挡㊁光照和环境等因素影响,存在软件和处理的要求复杂以及设计隐私问题;基于R F I D 传感器的方法[3]需要人随身携带标签,不适用于日常生活场景;基于W i F i 的方法[4-5]无法获取目标的物理信息,较难监测人体活动状态㊂随着电路集成化程度的提升,以前庞大的雷达系统可以根据民用需求集成至可供人员便携的程度,这也加快了雷达系统民用化的进程㊂现今用于人体目标探测的雷达系统大多具有非接触式㊁高距离分辨率㊁穿透性能好㊁可全天时全天候工作㊁保护隐私等优点㊂市面上常见的人员检测雷达系统有德州仪器的I W R 1642[6]样机㊁英飞凌B G T 24M T R 12样机[7]以及X e t h r u 公司的X 4系列样机[8]㊂本系统从功耗㊁传感器探测性能与探测需求㊁辐射安全性㊁安装供电便捷性等角度进行斟酌后,选定X e t h r u 公司X 4M 03型号雷达模块进行系统的开发,提出一套支持无线物联网构建的室内人员边缘检测系统,旨在充分利用雷达系统的诸多优点,在保证探测功能的同时,有效改善前文提及的不同传感器所遇到的一系列问题㊂1 边缘检测系统总体架构根据潜在的应用场景,结合对传感处理㊁服务管理㊁72M i c r o c o n t r o l l e r s &E m b e d d e d S ys t e m s 2021年第4期w w w .m e s n e t .c o m .c n用户交互等方面的考虑,本系统的总体方案如图1所示,其总体结构分为:边缘感知终端㊁服务管理终端㊁移动交互终端㊂边缘感知终端主要实现对信号的实时采集,并在边缘处理器进行定制算法的实现,以及利用无线通信模块将初步处理后的数据按照指定的数据格式实时传送给服务管理终端;服务管理终端将实现数据的二次处理,数据的存储与管理显示以及响应移动交互终端的数据请求;移动交互终端将为客户提供多时间尺度的区域人员信息查询功能㊂图1 系统总体架构2 系统子终端详细设计与实现2.1 边缘感知终端边缘感知终端的主要组成部分包括:①X 4M 03雷达传感模组,其中集成了该终端的信号收发模块和信号处理模块;②乐鑫公司生产的低功耗物联网通信模块E S P 32[9]㊂2.1.1 硬件组成与设计(1)X 4M 03X 4M 03包括雷达天线模块(X 4A 02)㊁信号采集模块(X 4S I P 02)以及信号处理模块(X TM C U 02)㊂X 4A 02模块所发射的信号是可以编程的,用户可通过设置相应的寄存器来改变发射波形的发射相位㊁发射功率以及中心频率等;X 4S I P 02采集模块对X 4A 02天线模块接收通道中的模拟信号进行采样,其采样准则遵循1b i t 量化采样准则;X TM C U 02定时通过Q S P I 串行协议的方式读取接收机后端缓存的采样数据,客户可以通过处理器中实时操作系统(R e a l -T i m e O p e r a t i n g S y s t e m ,R T O S )的应用层编程,进行定制的信号处理算法,并调用应用层的串口A P I 进行数据的传输操作㊂X 4M 03的主要性能参数如表1所列㊂表1 X 4M 03主要参数表参数数值发射频率/G H z7.29/8.748(可选)最大探测距离/m 9.87带宽(-10d B )/G H z1.4最大脉冲重复频率/MH z60.75系统功耗/mW 118.1脉冲帧率/H z100角度范围/(ʎ)-60~+60(2)E S P 32E S P 32具有丰富的I /O 外设,是一款通用型W iF iB T B L E MC U 模组,其适用于低功耗传感器网络和较高要求的传输任务,例如语音编码㊁音频流和M P 3解码等,其主要性能参数如表2所列㊂E S P 32通过串口外设接收来自X 4M 03的数据流,并进行数据头的识别以用于数据的打包发送㊂最后,E S P 32采用I P s o c k e t 方式将数据通过局域无线网从边缘感知终端传输至服务管理终端㊂表2 无线通信模块主要参数表模块特性C P U 中央处理单元双核处理器,运算能力高达600D M I P S W i F i 频率范围2.4~2.5G H z U A R T最高波特率达2M b ps 工作电压2.2~3.6V工作电流射频工作激活模式:80~260m A轻度睡眠模式:0.8m A 深度睡眠:25μA~0.15m A 2.1.2 软件流程设计本系统依托X e t h r u 公司的工程模板文件,根据探测要求将雷达系统的主要参数进行设置㊂上电之后,X 4M 03雷达模块根据设置好的中心频率㊁发射功率,以及扫频次数㊁探测范围㊁发射脉冲进行数据获取㊂此时,信号处理模块将会定时接收到离散的数字信号数据帧,客户可以调用A P I 获取数据帧并在接口函数层面利用C 语言编写自定义的信号处理功能函数㊂其主要的程序流程如图2所示㊂在信号处理流程中,首先需要利用杂波抑制技术对原始信号进行静态目标去除㊂随后,处理流程将根据杂波抑制后的数据进行人数模式识别㊁活动数据的截取和目标的轨迹跟踪㊂由图2可知,边缘感知终端所传输的信息包括区域内的人数信息㊁轨迹信息以及可以表征人体活动情况的基带数据信息㊂发送频率为5个脉冲帧发送一次,即0.05s/包㊂数据包的结构如表3所列㊂敬请登录网站在线投稿(t o u g a o.m e s n e t.c o m.c n)2021年第4期73图2信号处理模块流程图表3数据格式解析表序号数据名称数据类型位数/b i t0~3数据起始位u n s i g n e d i n t324~7起始位后数据中字节总长度u n s i g n e d i n t32 8~14保留位 815~18帧序号u n s i g n e d i n t3219~22帧序号后面的字节长度u n s i g n e d i n t3223~62五帧I Q数据f l o a t3263人数u n s i g n e d i n t864~71轨迹位置f l o a t3272~73轨迹质量(两个目标)u n s i g n e d i n t874~75轨迹状态(两个目标)u n s i g n e d i n t876~87散点位置u n s i g n e d i n t8无线通信模块中的接收数据与无线转发的流程分别实现于F r e e R T O S实时系统中创建的两个不同优先级的并发任务㊂数据接收任务将串口波特率配置成115200 b p s,实时识别数据包头(0x7C7C7C7C),并将数据包进行二次打包;当识别到5包数据时,转发标志位置1,边缘终端将进行一次局域网内的无线数据传输,这个过程将在无线转发任务中进行,发送频率为0.25s/次㊂2.2服务管理终端服务管理终端为一台戴尔台式机,处理器为i7 7700,运行内存为8G B㊂用于服务器程序搭建的框架平台为P y C h a r m和M y S Q L㊂编程语言为P y t h o n,运用P y Q T框架搭建显示界面㊂M y S Q L数据库用于存储人员活动信息㊂服务管理终端的接收数据模块将通过局域网接收到字节流数据,并按照表3进行数据格式解析㊂服务管理终端的数据二次处理主要包括:人数信息的缓存处理以及用于基带人体活动数据进行日常活动的识别分类㊂活动分类识别的主要流程为:①对时间窗内的基带数据进行短时傅里叶变换,并基于变换后的时间速度图进行特征提取,包括平均速度㊁能量值㊁信息量特征;②通过门限检测对目标是否运动进行粗分类;③利用时序神经网络识别运动时的动作,并利用运动的时间连续性判断静止时是站立还是坐着㊂服务端程序的整体运行逻辑流程如图3所示㊂图3服务端程序整体流程由于活动识别的处理过程较为复杂,耗时较长,故为该任务单独配置一个进程㊂服务终端与边缘感知终端进行T C P握手之后,即开始进行数据的接收㊂与此同时,活动识别的进程也同时开启,其中初始化包括建立数据窗㊁加载网络模型等㊂当数据积攒够1s时,接收进程更新数据标志位,并利用全局的进程变量将解析的基带数据传递给活动识别进程;活动识别进程查询到标志位更新后就进行相应的窗数据更新与活动识别处理㊂在数据存储格式方面,本文将当前的活动信息(人数㊁轨迹㊁活动识别)根据不同时间戳存入结果数据表(如表4所列)㊂服务管理终端接收到移动交互终端的请求后,将发送J S O N格式的键值对以供移动端界面显示㊂不同方式的交互请求所用的具体传输格式不同㊂表4M y S Q L结果数据表序号是否主键数据名称数据类型1是时间t i m e s t a m p2是设备I D号变长字符串3否人数结果整型4否轨迹跟踪结果浮点型5否活动识别结果整型2.3移动交互终端移动交互终端的实现平台为微信小程序开发平台㊂小程序可以通过超文本传输(h y p e r t e x t t r a n s f e r p r o t o c o l,74M i c r o c o n t r o l l e r s &E m b e d d e d S ys t e m s 2021年第4期w w w .m e s n e t .c o m .c nH T T P )协议对服务管理终端进行请求㊂移动交互端的显示界面分为小程序历史统计界面和实时显示界面㊂历史统计界面的内容组件包括:①查询选项卡:②历史查询时间;③日历组件;④人数历史结果统计图;⑤活动范围历史结果统计图;⑥活动识别历史结果统计图㊂历史统计情况具体界面显示如图4所示㊂图4 