备考中考数学专题复习水平测试题及答案解析(经典珍藏版):18切线的性质与判定

合集下载

人教版九年级上《切线的判定与性质》专题练习题含答案

人教版九年级上《切线的判定与性质》专题练习题含答案

人教版九年级数学上册第二十四章圆24.2点和圆、直线和圆的位置关系切线的判定与性质专题练习题1.下列说法中,正确的是( )A.与圆有公共点的直线是圆的切线B.经过半径外端的直线是圆的切线C.经过切点的直线是圆的切线D.圆心到直线的距离等于半径的直线是圆的切线2.如图,在⊙O中,弦AB=OA,P是半径OB的延长线上一点,且PB=OB,则PA与⊙O的位置关系是_________.3.如图,△ABC的一边AB是⊙O的直径,请你添加一个条件,使BC是⊙O的切线,你所添加的条件为________________.4.如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E.求证:AC是⊙O的切线.5. 如图,AB是⊙O的直径,AC切⊙O于A,BC交⊙O于点D,若∠C=70°,则∠AOD的度数为( )A.70°B.35°C.20°D.40°6.如图,线段AB是⊙O的直径,点C,D为⊙O上的点,过点C作⊙O的切线交AB的延长线于点E,若∠E=50°,则∠CDB等于( )A.20°B.25°C.30°D.40°7.如图,等腰直角三角形ABC中,AB=AC=8,O为BC的中点,以O为圆心作半圆,使它与AB,AC都相切,切点分别为D,E,则⊙O的半径为( )A.8 B.6 C.5 D.48.如图,AB是⊙O的直径,O是圆心,BC与⊙O切于点B,CO交⊙O于点D,且BC=8,CD =4,那么⊙O的半径是______.9.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD 的延长线于点E.求证:∠BDC=∠A.10.如图,CD是⊙O的直径,弦AB⊥CD于点G,直线EF与⊙O相切于点D,则下列结论中不一定正确的是( )A.AG=BG B.AB∥EF C.AD∥BC D.∠ABC=∠ADC11. 如图,若以平行四边形一边AB为直径的圆恰好与对边CD相切于点D,则∠C=_______度.12. 如图,AB为⊙O的直径,直线l与⊙O相切于点C,AD⊥l,垂足为D,AD交⊙O于点E,连接OC,BE.若AE=6,OA=5,则线段DC的长为______.13.如图,已知△ABC内接于⊙O,BC是⊙O的直径,MN与⊙O相切,切点为A,若∠MAB=30°,则∠B=________度.14.如图,在Rt△ABC中,∠ABC=90°,∠BAC的平分线交BC于D,以D为圆心,DB长为半径作⊙D,求证:AC与⊙D相切.15.如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于点D,且∠D=2∠CAD.(1)求∠D的度数;(2)若CD=2,求BD的长.16.已知△ABC内接于⊙O,过点A作直线EF.(1)如图①,若AB为⊙O的直径,要使EF成为⊙O的切线,还需要添加的一个条件是(至少说出两种):__________________________或者_______________________;(2)如图②,如果AB是不过圆心O的弦,且∠CAE=∠B,那么EF是⊙O的切线吗?试证明你的判断.17.如图,已知直线PA交⊙O于A,B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长.答案:1. D2. 相切3. ∠ABC=90°4. 解:连接OD,∵BD为∠ABC平分线,∴∠OBD=∠CBD,∵OB=OD,∴∠OBD=∠ODB,∴∠CBD=∠ODB,∴OD∥BC,∵∠C=90°,∴∠ODA=90°,则AC为⊙O的切线5. D6. A7. D8. 69. 