历史统计界面显示图实时显示界面的内容组件包括:①当前时刻(例如2020/7/1713:16:20);②人体活动结果(识别类型:坐下㊁起立㊁走路㊁坐着㊁站着㊁人数过多);③人数统计结果;④轨迹以及目标散点结果(多于两人时,只绘制热力图;在两人以内,绘制热力图与轨迹曲线)㊂实时显示情况具体界面如图5所示㊂图5 实时界面显示图3 实验与结果3.1 实验设置与系统指标本系统的安装示意图如图6所示,边缘感知终端高于地面2.2~2.3m ,俯仰角为10ʎ,方位角约为0ʎ㊂3.2 高密度人数估计场景高密度人数估计场景图如图7所示㊂检测系统的边缘感知终端放置于图7所示的区域一角㊂典型的室内区域设置为5.0mˑ2.0m ,其中感知终端下放置摄像头以提供可对比的准确信息㊂图6系统安装示意图图7 实测场景图其中,5~10人情况下测试6分钟,约6分钟ˑ60秒/分钟ˑ4次/秒=1440次检测;5人以下测试15分钟,约15分钟ˑ60秒/分钟ˑ4次/秒=3600次检测㊂测试实验的混淆矩阵如表5和表6所列㊂表5 5~10人数预测混淆矩阵预测真实567891050.6300.3700.0000.0000.0000.00060.2700.4700.2300.0300.0000.00070.0000.1820.500.3180.0000.00080.0000.0000.3740.6010.0250.00090.0000.0000.1100.3120.5180.060100.0000.0000.0000.0300.6040.366表6 0~4人数预测混淆矩阵预测真实0123401.0000.0000.0000.0000.00010.0000.7130.2870.0000.00020.0000.0790.8100.1110.00030.0000.0000.0730.8650.06240.0000.0000.0000.1940.745敬请登录网站在线投稿(t o u ga o .m e s n e t .c o m.c n )2021年第4期753.3单人轨迹跟踪场景图8 单人轨迹跟踪场景标定单人轨迹跟踪场景如图8所示㊂对人体目标(人体胸腔位置附近)至边缘感知终端利用激光测距仪器进行了实地的距离测算标定(图8中每一个标定点上的数代表目标与感知终端的实际距离,单位为m ),并以此来评估系统跟踪的精准性㊂由图9和图10可知,本系统可以对单个目标进行有效的轨迹跟踪㊂从误差图可以看到,单人轨迹有85.13%的情况在ʃ20c m 的范围内,99.9%的情况在ʃ50c m 的范围内,具有较高的跟踪精度㊂图9实际位置与跟踪估计对比图图11 私人办公室场景图(感知终端视角)图10 位置估计误差3.4 私人空间活动检测场景私人空间活动检测场景图如图11所示,目的在于还原真实情况下的私人办公场景㊂测试时间为250s,共检测250次,活动识别混淆矩阵如表7所列㊂表7 活动识别测试实验混淆矩阵预测真实坐下起立走路坐下5532起立0743走路48101图12所示为少目标下的轨迹有效跟踪与活动有效识别的情况㊂图12 私人场景目标跟踪与活动识别4 结 语本文基于低辐射UW B 雷达提出了一套室内人员人数边缘检测系统㊂该系统具有辐射小㊁响应快㊁功耗低㊁可全天时全天候工作㊁不侵犯个人隐私㊁非接触式以及支持数据无线传输等优势,可以较好地解决传统人员检测方案涉及的探测问题,可以有效解决基于视觉传感人员检测的易受光照㊁水雾等环境因素影响㊁侵犯隐私等问题,基于红外人员检测的受环境温度影响以及性能因传感原理而受限等问题㊂实测结果表明,本文所设计的系统可以实现对感兴趣室内区域进行人员人数的统计,以及少目标下的轨迹跟踪以及单目标下的日常活动识别分类功能㊂参考文献[1]M o h a m m a d m o r a d i H ,M u n i r S ,G n a w a l i O ,e t a l .M e a s u r i n g Pe o -p l e F l o w t h r o u g h D o o r w a y s U s i n g E a s y t o I n s t a l l I R A r r a yS e n s o r s [C ]//201713t h I n t e r n a t i o n a l C o n f e r e n c e o n D i s t r i b u t e dC o m p u t i n g i n S e n s o r S ys t e m s (D C O S S ),I E E E ,2017.[2]张君军,石志广,李吉成.人数统计与人群密度估计技术研究现状与趋势[J ].计算机工程与科学,2018,40(2):282291.[3]南京大学.一种基于射频识别技术的室内人数统计方法[P ].中国.C N 110008766A.20190712.[4]高明.基于射频传感网络的人流量监测方法研究[D ].南昌:南昌航空大学,2018.[5]X u C ,F i r n e r B ,M o o r e R S ,e t a l .S C P L :i n d o o r d e v i c e f r e em u l t i s u b j e c t c o u n t i n g a n d l o c a l i z a t i o n u s i n g r a d i o s i gn a l s t r e n gt h [C ]//I P S N '13,I E E E ,2013.[6]I WR 1642S i n g l e C h i p 7681G H z mmW a v e S e n s o r d a t a s h e e t (R e v .B )[E B /O L ].[202010].h t t p://w w w.t i .c o m /pr o d u c t /I WR 1642/t e c h n i c a l d o c u m e n t s .[7]24G H z t r a n s c e i v e r B G T 24MT R 12[E B /O L ].[202010].h t t p s ://w w w.i n f i n e o n .c o m /c m s /e n /pr o d u c t /s e n s o r /r a d a r i m a g e s e n s o r s /r a d a r s e n s o r s /r a d a r s e n s o r s f o r c o n -s u m e r a n d i o t /b gt 24m t r 12/.80M i c r o c o n t r o l l e r s &E m b e d d e d S ys t e m s 2021年第4期w w w .m e s n e t .c o m .c n[2]史蒂芬㊃山德,阿明㊃达曼,克里斯汀㊃门兴.无线通信系统中的定位技术与应用[M ].郎为民,译.北京:机械工业出版社,2015.[3]张国家,徐东冬,吴巍,等.一种基于红外线的室内导航设备[P ].江苏:C N 106371438A ,20170201.[4]李冰.超声波室内定位导航装置的设计与实现[D ].哈尔滨:哈尔滨理工大学,2017.[5]谢俐,黄泽伟,周燕.基于R F 射频通信的室内定位导航系统[P ].北京:C N 207440277U ,20180601.[6]张子明,彭惠,刘良勇,等.R O S 系统的无人小车自动跟随方案研究[J ].单片机与嵌入式系统应用,2020,20(2):4651.张子明(工程师),主要研究方向为嵌入式系统开发应用㊂通信作者:张子明,934773134@q q.c o m ㊂(责任编辑:薛士然 收稿日期:2020-11-16)参考文献[1]赵蕾.R a p i d I O 串行总线的硬件抽象层设计与应用[J ].单片机与嵌入式系统应用,2020(5):1113.[2]J O I N T P R O G R AM E X E C U T I V E O F F I C E .S o f t w a r e c o m -m u n i c a t i o n a r c h i t e c t u r e s pe c if i c a t i o n ,v e r s i o n 4.0,2012.[3]J P O J .M o d e m h a r d w a r e a b s t r a c t i o n l a ye r A P I 2.13[M ].S a n D i e go :J T R S S t a n d a r d ,2010.[4]董胜.信号处理平台中F P G A 的组件化运行环境的设计与实现[D ].郑州:解放军信息工程大学,2017.[5]羿昌宇,沈聪,李裕.基于R a pi d I O 的F P G A 硬件抽象层设计[J ].航空电子技术,2015,46(3):610.[6]乌力更,王德刚,黄圣春,等.F P G A 硬件抽象层的路由配置设计与实现[J ].无线电通信技术,2013,39(5):6871.[7]袁扬,谭月辉,孙慧贤,等.基于Z e d B o a r d 的S C A 架构的设计与实现[J ].电子技术应用,2015,41(11):3133,37.[8]余晓玫,高飞.基于软件通信体系结构的波形F P G A 软件设计方法[J ].现代电子技术,2017,40(1):1012.路小超(工程师),主要研究方向为交换式总线和机载通信中间件㊂通信作者:路小超,807342113@q q.c o m ㊂(责任编辑:薛士然 收稿日期:2020-12-18) [8]A n d e r s e n N ,G r a n h a u g K ,M i c h a e l s e n J A ,e t a l .7.7A 118mW 23.3G S /s d u a l b a n d 7.3G H z a n d 8.7G H z i m -p u l s e b a s e d d i r e c t R F s a m p l i n g ra d a r S o C i n 55n m C MO S [C ]//S o l i d s t a t e C i r c u i t s C o n f e r e n c e .I E E E ,2017.[9]E S P 32技术参考手册[E B /O L ].[202010].h t t ps ://w w w.e s p r e s s i f .c o m /z h h a n s /p r o d u c t s /s o c s /e s p32/r e s o u r c e s .[10]C h o i J W ,Y i m D H ,C h o S H.P e o p l e C o u n t i n g Ba s e d o n a n I R UW B R a d a r S e n s o r [J ].I E E E S e n s o r s J o u r n a l ,2017(17):1.[11]C h o i J W ,Q u a n X ,C h o S H.B i D i r e c t i o n a l P a s s i n g P e o pl e C o u n t i n g S ys t e m b a s e d o n I R UW B R a d a r S e n s o r s [J ].I E E E I n t e r n e t o f T h i n gs J o u r n a l ,2017:512522.[12]C h o i J H ,K i m J E ,K i m K T.L e a r n i n g B a s e d P e o pl e C o u n t i n g S y s t e m U s i n g an I R UW B R a d a r S e n s o r [J ].T h e J o u r n a l o f K o r e a n I n s t i t u t e o f E l e c t r o m a g n e t i c E n g i n e e r i n ga n d e n c e ,2019,30(1):2837.[13]K i m Y ,M o o n T.H u m a n D e t e c t i o n a n d A c t i v i t y Cl a s s i f i c a -t i o n B a s e d o n M i c r o D o p p l e r S i g n a t u r e s U s i n g D e e p Co n v -o l u t i o n a l N e u r a l N e t w o r k s [J ].I E E E G e o s c i e n c e &R e m o t eS e n s i n g Le t t e r s ,2016,13(1):812.[14]C h e n Z ,L i G ,F i o r a n e l l i F ,e t a l .P e r s o n n e l R e c o gn i t i o n a n d G a i t C l a s s i f i c a t i o n B a s e d o n M u l t i s t a t i c M i c r oD o p pl e r S i g n a t u r e s U s i n g D e e p Co n v o l u t i o n a l N e u r a l N e t w o r k s [J ].I E E E G e o s c i e n c e &R e m o t e S e n s i n g Le t t e r s ,2018(99):15.鲍润晗(硕士研究生),主要研究方向为雷达信号处理㊁目标区域感知与跟踪;阳召成(副教授),主要研究方向为雷达信号处理㊁区域感知与智能信息处理㊁阵列信号处理㊁机器学习等;赖佳磊(硕士研究生),主要研究方向为雷达信号处理㊁目标跟踪与目标活动识别;周建华(讲师),主要研究方向为嵌入式系统设计㊁智能穿戴产品设计㊁生物电信号处理等㊂通信作者:阳召成,y a n g z h a o c h e n g@s z u .e d u .c n ㊂(责任编辑:薛士然 收稿日期:2020-10-09)研华与A D V A 共创开放式远程实验室研华与A D V A 宣布推出联合T e s t D r i v e 门户计划㊂该计划基于A D V A E n s e m b l e 套件及研华边缘设备,可对u C P E 的S DWA N 和安全解决方案进行远程评估,为需远程工作的网络工程师和架构师提供各种S D WA N u C P E 预集成平台的免费访问权限,从而简化评估流程,不仅满足他们识别软硬件配置选项的要求,还克服了远程评估在物流方面的挑战,例如测试许可㊁把设备运输至分布式团队等㊂A D V A A d v a n t e c h u C P E T e s t D r i v e P o r t a l 的在线流量生成工具,可协助注册用户模拟各种网络服务链和基准应用吞吐量㊂同时,研华与A D V A 联手推出的优化u C P E 平台可满足市场上的各种性价比要求,支持从小型办公室到企业总部和边缘云等各种应用㊂这款解决方案提供全球供应链网络支持,并可通过出厂前预集成实现无缝部署㊂。
冲激信号产生技术研究

冲激信号产生技术研究摘要冲激脉冲的产生技术分为两类:利用储能电路和高速开关的传统产生技术和利用周期信号傅立叶级数的傅立叶合成技术。
本文全面介绍了各种形式的产生方法及其目前所具备的技术水平。
分析比较了各类方法的优缺点以及在应用中所要注意的问题。
关键词: 宽带传输; 脉冲信号; 信号分析中图分类号:xxxxx文献标志码:x近年来超宽带信号(Ultra-Wideband Radar Signal)引起了广泛的关注.超宽带信号中很重要的一类是冲激信号(ImpulseSignal),它是一种脉宽极短的窄脉冲,同时具有极低的频谱分量和极大的相对带宽(η常接近 100%)。
冲激信号由于可以工作在比传统窄带雷达低得多的频段上却同时获得与微波雷达相当的高距离分辨力, 因此能够成功地运用于叶簇和地表穿透成像,又由于冲激信号可以激励出丰富的目标谐波响应分量, 故在探测隐身目标以及目标识别方面也有着重要的应用价值。
然而, 冲激信号所具有的极大瞬时相对带宽却给其产生造成了很大的困难, 且信号的性能也难以保证。
多年来, 冲激信号的产生成为超宽带技术的一个重要研究领域。
突破高性能冲激信号的产生技术, 将具有重大的学术意义和应用价值。
本文对各种冲激信号产生技术的实现方法及其目前所具备的技术水平进行了系统研究, 根据冲激脉冲产生技术的特点,将目前的各种方法划分为传统产生技术和傅立叶合成技术两大类,并深入分析了各类冲激信号产生技术的优势及其局限性。
需要指出的是,冲激信号根据其信号形式的不同可以分为3类:基带波(Baseband Waveform)、单周波(Monocycle)和多周波(Polycycle)。
基带波没有载频, 最大的谱分量在直流附近的低频端, 频谱幅度在有效频带内单调下降, 目前许多文献所称的无载频信(CarrierFreeWaveform)、非正弦波信号(Nonsinusoidal Wave)也都指的是这一类冲激信号;单周波是只有一个周期的正弦信号,理想的单周波谱峰位于f0处, 在3dB带宽内频谱比较平坦;多周波是具有多个周期的正弦信号, 由于超宽带信号的百分比带宽大于 25%, 因此作为冲激信号的多周波其周期数目介于 2~4之间。
与uwb相关的经典文献

与uwb相关的经典文献关于UWB(Ultra-Wideband)技术的经典文献有很多,以下是一些比较经典的文献:1. "Ultra-Wideband Radio Technology",作者,Faranak Nekoogar。
这本书是关于UWB技术的全面介绍,涵盖了UWB通信系统的基本原理、信号处理、天线设计等方面。
2. "Ultra-Wideband, Short-Pulse Electromagnetics",作者,Vitaliy Zhurbenko。
这本书主要介绍了UWB技术在电磁学领域的应用,包括雷达、通信、无线传感器网络等方面。
3. "Ultra-Wideband Wireless Communication",作者,Mohammad Matin。
这本书介绍了UWB通信系统的基本原理、调制解调技术、多址接入技术等内容,适合对UWB通信感兴趣的读者阅读。