解:连接OD,∵CD是⊙O的切线,∴∠ODC=90°,∴∠ODB+∠BDC=90°,∵AB是⊙O的直径,∴∠ADB=90°,即∠ODB+∠ADO=90°,∴∠BDC=∠ADO,∵OA=OD,∴∠ADO=∠A,∴∠BDC=∠A10. C11. 4512. 413. 6014. 解:过D作DH⊥AC于H,由角平分线的性质可证DB=DH,∴AC与⊙D相切15. 解:(1)∵∠COD=2∠CAD,∠D=2∠CAD,∴∠D=∠COD.∵PD与⊙O相切于点C,∴OC⊥PD,即∠OCD=90°,∴∠D=45°(2)由(1)可知△OCD是等腰直角三角形,∴OC=CD=2,由勾股定理,得OD=22+22=22,∴BD=OD-OB=22-216. (1) ∠BAE=90°∠EAC=∠ABC(2) (2)EF是⊙O的切线.证明:作直径AM,连接CM,则∠ACM=90°,∠M=∠B,∴∠M+∠CAM=∠B+∠CAM=90°,∵∠CAE=∠B,∴∠CAM+∠CAE=90°,∴AE⊥AM,∵AM为直径,∴EF是⊙O的切线17. 解:(1)连接OC,证∠DAC=∠CAO=∠ACO,∴PA∥CO,又∵CD⊥PA,∴CO⊥CD,∴CD为⊙O的切线(2)过O作OF⊥AB,垂足为F,∴四边形OCDF为矩形.∵DC+DA=6,设AD=x,则OF=CD =6-x,AF=5-x,在Rt△AOF中,有AF2+OF2=OA2,即(5-x)2+(6-x)2=25,解得x1=2,x2=9,由AD<DF知0<x<5,故x=2,从而AD=2,AF=5-2=3,由垂径定理得AB=2AF =6。

2023学年九年级数学上册重要考点题(人教版)切线的判定与性质及切线长定理(10大题型(解析版)

2023学年九年级数学上册重要考点题(人教版)切线的判定与性质及切线长定理(10大题型(解析版)

切线的判定与性质及切线长定理(答案版)切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线.注意:切线的判定方法:(1)定义:直线和圆有唯一公共点时这条直线就是圆的切线;(2)定理:和圆心的距离等于半径的直线是圆的切线;(3)判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线.(切线的判定定理中强调两点:一是直线与圆有一个交点二是直线与过交点的半径垂直缺一不可).题型1:切线的判定-连半径证垂直1.如图AB为⊙O的直径AC平分∠BAD交⊙O于点C CD⊥AD垂足为点D.求证:CD是⊙O 的切线.【答案】证明:连接OC∵AC平分∠DAB∴∠DAC=∠BAC∵OC=OA∴∠BAC=∠ACO∴∠DAC=∠ACO∴OC∠AD∵CD∠AD∴OC∠DC∵OC过圆心O∴CD是∠O的切线.【解析】【分析】连接OC 根据角平分线的定义和等腰三角形的性质得出∠DAC=∠BAC 根据平行线的判定得出OC∠AD 根据平行线的性质得出OC∠DC 再根据切线的判定得出结论。

【变式1-1】如图在∠O中AB为直径BP为∠O的弦AC与BP的延长线交于点C 且AB=AC PE⊥AC于点E 求证:PE是∠O的切线.【答案】解:连接AP OP∵AB为∠O直径∴∠APB=90°即AP⊥BC又∵AB=AC∴点P是BC的中点又∵O是AB的中点∴OP是△ABC的中位线∴OP∠AC∴∠OPE=∠PEC又∵PE⊥AC∴∠PEC=90°∴∠OPE=90°∴OP⊥PE.∴PE是∠O的切线.【解析】【分析】连接AP OP 由AB为直径可知AP⊥BC结合AB=AC可得点P为BC的中点而O是AB的中点可得OP是△ABC的中位线可知OP∠AC 进而∠OPE=∠PEC 然后结合PE⊥AC可得OP⊥PE即可得到结论。