4. "Ultra-Wideband Antennas and Propagation for Communications, Radar and Imaging",作者,Kamil Agi。
这本书主要介绍了UWB天线设计及其在通信、雷达和成像领域的应用。
除了以上提到的书籍,还有很多学术期刊和会议论文也涉及到UWB技术的研究,比如IEEE Transactions on Ultra-Wideband Communications、IEEE International Conference on Ultra-Wideband等。
这些期刊和会议论文提供了大量关于UWB技术的最新研究成果和发展动态。
总的来说,UWB技术作为一种新兴的无线通信技术,其相关文献和研究成果在近年来不断涌现,读者可以通过查阅以上提到的书籍和学术期刊论文来了解UWB技术的最新发展和应用。
uwb测距原理
uwb测距原理Ultra-wideband (UWB) technology is a wireless communication method that uses a large portion of the radio spectrum to transmit information. One of the key applications of UWB technology is in the field of distance measurement, where it is used for precise and accurate ranging. In this document, we will explore the principles behind UWB distance measurement and how it is achieved.At the core of UWB distance measurement is the ability to accurately measure the time it takes for a signal to travel from a transmitter to a receiver and back again. This is commonly known as time-of-flight (ToF) measurement. UWB technology is well-suited for ToF measurement due to its ability to transmit short pulses of energy over a wide frequency band. These short pulses allow for very precise time measurements, which in turn enable accurate distance calculations.The basic principle of UWB distance measurement involves the transmission of a series of UWB pulses from a transmitter to a receiver. The receiver then captures these pulses and measures the time it takes for them to arrive. By knowing the speed of the UWB pulses, the time-of-flight can be converted into a distance measurement. This is typically done using the equation: distance = (speed of light) (time-of-flight) / 2.One of the key advantages of UWB distance measurement is its ability to operate in a variety of environments, including indoor and outdoor settings. UWB signals are able to penetrate through obstacles such as walls and furniture, making them suitable for use in complex and cluttered environments. This makes UWB technology ideal for applications such as indoor positioning, asset tracking, and automotive radar systems.In addition to its ability to operate in challenging environments, UWB distance measurement also offers high levels of accuracy. UWB pulses can be transmitted and received with nanosecond precision, allowing for distance measurements with centimeter-level accuracy. This level of precision makes UWB technology well-suited for applications that require extremely accurate ranging, such as industrial automation, robotics, and virtual reality systems.Another important aspect of UWB distance measurement is its low power consumption. UWB transceivers are able to transmit high-energy pulses for short periods of time, resulting in lower overall power consumption compared to traditional continuous-wave transmission methods. This makes UWB technology suitable for battery-powered devices and other low-power applications.In conclusion, UWB distance measurement is a powerful and versatile technology that is well-suited for a wide range of applications. Its ability to provide accurate, precise, and reliable distance measurements in challenging environments makes it an ideal choice for industries such as manufacturing, logistics, and consumer electronics. As UWB technology continues to advance, we can expect to see even more innovative applications and solutions that leverage its unique capabilities.。
Ultra Wide Band
2013年7月8日
13
传统系统在信号的传输过程中通过射频(RF)载
波或多射频(RF)载波的传输波来进行信号调制;
而UWB是无载波的,它可利用起、落尖锐的时域
脉冲(几十纳秒的数量级)直接实现调制,超宽带的 传输把调制信息过程放在一个非常宽的频带上进行, 过程所持续的时间决定带宽所占据的频率范围 。
– Radar and Sensing
• Vehicular Radar(车载雷达) • Ground Penetrating Radar (GPR) • Through Wall Imaging (Police, Fire, Rescue) • Medical Imaging • Surveillance(监视)
– Location Finding
• Precision(精确) location (GPS aid)
2013年7月8日 21
Networking
• Personal Area Networking (PAN), connecting cell phones,laptops(膝上电脑), PDAs(PDA:abbr.Personal Digital Assistant 个人数 字助理), cameras, MP3 players.
2013年7月8日
6
Definition of UWB
• FCC Definition of UWB – Fractional bandwidth (measured at the 10dB points),(fH - fL)/fc, > 20% or total B > 500 MHz. • Common Definitions – UWB: Fractional bandwidth = (fH - fL)/fc > 25% or total B > 1.5 GHz. – Narrowband: (fH - fL)/fc < 1%.
ULTRA WIDEBAND (UWB) TRANSMITTER AND RECEIVER CIRC
专利名称:ULTRA WIDEBAND (UWB) TRANSMITTER AND RECEIVER CIRCUITS发明人:Nabki, Frederic,Deslandes, Dominic,Soer, Michiel,Morin-Laporte, Gabriel,Taherzadeh-Sani, Mohammad申请号:EP20774516.7申请日:20200318公开号:EP3942682A1公开日:20220126专利内容由知识产权出版社提供摘要:Ultra-Wideband (UWB) wireless technology transmits digital data as modulated coded impulses over a very wide frequency spectrum with very low power over a short distance. To support extended operation, particularly with battery power sources, the inventors have established UWB devices which support wake-up from deep sleep modes when these devices exploit low frequency clock sources for ultra-low power consumption. Further, power consumption may be reduced by exploiting transistors or so-called compounded MOSFET structures whose effective gain and output resistance exceeds any single transistor irrespective of length or by employing biasless low power differential (exponential) transconductance stages within operational transconductance amplifiers in order to provide very high gain low power amplification stages. Further, the inventors have established voltage reference sources that consume very low current, a few nA, and ultra-low power low dropout regulators.申请人:Nabki, Frederic,Deslandes, Dominic,Soer, Michiel,Morin-Laporte,Gabriel,Taherzadeh-Sani, Mohammad地址:c/o Spark Microsystems Inc. C-2150, 400 Rue Montfort Montreal, Quebec H3C 4J9 CA,c/o Spark Microsystems Inc. C-2150, 400 Rue Montfort Montreal, Quebec H3C 4J9 CA,c/o Spark Microsystems Inc. C-2150, 400 Rue Montfort Montreal, Quebec H3C 4J9 CA,c/o Spark Microsystems Inc. C-2150, 400 Rue Montfort Montreal, Quebec H3C 4J9 CA,c/o Spark Microsystems Inc. C-2150, 400 Rue Montfort Montreal, Quebec H3C 4J9 CA 国籍:CA,CA,CA,CA,CA代理机构:HGF更多信息请下载全文后查看。
超宽带(UWB)技术
微波通信
输出信号s(t)可表示为:
s(t )
j
d
j
p(t jTs )
若使用PPM调制器代替PAM调制器,得到的信号可表示为:
d j 1 s(t ) p(t jTs ) 2 j
UWB 技术采用脉冲位置调制(PPM )单周期脉冲来携带信息和 信道编码,一般工作脉宽为0. 1~1.5 ns,重复周期为25~1 000 ns 。
微波通信
批准将UWB 用于民用产品以来, UWB的民用主要包括以下3 个 方面:地质勘探及可穿透障碍物的传感器(imaging system) ;汽车 防冲撞传感器等(vehicle radar system) ;家电设备及便携设备之间 的无线数据通信( communication and measurements system) 。 1、UWB 技术一个介于雷达和通信之间的重要应用是精确地理定 位,例如使用UWB 技术的能够提供三维地理定位信息的设备。 UWB 地理定位系统最初的开发和应用是在军事领域,其目的是战 士在城市环境条件下能够以0. 3 m的分辨率来测定自身所在的位 置。目前其主要商业用途之一为路旁信息服务系统.它能够提供突 发且高达100Mbps 的信息服务,其信息内容包括路况信息、建筑物 信息、天气预报和行驶建议,还可以用作紧急援助事件的通信。
微波通信
典型高斯单调周期脉冲的时域和频域如下图所示。
实际通信中使用一长串的脉冲,周期性重复的单脉冲时域和频域 特性如下图所示。
微波通信
频谱中出现了强烈的能量尖峰,这是由于时域中信号重复的周期 性造成了频谱的离散化。这些尖峰将会对传统无线电设备和信号 构成干扰,而且这种十分规则的脉冲序列也没有携带有用信息。改 变时域的周期性可以减低这种尖峰,即采用脉冲位置调制(PPM ) 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ultra-Wideband Radar Sensors for Short-RangeVehicular ApplicationsIan Gresham,Senior Member,IEEE,Alan Jenkins,Member,IEEE,Robert Egri,Member,IEEE, Channabasappa Eswarappa,Senior Member,IEEE,Noyan Kinayman,Member,IEEE,Nitin Jain,Member,IEEE, Richard Anderson,Frank Kolak,Ratana Wohlert,Shawn P.Bawell,Member,IEEE,Jacqueline Bennett,Member,IEEE,and Jean-Pierre Lanteri,Member,IEEEInvited PaperAbstract—The recent approval granted by the Federal Com-munications Commission(FCC)for the use of ultra-wideband signals for vehicular radar applications has provided a gateway for the introduction of these sensors in the commercial arena as early as2004.However,the rules governing the allowable spectral occupancy create significant constraints on the sensors’opera-tion.This is further complicated by the variety of applications that these sensors are being required to fulfill.A review of the motivation for the development of these sensors is followed by a discussion of the consequent implications for waveform design and limitations on system architecture.Other practical considerations such as available semiconductor technology,packaging,and assembly techniques are reviewed,and results are presented for conventional surface-mount plastic packages illustrating their usefulness in the greater than20-GHz frequency range.Suitable antenna technology for wide-band transmission is presented that is compliant with the specific restrictions stipulated in the FCC ruling.Finally,all of these considerations are combined with the presentation of a compatible integrated-circuit-based transceiver architecture.Measured results are presented for several critical circuit components including a+12-dBm driver amplifier for the transmitter,an RF pulse generator that can produce sub-1-ns pulses at a carrier frequency of24GHz,and a single-chip homo-dyne in—phase/quadrature down-conversion receiver that has a cascaded noise figure of less than7dB.All circuit components are fabricated in SiGe.Index Terms—Automotive,radar,SiGe,ultra-wideband(UWB).I.I NTRODUCTIONA FTER YEARS of public hearings and rule-making de-bates,the approval granted by the Federal Communica-tions Commission(FCC)through its modified and amended 47CFR Part15regulations allocates over7GHz of usable un-licensed spectrum between3.1–10.6GHz for communications and imaging systems based on ultra-wideband(UWB)devices [1].This ruling has been the subject of much interest and,in-deed,controversy[2]–[6].A large number of both proponentsManuscript received August4,2003;revised May13,2004.I.Gresham,A.Jenkins,R.Egri,C.Eswarappa,N.Kinayman,R.Anderson, R.Wohlert,S.P.Bawell,J.Bennett,and nteri are with Corporate Research and Development,M/A-COM,Lowell,MA01853USA.N.Jain is with Anokiwave Inc.,San Diego,CA92130USA.F.Kolak is with the Mitre Corporation,Bedford,MA01730USA.Digital Object Identifier10.1109/TMTT.2004.834185and opponents of the change in the regulations have been unable to agree upon the level of maximum radiated emission levels that unlicensed users of the spectrum must adhere to in order that existing radio,communication,and other licensed services will be unaffected by harmful interference caused by UWB de-vices.However,the potential ability for UWB devices to occupy spectrum concurrently with existing systems,thereby allowing the scarce spectrum to be used more efficiently,has led to the approval being granted[1].The National Telecommunications and Information Administration(NTIA),who are responsible for the licensing and control of federal and government fre-quency bands in the U.S.,were particularly concerned with the potential cumulative effect sensors could have on the global po-sitioning system(GPS)bands,with the consequence that UWB devices are required to have very low spectral emissions in the 960–1610-MHz band[7].In addition,although maybe less well appreciated,the ruling also approved a second allocation of an unlicensed7-GHz wide spectrum between22–29GHz that is intended exclusively for vehicular radar systems.These systems are intended to detect the location and movement of objects near a vehicle by devel-oping a continuously updated360-radar map of the vehicles’surroundings.Depending upon the sophistication of the system and its intended purpose,this would enable features that can provide,amongst other functions,collision avoidance,enhanced airbag activation,and improved road handling through interac-tion with other vehicular dynamic systems.This allocation is no less controversial than the lower frequency ruling due to its requirement for coexistence with various radio astronomy and other sensitive frequency bands.In fact,it may be more prob-lematic in that it is not just adjacent to these bands,but indeed overlaps them.As we shall see,this has had a profound influ-ence on system and waveform design,and on the perceived way that systems