【变式1-2】如图D为∠O上一点点C在直径BA的延长线上且∠CDA=∠CBD.求证:CD是∠O 的切线.【答案】证明:连接OD∵AB为直径∴∠ADO+∠BDO=90°又∵∠CDA=∠CBD∴∠CDA=∠BDO∴∠ADC+∠ADO=90°∴OD⊥CD∴CD是∠O的切线.【解析】【分析】连接OD 由圆周角定理可得∠ADO+∠BDO=90° 由已知条件以及等腰三角形的性质可得∠CDA=∠BDO 进而得到∠ADC+∠ADO=90° 据此证明.题型2:切线的判定-作垂直证半径2.ΔABC为等腰三角形O为底边BC的中点腰AB与⊙O相切于点D.求证:AC是⊙O的切线.【答案】证明:过点O作OE∠AC于点E 连结OD OA∵AB与O相切于点D∴AB∠OD∵∠ABC为等腰三角形O是底边BC的中点∴AO是∠BAC的平分线∴OE=OD 即OE是O的半径∵AC经过O的半径OE的外端点且垂直于OE∴AC是O的切线。

(30)2018中考真题汇编 切线的性质和判定

(30)2018中考真题汇编 切线的性质和判定

2018中考数学真题汇编:切线的性质和判定一.选择题(共11小题)1.(2018•哈尔滨)如图,点P为⊙O外一点,PA为⊙O的切线,A为切点,PO交⊙O于点B,∠P=30°,OB=3,则线段BP的长为()A.3 B.3 C.6 D.92.(2018•眉山)如图所示,AB是⊙O的直径,PA切⊙O于点A,线段PO交⊙O于点C,连结BC,若∠P=36°,则∠B等于()A.27°B.32°C.36°D.54°3.(2018•重庆)如图,已知AB是⊙O的直径,点P在BA的延长线上,PD与⊙O相切于点D,过点B作PD的垂线交PD的延长线于点C,若⊙O的半径为4,BC=6,则PA的长为()A.4 B.2 C.3 D.2.54.(2018•福建)如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A.40°B.50°C.60°D.80°5.(2018•泸州)在平面直角坐标系内,以原点O为圆心,1为半径作圆,点P在直线y=上运动,过点P作该圆的一条切线,切点为A,则PA的最小值为()A.3 B.2 C.D.6.(2018•泰安)如图,BM与⊙O相切于点B,若∠MBA=140°,则∠ACB的度数为()A.40°B.50°C.60°D.70°7.(2018•深圳)如图,一把直尺,60°的直角三角板和光盘如图摆放,A为60°角与直尺交点,AB=3,则光盘的直径是()A.3 B.C.6 D.8.(2018•重庆)如图,△ABC中,∠A=30°,点O是边AB上一点,以点O为圆心,以OB为半径作圆,⊙O恰好与AC相切于点D,连接BD.若BD平分∠ABC,AD=2,则线段CD的长是()A.2 B.C.D.9.(2018•湘西州)如图,直线AB与⊙O相切于点A,AC、CD是⊙O的两条弦,且CD∥AB,若⊙O 的半径为5,CD=8,则弦AC的长为()A.10 B.8 C.4 D.410.(2018•宜昌)如图,直线AB是⊙O的切线,C为切点,OD∥AB交⊙O于点D,点E在⊙O上,连接OC,EC,ED,则∠CED的度数为()A.30°B.35°C.40°D.45°11.(2018•无锡)如图,矩形ABCD中,G是BC的中点,过A、D、G三点的圆O与边AB、CD分别交于点E、点F,给出下列说法:(1)AC与BD的交点是圆O的圆心;(2)AF与DE的交点是圆O 的圆心;(3)BC与圆O相切,其中正确说法的个数是()A.0 B.1 C.2 D.3二.填空题(共14小题)12.(2018•安徽)如图,菱形ABOC的边AB,AC分别与⊙O相切于点D,E.若点D是AB的中点,则∠DOE=°.13.(2018•连云港)如图,AB是⊙O的弦,点C在过点B的切线上,且OC⊥OA,OC交AB于点P,已知∠OAB=22°,则∠OCB=.14.(2018•泰州)如图,△ABC中,∠ACB=90°,sinA=,AC=12,将△ABC绕点C顺时针旋转90°得到△A'B'C,P为线段A′B'上的动点,以点P为圆心,PA′长为半径作⊙P,当⊙P与△ABC的边相切时,⊙P的半径为.15.(2018•宁波)如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作⊙P.当⊙P与正方形ABCD的边相切时,BP的长为3或4.16.(2018•台州)如图,AB是⊙O的直径,C是⊙O上的点,过点C作⊙O的切线交AB的延长线于点D.若∠A=32°,则∠D=26度.17.(2018•长沙)如图,点A,B,D在⊙O上,∠A=20°,BC是⊙O的切线,B为切点,OD的延长线交BC于点C,则∠OCB=50度.18.(2018•香坊区)如图,BD是⊙O的直径,BA是⊙O的弦,过点A的切线交BD延长线于点C,OE⊥AB于E,且AB=AC,若CD=2,则OE的长为.19.(2018•山西)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D是AB的中点,以CD为直径作⊙O,⊙O分别与AC,BC交于点E,F,过点F作⊙O的切线FG,交AB于点G,则FG的长为.20.(2018•包头)如图,AB是⊙O的直径,点C在⊙O上,过点C的切线与BA的延长线交于点D,点E在上(不与点B,C重合),连接BE,CE.若∠D=40°,则∠BEC=115度.21.(2018•湘潭)如图,AB是⊙O的切线,点B为切点,若∠A=30°,则∠AOB=60°.22.(2018•徐州)如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D.若∠C=18°,则∠CDA= 126 度.23.(2018•青岛)如图,Rt △ABC ,∠B=90°,∠C=30°,O 为AC 上一点,OA=2,以O 为圆心,以 OA 为半径的圆与CB 相切于点E ,与AB 相交于点F ,连接OE 、OF ,则图中阴影部分的面积是 ﹣π .24.(2018•广东)如图,矩形ABCD 中,BC=4,CD=2,以AD 为直径的半圆O 与BC 相切于点E ,连接BD ,则阴影部分的面积为 π .(结果保留π)【分析】连接OE ,如图,利用切线的性质得OD=2,OE ⊥BC ,易得四边形OECD 为正方形,先利用扇形面积公式,利用S 正方形OECD ﹣S 扇形EOD 计算由弧DE 、线段EC 、CD 所围成的面积,然后利用三角形的面积减去刚才计算的面积即可得到阴影部分的面积.【解答】解:连接OE ,如图,∵以AD 为直径的半圆O 与BC 相切于点E ,∴OD=2,OE ⊥BC ,易得四边形OECD 为正方形,∴由弧DE 、线段EC 、CD 所围成的面积=S 正方形OECD ﹣S 扇形EOD =22﹣=4﹣π,∴阴影部分的面积=×2×4﹣(4﹣π)=π.故答案为π.25.(2018•南京)如图,在矩形ABCD中,AB=5,BC=4,以CD为直径作⊙O.将矩形ABCD绕点C 旋转,使所得矩形A′B′C′D′的边A′B′与⊙O相切,切点为E,边CD′与⊙O相交于点F,则CF的长为4.【分析】连接OE,延长EO交CD于点G,作OH⊥B′C,由旋转性质知∠B′=∠B′CD′=90°、AB=CD=5、BC=B′C=4,从而得出四边形OEB′H和四边形EB′CG都是矩形且OE=OD=OC=2.5,继而求得CG=B′E=OH===2,根据垂径定理可得CF的长.【解答】解:连接OE,延长EO交CD于点G,作OH⊥B′C于点H,则∠OEB′=∠OHB′=90°,∵矩形ABCD绕点C旋转所得矩形为A′B′C′D′,∴∠B′=∠B′CD′=90°,AB=CD=5、BC=B′C=4,∴四边形OEB′H和四边形EB′CG都是矩形,OE=OD=OC=2.5,∴B′H=OE=2.5,∴CH=B′C﹣B′H=1.5,∴CG=B′E=OH===2,∵四边形EB′CG是矩形,∴∠OGC=90°,即OG⊥CD′,∴CF=2CG=4,故答案为:4.三.解答题(共25小题)26.(2018•柯桥区模拟)如图,已知三角形ABC的边AB是⊙O的切线,切点为B.AC经过圆心O 并与圆相交于点D、C,过C作直线CE丄AB,交AB的延长线于点E.(1)求证:CB平分∠ACE;(2)若BE=3,CE=4,求⊙O的半径.