will be introduced,first in the U.S.,and eventually in the global marketplace.In order to understand the rationale for such a controversial move,it is worthwhile reviewing the motivation for the intro-duction of automotive radar systems.In Section II,an overview of the requirements for and of short-range radar(SRR)sensors is used as an introduction to the details of the FCC UWB ruling for vehicular radar applications.Section III considers this ruling0018-9480/04$20.00©2004IEEEin the context of its implications for waveform and system de-sign,and discusses some of the tradeoffs that were considered in architecture selection.Details of sensor level operational performance and consequent system level performance are shown.Section IV highlights the technological choices—me-chanical form,semiconductors,packaging,interconnects,and interfaces—that are imposed by the architecture selection,but more importantly,by both the constraints of the marketplace and the need for the sensors to be networked with other func-tions on the vehicle.In Section V,a specific implementation of a generic integrated-circuit(IC)-based SRR is shown as an example[8]–[10]along with several examples of measured circuit-level performance to demonstrate compliance with the sensor level requirements detailed in Section III.Finally,some comments on the future of UWB radar are presented.A.Case for Vehicular SRRThe subject of automotive radar is not new,and developments have been occurring on a regular basis,as reported in the tech-nical literature for many years[11].One of the main barriers to widespread introduction to date has been the ability to fulfill the extremely demanding technical requirements at a cost level that the average consumer will find palatable.However,signif-icant advancements have been made due to the strong support that the introduction of such sensors has from the automotive industry in general[12].They perceive that the increased safety such vehicles offer to the consumer will provide a differentiating competitive advantage.A far more important,and indeed more persuasive,argument for the introduction of smart vehicles is that any increase in safety in automobiles should have a conse-quent effect in reducing the number of fatalities that occur every year.It is,of course,this second argument that has found favor with the various governmental and regulatory agencies around the world that are required to pass the corresponding legislation. Consider,in2002,the number of occupant fatalities in road crashes in the U.S.increased for the first time since1990to an estimated figure of over42000people annually.The total number of fatalities per year in the U.S.has been relatively con-stant at around40000since1991[13],despite improvements in vehicle safety design and features.This unacceptably high level led to two major initiatives in the U.S.for the Department of Transportation to work in partnership with industry to develop and deploy effective collision avoidance products[14],[15]. In2001,the National Transportation Safety Board(NTSB) concluded that the benefits and effectiveness of collision warning systems(CWSs)and adaptive cruise control(ACC) [16]were of public importance.Independent of this,a similarly high level of fatalities in the European Union—over44000in 1998—led to the European Commission(EC)setting a goal of a50%reduction in the number of annual road deaths by2010 [17],[18].Although this ambitious target can probably not be reached through the introduction of new technology alone,the EC concluded that one of the vital steps in reaching this goal was through the introduction and implementation of Advanced Driver Assistance Systems,and that a key component of such systems was the introduction of UWB radar at24GHz[18].In September2003,the EC committed to work with the European Conference of Postal and TelecommunicationAdministrations Fig.1.Collision probability as a function of increased driver reaction time for varying crash scenarios[22].(CEPT)to remove the regulatory barriers that prevented the adoption of UWB radar in Europe to facilitate the rapid deployment of SRRs at24GHz with an eventual migration to 79GHz[19].plete Environment Sensing for Automotive Vehicles Given the multiplicity of various driving and traffic sce-narios,a variety of active(that provide automatic intervention) and passive(that provide driver information)safety systems are required to give a vehicle the capability to not only perceive and understand its environment,but to also act upon it.The more important of these systems in terms of traffic and object aware-ness are largely vision—both video and infrared(IR)—and radar based[20],[21].This emphasis on introducing a variety of sensing technologies to provide a vehicle with a complete environmental awareness as a means of improving safety arises from some interesting statistics.It has been estimated that95% of all road accidents involve some human error and that,in76% of all accidents,a human is solely to blame.Associated with this is the thought-provoking statistic that almost all collisions at intersections,with oncoming traffic,and rear-end impacts, could be avoided if driver reaction time was shifted forward by2s[22],[23],as presented in Fig.1.Confirmation for this comes from a related subject of much research whereby event data recorders(i.e.,black boxes)are added to vehicles to monitor,record,display,or transmit(Tx)pre-crash,crash,and post-crash data element parameters from a vehicle[24].It is postulated that almost all of these accidents could be avoided through the introduction of CWSs and automatic vehicle interventions[18],[25]through the use of a hybrid sensor array to form a safety belt around the vehicle.A typical schematic of one of these sensor arrays is shown in Fig.2.Radar is perceived as a key element in the sensor array due to its ability to offer an immunity to weather condi-tions that is unavailable with other technological solutions.It also offers the vehicle manufacturers a stylistic advantage over ultrasonic or video sensors in that it can be mounted behind aGRESHAM et al.:UWB RADAR SENSORS FOR SHORT-RANGE VEHICULAR APPLICATIONS2107plete environment sensing for automobiles is achieved through a hybrid array of multiple sensor technologies and functions.The functions and typical system range of operation shown are representative only.Short-range sensing requirements for the radar sensors are envisaged to cover a variety of applications,each with differing needs for range,update rate,range resolution,and other key system parameters.fascia that (although dissipative)can be considered transparent to the radar signal without requiring specific cutouts or sim-ilar accommodations.The longer-range ACC systems have been readily available in production vehicles for over three years,and are being increasingly supplemented by video systems to im-prove the quality of information available.In the ACC systems,a narrow beam (2or 3)is typically scanned over the front of the vehicle over an azimuth variationof 5to 8,and the information used to regulate its speed so that a sufficient safety margin of distance to the vehicle ahead is maintained.These systems have a necessarily narrow scanning angle (for adequate azimuth resolution of objects that may be 150m ahead),and a range resolution of 1–2m.This distance requirement also means that the high-gain antennas have a necessarily small beamwidth that inhibits their usefulness in their ability to detect and track objects at close range(20m).Increasing the number of beams to increase the scanning angle is problematic for two reasons.Firstly,the antenna has to become more complex and,therefore,more expensive.Secondly,as the number of beams is