【分析】(1)证明:如图1,连接OB,由AB是⊙0的切线,得到OB⊥AB,由于CE丄AB,的OB ∥CE,于是得到∠1=∠3,根据等腰三角形的性质得到∠1=∠2,通过等量代换得到结果.(2)如图2,连接BD通过△DBC∽△CBE,得到比例式,列方程可得结果.【解答】(1)证明:如图1,连接OB,∵AB是⊙0的切线,∴OB⊥AB,∵CE丄AB,∴OB∥CE,∴∠1=∠3,∵OB=OC,∴∠1=∠2∴∠2=∠3,∴CB平分∠ACE;(2)如图2,连接BD,∵CE丄AB,∴∠E=90°,∴BC===5,∵CD是⊙O的直径,∴∠DBC=90°,∴∠E=∠DBC,∴△DBC∽△CBE,∴,∴BC2=CD•CE,∴CD==,∴OC==,∴⊙O的半径=.27.(2018•天津)已知AB是⊙O的直径,弦CD与AB相交,∠BAC=38°,(I)如图①,若D为的中点,求∠ABC和∠ABD的大小;(Ⅱ)如图②,过点D作⊙O的切线,与AB的延长线交于点P,若DP∥AC,求∠OCD的大小.【分析】(Ⅰ)根据圆周角和圆心角的关系和图形可以求得∠ABC和∠ABD的大小;(Ⅱ)根据题意和平行线的性质、切线的性质可以求得∠OCD的大小.【解答】解:(Ⅰ)∵AB是⊙O的直径,弦CD与AB相交,∠BAC=38°,∴∠ACB=90°,∴∠ABC=∠ACB﹣∠BAC=90°﹣38°=52°,∵D为的中点,∠AOB=180°,∴∠AOD=90°,∴∠ACD=45°;(Ⅱ)连接OD,∵DP切⊙O于点D,∴OD⊥DP,即∠ODP=90°,由DP∥AC,又∠BAC=38°,∴∠P=∠BAC=38°,∵∠AOD是△ODP的一个外角,∴∠AOD=∠P+∠ODP=128°,∴∠ACD=64°,∵OC=OA,∠BAC=38°,∴∠OCA=∠BAC=38°,∴∠OCD=∠ACD﹣∠OCA=64°﹣38°=26°.28.(2018•荆门)如图,AB为⊙O的直径,C为⊙O上一点,经过点C的切线交AB的延长线于点E,AD⊥EC交EC的延长线于点D,AD交⊙O于F,FM⊥AB于H,分别交⊙O、AC于M、N,连接MB,BC.(1)求证:AC平分∠DAE;(2)若cosM=,BE=1,①求⊙O的半径;②求FN的长.【分析】(1)连接OC,如图,利用切线的性质得OC⊥DE,则判断OC∥AD得到∠1=∠3,加上∠2=∠3,从而得到∠1=∠2;(2)①利用圆周角定理和垂径定理得到=,则∠COE=∠FAB,所以∠FAB=∠M=∠COE,设⊙O的半径为r,然后在Rt△OCE中利用余弦的定义得到=,从而解方程求出r即可;②连接BF,如图,先在Rt△AFB中利用余弦定义计算出AF=,再计算出OC=3,接着证明△AFN∽△AEC,然后利用相似比可计算出FN的长.【解答】(1)证明:连接OC,如图,∵直线DE与⊙O相切于点C,∴OC⊥DE,又∵AD⊥DE,∴OC∥AD.∴∠1=∠3∵OA=OC,∴∠2=∠3,∴∠1=∠2,∴AC平方∠DAE;(2)解:①∵AB为直径,∴∠AFB=90°,而DE⊥AD,∴BF∥DE,∴OC⊥BF,∴=,∴∠COE=∠FAB,而∠FAB=∠M,∴∠COE=∠M,设⊙O的半径为r,在Rt△OCE中,cos∠COE==,即=,解得r=4,即⊙O的半径为4;②连接BF,如图,在Rt△AFB中,cos∠FAB=,∴AF=8×=在Rt△OCE中,OE=5,OC=4,∴CE=3,∵AB⊥FM,∴,∴∠5=∠4,∵FB∥DE,∴∠5=∠E=∠4,∵=,∴∠1=∠2,∴△AFN∽△AEC,∴=,即=,∴FN=.29.(2018•随州)如图,AB是⊙O的直径,点C为⊙O上一点,CN为⊙O的切线,OM⊥AB于点O,分别交AC、CN于D、M两点.(1)求证:MD=MC;(2)若⊙O的半径为5,AC=4,求MC的长.【分析】(1)连接OC,利用切线的性质证明即可;(2)根据相似三角形的判定和性质以及勾股定理解答即可.【解答】解:(1)连接OC,∵CN为⊙O的切线,∴OC⊥CM,∠OCA+∠ACM=90°,∵OM⊥AB,∴∠OAC+∠ODA=90°,∵OA=OC,∴∠OAC=∠OCA,∴∠ACM=∠ODA=∠CDM,∴MD=MC;(2)由题意可知AB=5×2=10,AC=4,∵AB是⊙O的直径,∴∠ACB=90°,∴BC=,∵∠AOD=∠ACB,∠A=∠A,∴△AOD∽△ACB,∴,即,可得:OD=2.5,设MC=MD=x,在Rt△OCM中,由勾股定理得:(x+2.5)2=x2+52,解得:x=,即MC=.30.(2018•黄冈)如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P,过B点的切线交OP于点C.(1)求证:∠CBP=∠ADB.(2)若OA=2,AB=1,求线段BP的长.【分析】(1)连接OB,如图,根据圆周角定理得到∠ABD=90°,再根据切线的性质得到∠OBC=90°,然后利用等量代换进行证明;(2)证明△AOP∽△ABD,然后利用相似比求BP的长.【解答】(1)证明:连接OB,如图,∵AD是⊙O的直径,∴∠ABD=90°,∴∠A+∠ADB=90°,∵BC为切线,∴OB⊥BC,∴∠OBC=90°,∴∠OBA+∠CBP=90°,而OA=OB,∴∠A=∠OBA,∴∠CBP=∠ADB;(2)解:∵OP⊥AD,∴∠POA=90°,∴∠P+∠A=90°,∴∠P=∠D,∴△AOP∽△ABD,∴=,即=,∴BP=7.31.(2018•襄阳)如图,AB是⊙O的直径,AM和BN是⊙O的两条切线,E为⊙O上一点,过点E 作直线DC分别交AM,BN于点D,C,且CB=CE.(1)求证:DA=DE;(2)若AB=6,CD=4,求图中阴影部分的面积.【分析】(1)连接OE.推知CD为⊙O的切线,即可证明DA=DE;(2)利用分割法求得阴影部分的面积.【解答】解:(1)证明:连接OE、OC.∵OB=OE,∴∠OBE=∠OEB.∵BC=EC,∴∠CBE=∠CEB,∴∠OBC=∠OEC.∵BC为⊙O的切线,∴∠OEC=∠OBC=90°;∵OE为半径,∴CD为⊙O的切线,∵AD切⊙O于点A,∴DA=DE;(2)如图,过点D作DF⊥BC于点F,则四边形ABFD是矩形,∴AD=BF,DF=AB=6,∴DC=BC+AD=4.∵FC==2,∴BC﹣AD=2,∴BC=3.在直角△OBC中,tan∠BOE==,∴∠BOC=60°.在△OEC与△OBC中,,∴△OEC≌△OBC(SSS),∴∠BOE=2∠BOC=120°.∴S阴影部分=S四边形BCEO﹣S扇形OBE=2×BC•OB﹣=9﹣3π.32.(2018•长春)如图,AB是⊙O的直径,AC切⊙O于点A,BC交⊙O于点D.已知⊙O的半径为6,∠C=40°.(1)求∠B的度数.(2)求的长.(结果保留π)【分析】(1)根据切线的性质求出∠A=90°,根据三角形内角和定理求出即可;(2)根据圆周角定理求出∠AOD,根据弧长公式求出即可.【解答】解:(1)∵AC切⊙O于点A,∠BAC=90°,∵∠C=40°,∴∠B=50°;(2)连接OD,∵∠B=50°,∴∠AOD=2∠B=100°,∴的长为=π.33.(2018•白银)如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC,AB分别相交于点D,F,且DE=EF.(1)求证:∠C=90°;(2)当BC=3,sinA=时,求AF的长.【分析】(1)连接OE,BE,因为DE=EF,所以,从而易证∠OEB=∠DBE,所以OE∥BC,从可证明BC⊥AC;(2)设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sinA===,从而可求出r的值.【解答】解:(1)连接OE,BE,∵DE=EF,∴∴∠OBE=∠DBE∵OE=OB,∴∠OEB=∠OBE∴∠OEB=∠DBE,∴OE∥BC∵⊙O与边AC相切于点E,∴OE⊥AC∴BC⊥AC∴∠C=90°(2)在△ABC,∠C=90°,BC=3,sinA=∴AB=5,设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sinA===∴r=∴AF=5﹣2×=34.