increased,the scan rate (and,hence,dwell-time per range gate)is affected.The update rate for tracking algorithms is particularly impor-tant for very short-range operation.A further consideration is the desire to have 360coverage around the car.A single sensor is clearly not a suitable solution,and a system comprised of mul-tiple networked sensors that are distributed at appropriate loca-tions is required [26].The precise number of sensors is a func-tion of the amount of coverage required,and the corresponding coverage overlap of adjacent sensors.However,depending upon the azimuth coverage of each sensor,anywhere from 4to 16in-dividual radar sensors may be required,with placement biasedtoward the front bumper,followed by the rear bumper corre-sponding to the statistically highest crash areas.Proportionally fewer sensors are required for sideways looking operation.C.Short-Range Sensors—The Requirement for UWB Radar at 24GHzFig.2illustrates the variety of applications that the short-range sensors are required to fulfill [27],[28].They range from simple parking aid functions to more elaborate pre-crash detec-tion,and stop-and-go or short-range cruise control functionality.The precise requirements for these applications differ between each other,and also between individual vehicle manufacturers.However,it is possible to define some typical specifications,at least for the more commonplace applications.A summary of some of the key requirements for four differing sensing func-tions is given in Table I.These represent the more immediate of the applications that automotive manufacturers want to in-troduce on vehicle platforms as a first step to the eventual in-tegrated sensor solution.Parking aids are already available on many vehicles through the use of ultrasonic sensors.However,radar sensors offer potentially superior range performance,as well as being less susceptible to inclement weather conditions,or requiring custom cutouts in the bumper fascia.The pres-ence of the radar sensor is also considered to then be a gateway to some of the more complex applications,as it can be more easily integrated into the entire sensor network and its opera-tion extended,for example,from being a simple parking aid to a blind-spot detector.One of the more demanding applications is the extension of ACC to a short-range stop-and-go function-ality.This requires not only good range resolution,but also the2108IEEE TRANSACTIONS ON MICROW A VE THEORY AND TECHNIQUES,VOL.52,NO.9,SEPTEMBER 2004TABLE IS UMMARY OF T YPICAL S HORT -R ANGE S ENSOR S YSTEM R EQUIREMENTS FORA V ARIETY OF D IFFERING APPLICATIONSability to detect and track objects such as a bicycle at ranges of over 20m initially,leading to perhaps 30–40m over time as systems become more complex and mutually dependent.The longer-range ACC systems have particular difficulty in moni-toring the corners of vehicles,for example,and are looking to the short-range sensors to provide an increased warning or re-action time for cut-in stly,pre-crash detection net-works are seen as being essential,but demanding,applications that are critical to improving safety.An example of such a func-tion is pre-impact sensing,whereby the closing velocity of an object that is projected to impact a vehicle may be tracked in order that the threshold voltage for airbag deployment may be dynamically adjusted.This is especially important in side-im-pact situations where extra milliseconds for airbag firing could be important.Despite the differing requirements for these appli-cations,the concept of a networked sensor system,plus the cost requirements,oblige a common sensor architecture and design that is adaptable to be used in each worked Sensor OperationA distributed networked sensor structure for the radar re-sults in a system that has a hierarchical detection and tracking process.The totality of information available for compiling and updating the radar map is comprised of information from each of the discrete sensors,plus additional data from the other sen-sors that are included in the hybrid sensor network.The infor-mation available from a single sensor is,therefore,a subset of the total information required by the total radar system.Each sensor consists of an RF/IF front-end that forms the air inter-face —Tx and receive (Rx)circuitry and antennas —plus associ-ated control and signal circuits.Local digital signal processing (DSP)in each sensor is required to perform first tier detection analysis by generating a priority list of detected objects within the sensors ’field of view.The objects and their associated pa-rameters —range,amplitude,and relative-velocity —are sent via a network to a central processor or radar decision unit (RDU).The RDU is also networked via the controller area network (CAN)-bus to accept inputs from other systems within the ve-hicle,as shown in Fig.3.The entirety of the separate sensor in-puts are then analyzed by the RDU,which performs higher level detection and tracking algorithms,and initiates appropriate de-cisions and instructions that are output to the network bus.The requirements for detection ability for each sensor are,therefore,different for the complete radar system.For example,typicalnumbers for the probability ofdetectionand probability of falsealarm of an object may be 0.9and10,respec-tively,at the individual sensor level,but are substantially im-proved at the system level.Here,we will focus on the issues of the discrete UWB SRR sensor that forms a component part of the complete networked radar.For a comprehensive discourse on the much more complex issue of how the networked system functions,see Klotz [26].II.UWB S ENSORS AND THE FCC P ART 15R ULING The key specification common to all of the differing appli-cations that the 24-GHz sensor is required to fulfill is that of range resolution,as indicated in Table I.The accuracy of time information and,therefore,the ability to precisely determine an object ’s location,is inversely proportional to the signal band-width.The precise measurement of object movements is essen-tial for the prediction of trajectories and the prevention of false alarms.For a requirement of sub-10-cm resolution,therefore,the spectral occupancy of the main lobe of the incident wave has to be at least 3-GHz wide and more likely needs to be of the order of 4-GHz wide to allow for errors,variations,and de-sign margin.The availability of such a broad spectral frequency band has to be balanced with other practical considerations.The gain,or focusing ability,of an antenna is proportional to the antenna aperture.The antenna of each sensor,therefore,has to be small enough that an aperture of suitable electrical size can be physically mounted in the restrictive space behind a vehi-cles ’bumper fascia.In addition,as a percentile of center fre-quency,it becomes easier to produce antennas that support sig-nals of at least 4-GHz wide by increasing the frequency of op-eration.However,there are also several practical considerations that conversely argue for as low an operating frequency as pos-sible [29].The requirement for multiple sensors in a networked configuration forces the average cost per sensor to be low.De-spite the advances made in ACC radar at 77GHz,technology has not yet progressed enough such that a 77-GHz multisensor system can be cost competitive.In addition,fascia and atmo-spheric loss is far higher at 77GHz than at 24GHz —an impor-tant issue in any power-limited stly,it is believed by Short-range Automotive Radar frequency Allocation (SARA)1that the short-range sensor market is more likely to grow with a frequency allocation that is not dependent upon rapid technolog-ical advances.Weighing all of these factors together,the (nearly)1SARAis a consortium of