(2018•绵阳)如图,AB是⊙O的直径,点D在⊙O上(点D不与A,B重合),直线AD交过点B的切线于点C,过点D作⊙O的切线DE交BC于点E.(1)求证:BE=CE;(2)若DE∥AB,求sin∠ACO的值.【分析】(1)证明:连接OD,如图,利用切线长定理得到EB=ED,利用切线的性质得OD⊥DE,AB ⊥CB,再根据等角的余角相等得到∠CDE=∠ACB,则EC=ED,从而得到BE=CE;(2)作OH⊥AD于H,如图,设⊙O的半径为r,先证明四边形OBED为正方形得DE=CE=r,再利用△AOD和△CDE都为等腰直角三角形得到OH=DH=r,CD=r,接着根据勾股定理计算出OC=r,然后根据正弦的定义求解.【解答】(1)证明:连接OD,如图,∵EB、ED为⊙O的切线,∴EB=ED,OD⊥DE,AB⊥CB,∴∠ADO+∠CDE=90°,∠A+∠ACB=90°,∵OA=OD,∴∠A=∠ADO,∴∠CDE=∠ACB,∴EC=ED,∴BE=CE;(2)解:作OH⊥AD于H,如图,设⊙O的半径为r,∵DE∥AB,∴∠DOB=∠DEB=90°,∴四边形OBED为矩形,而OB=OD,∴四边形OBED为正方形,∴DE=CE=r,易得△AOD和△CDE都为等腰直角三角形,∴OH=DH=r,CD=r,在Rt△OCB中,OC==r,在Rt△OCH中,sin∠OCH===,即sin∠ACO的值为.35.(2018•德州)如图,AB是⊙O的直径,直线CD与⊙O相切于点C,且与AB的延长线交于点E,点C是的中点.(1)求证:AD⊥CD;(2)若∠CAD=30°,⊙O的半径为3,一只蚂蚁从点B出发,沿着BE﹣EC﹣爬回至点B,求蚂蚁爬过的路程(π≈3.14,≈1.73,结果保留一位小数).【分析】(1)连接OC,根据切线的性质得到OC⊥CD,证明OC∥AD,根据平行线的性质证明;(2)根据圆周角定理得到∠COE=60°,根据勾股定理、弧长公式计算即可.【解答】(1)证明:连接OC,∵直线CD与⊙O相切,∴OC⊥CD,∵点C是的中点,∴∠DAC=∠EAC,∵OA=OC,∴∠OCA=∠EAC,∴∠DAC=∠OCA,∴OC∥AD,∴AD⊥CD;(2)解:∵∠CAD=30°,∴∠CAE=∠CAD=30°,由圆周角定理得,∠COE=60°,∴OE=2OC=6,EC=OC=3,==π,∴蚂蚁爬过的路程=3+3+π≈11.3.36.(2018•北京)如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.【分析】(1)先判断出Rt△ODP≌Rt△OCP,得出∠DOP=∠COP,即可得出结论;(2)先求出∠COD=60°,得出△OCD是等边三角形,最后用锐角三角函数即可得出结论.【解答】解:(1)连接OC,OD,∴OC=OD,∵PD,PC是⊙O的切线,∵∠ODP=∠OCP=90°,在Rt△ODP和Rt△OCP中,,∴Rt△ODP≌Rt△OCP,∴∠DOP=∠COP,∵OD=OC,∴OP⊥CD;(2)如图,连接OD,OC,∴OA=OD=OC=OB=2,∴∠ADO=∠DAO=50°,∠BCO=∠CBO=70°,∴∠AOD=80°,∠BOC=40°,∴∠COD=60°,∵OD=OC,∴△COD是等边三角形,由(1)知,∠DOP=∠COP=30°,在Rt△ODP中,OP==.37.(2018•铜仁市)如图,在三角形ABC中,AB=6,AC=BC=5,以BC为直径作⊙O交AB于点D,交AC于点G,直线DF是⊙O的切线,D为切点,交CB的延长线于点E.(1)求证:DF⊥AC;(2)求tan∠E的值.