automotive manufacturers and suppliers that wasformed in Spring 2001to coordinate frequency allocation issues for SRR sensors with the FCC,European Telecommunications Standards Institute (ETSI),and the International Telecommunication Union (ITU).GRESHAM et al.:UWB RADAR SENSORS FOR SHORT-RANGE VEHICULAR APPLICATIONS2109Fig.3.Schematic representation of multiple short-range sensors connected to a local network.Each sensor passes a detected object list onto the network for analysis in the RDU.global industrial,scientific,and medical (ISM)frequency allo-cation around 24.125GHz is ideal.Well,almost.Unfortunately,there are several licensed frequency bands that surround the 24.125-GHz ISM band that are used for predominantly low-power and sensitive appli-cations.In particular,a global spectrum allocation between 23.6–24GHz is used for radio astronomy and remote sensing.It is this band,in particular,that has caused consternation amongst other spectrum users,particularly the European Space Agency (ESA),European Meteorological Satellite Service (EUMETSAT),Committee on Radio Astronomy Frequencies (CRAF),and others [30].Passive satellite-based sensors are used by the Earth Exploration Satellite Service (EESS)for monitoring water vapor and trace gas concentration in the Earth ’s atmosphere,and the lifting of the background noise level through the introduction of millions of albeit,low-level,radiators is seen as a cause for concern.There are also concerns about the effect of increases in wide-band spectral emissions on fixed service communications (also in the 23–26-GHz band in Europe).This has led to the specific regulations imposed by the FCC,which calls for reduced emissions at certain elevation angles above the horizon over time.The specification is written in terms of an emitted power spectral density,or effective isotropic radiated power (EIRP),which allows for either a reduction in the peak transmitted power or,as is more likely,a reduction in the elevation sidelobes of the Tx antenna.Similar proposals in Europe are at the time of writing still under consideration by the ETSI.One mitigating solution that is the subject of much research —notably by the Radarnetconsortium 2—is the proposal by SARA in conjunction with the European Radiocommunications Office (ERO)to impose a sunset date on the introduction of 24-GHz radar systems of 2014or ten years after their introduction,whichever is later.In conjunction,SRR sensors would slowly migrate in frequency to be based at 79GHz.This would set an upper limit on the maximum number of sensors produced at 24GHz and,thus,limit the increase in background noise that the EESS sensors would be exposed to.It should be noted that the corresponding spectrum at 79GHz has also yet to be allocated.Table II summarizes the key elements of the Part 153ruling governing UWB radars for vehicular applications.The asso-ciated spectral mask is illustrated in Fig.4.To be considered an UWB device,the fractional bandwidth of the spectrum measured at the 10-dB point from the peak must be at least 20%or 500MHz,regardless of the fractional bandwidth.The vehicular radars must operate between 22–29GHz in such a way that the center frequency and the frequency at which the highest level emission occurs must be greater than 24.075GHz.Thus,to be considered UWB,the vehicular radar must have at least 500-MHz bandwidth to satisfy the regulations.Normally,the spectral density of the average emission in this band should not exceed 41.3dBm/MHz.To reduce potential interference2Radarnet —AEuropean-based consortium of car manufacturers,electronicssuppliers,and researchers who are developing SRR applications for 77GHz.[Online].Available:.3The Electronic Communications Committee,CEPT issued an approval no-tice for the allocation of the 77–81-GHz spectrum for Automotive Short-Range Radars on March 19,2004.2110IEEE TRANSACTIONS ON MICROW A VE THEORY AND TECHNIQUES,VOL.52,NO.9,SEPTEMBER 2004TABLE IIS UMMARY OF THE K EY E LEMENTS OF THE FCC R ULING G OVERNINGUWB R ADARS FOR V EHICULAR A PPLICATIONS[1]Fig.4.Spectral mask of the UWB ruling for vehicular radar.Note that the peak radiated emission limit overlaps the 23.6–24-GHz astronomical band and,thus,has specific additional limitations imposed in this area.with radio astronomy observations and passive earth sensing satellites,the FCC further limits the radiated emissions by requiring that,in the 23.6–24.0-GHz band,the EIRP of the antenna sidelobes beyond 30above the horizontal plane not exceed 66.3dBm/MHz until 2010,and dropping to 76.3dBm/MHz beyond 2014.In addition to the average limit of 41.3dBm/MHz,the FCC also effectively limits the peak EIRP density emission to 17dBm/MHz in a 50-MHz band around the frequency of the highest power emission.These two constraints effectively dictate a maximum duty cycle for a sensor in pulsed operation to around 0.4%to take full advantage of the average power specifications.The FCC is clearly con-cerned about the interference generated by potentially millions of radars operating simultaneously.Of course,there are also limits placed on spurious emissions;see the details in [1].One proposed solution to the restriction on elevation sidelobes is to center the spectrum of the transmitted signal above 25GHz sothat the first null ofthespectrum falls at the restricted band,thus reducing some of the demands upon antenna design.This may well become the preferred interim solution,although early sensor production is still planned for an ISM-band center frequency.TABLE IIIS UMMARY OF THE P RINCIPAL S HORT -R ANGE S ENSOR L EVEL R EQUIREMENTSFOR O BJECT DETECTIONIII.S YSTEM A RCHITECTURE AND W A VEFORM D ESIGN Table III summarizes some of the more important operational and practical requirements for a generic short-range sensor.By combining an understanding of the EIRP spectral limitations with our knowledge of the operational performance require-ments of the networked radar system,it becomes possible to compare the relative merits of different sensor architectures,and select the most appropriate.A.Sensor Architecture ConsiderationsOne can broadly characterize radar architectures of interest in vehicular applications into three generic types,which are:1)pseudorandom noise (PN)coded continuous-wave (CW)radars;2)classical frequency-chirped systems;and 3)pulsed radars [31].Simple CW Doppler radar systems are not consid-ered here,as almost all of the vehicular applications require the detection of zero relative velocity mon to all of these techniques is the ability to employ a process known as pulse compression.This is a traditional technique for enhancing radar performance and may be used to improve sensitivity for detecting targets at long range.It is also possible to combine techniques to form hybrid radar systems.Frequency chirp radars that use pulse compression are ideal for long-range higher power applications.Resolution is related to how fast and over how wide a bandwidth it is possible to generate a well-defined chirp.Close-range and closely spaced targets also put stringent requirements on local oscillator (LO)phase noise.Both of these requirements can be challenging in the UWB context in any cost-effective manner.PN-coded radar —essentially a spread-spectrum-type system —also provides the possibility for pulse compression,often referred to as coding or processing gain in the context of PN codes.Here,flexibility exists with the choice of the code,allowing designers to trade various performance parameters,with the limitation that dynamic range is often restricted by code auto-correlation properties [28].The ability to assign different codes to systems that share the same spectrum also provides an inherent resilience to interferers making it a good。