【分析】(1)连接OC,CD,根据圆周角定理得∠BDC=90°,由等腰三角形三线合一的性质得:D为AB的中点,所以OD是中位线,由三角形中位线性质得:OD∥AC,根据切线的性质可得结论;(2)如图,连接BG,先证明EF∥BG,则∠CBG=∠E,求∠CBG的正切即可.【解答】(1)证明:如图,连接OC,CD,∵BC是⊙O的直径,∴∠BDC=90°,∴CD⊥AB,∵AC=BC,∴AD=BD,∵OB=OC,∴OD是△ABC的中位线∴OD∥AC,∵DF为⊙O的切线,∴OD⊥DF,∴DF⊥AC;(2)解:如图,连接BG,∵BC是⊙O的直径,∴∠BGC=90°,∵∠EFC=90°=∠BGC,∴EF∥BG,∴∠CBG=∠E,Rt△BDC中,∵BD=3,BC=5,∴CD=4,S△ABC=,6×4=5BG,BG=,由勾股定理得:CG==,∴tan∠CBG=tan∠E===.38.(2018•昆明)如图,AB是⊙O的直径,ED切⊙O于点C,AD交⊙O于点F,∠AC平分∠BAD,连接BF.(1)求证:AD⊥ED;(2)若CD=4,AF=2,求⊙O的半径.【分析】(1)连接OC,如图,先证明OC∥AD,然后利用切线的性质得OC⊥DE,从而得到AD⊥ED;(2)OC交BF于H,如图,利用圆周角定理得到∠AFB=90°,再证明四边形CDFH为矩形得到FH=CD=4,∠CHF=90°,利用垂径定理得到BH=FH=4,然后利用勾股定理计算出AB,从而得到⊙O的半径.【解答】(1)证明:连接OC,如图,∵AC平分∠BAD,∴∠1=∠2,∵OA=OC,∴∠1=∠3,∴∠2=∠3,∴OC∥AD,∵ED切⊙O于点C,∴OC⊥DE,∴AD⊥ED;(2)解:OC交BF于H,如图,∵AB为直径,∴∠AFB=90°,易得四边形CDFH为矩形,∴FH=CD=4,∠CHF=90°,∴OH⊥BF,∴BH=FH=4,∴BF=8,在Rt△ABF中,AB===2,∴⊙O的半径为.39.(2018•陕西)如图,在Rt△ABC中,∠ACB=90°,以斜边AB上的中线CD为直径作⊙O,分别与AC、BC交于点M、N.(1)过点N作⊙O的切线NE与AB相交于点E,求证:NE⊥AB;(2)连接MD,求证:MD=NB.【分析】(1)连接ON,如图,根据斜边上的中线等于斜边的一半得到CD=AD=DB,则∠1=∠B,再证明∠2=∠B得到ON∥DB,接着根据切线的性质得到ON⊥NE,然后利用平行线的性质得到结论;(2)连接DN,如图,根据圆周角定理得到∠CMD=∠CND=90°,则可判断四边形CMDN为矩形,所以DM=CN,然后证明CN=BN,从而得到MD=NB.【解答】证明:(1)连接ON,如图,∵CD为斜边AB上的中线,∴CD=AD=DB,∴∠1=∠B,∵OC=ON,∴∠1=∠2,∴∠2=∠B,∴ON∥DB,∵NE为切线,∴ON⊥NE,∴NE⊥AB;(2)连接DN,如图,∵AD为直径,∴∠CMD=∠CND=90°,而∠MCB=90°,∴四边形CMDN为矩形,∴DM=CN,∵DN⊥BC,∠1=∠B,∴CN=BN,∴MD=NB.40.(2018•曲靖)如图,AB为⊙O的直径,点C为⊙O上一点,将弧BC沿直线BC翻折,使弧BC 的中点D恰好与圆心O重合,连接OC,CD,BD,过点C的切线与线段BA的延长线交于点P,连接AD,在PB的另一侧作∠MPB=∠ADC.(1)判断PM与⊙O的位置关系,并说明理由;(2)若PC=,求四边形OCDB的面积.【分析】(1)连接DO并延长交PM于E,如图,利用折叠的性质得OC=DC,BO=BD,则可判断四边形OBDC为菱形,所以OD⊥BC,△OCD和△OBD都是等边三角形,从而计算出∠COP=∠EOP=60°,接着证明PM∥BC得到OE⊥PM,所以OE=OP,根据切线的性质得到OC⊥PC,则OC=OP,从而可判定PM是⊙O的切线;(2)先在Rt△OPC中计算出OC=1,然后根据等边三角形的面积公式计算四边形OCDB的面积.【解答】解:(1)PM与⊙O相切.理由如下:连接DO并延长交PM于E,如图,∵弧BC沿直线BC翻折,使弧BC的中点D恰好与圆心O重合,∴OC=DC,BO=BD,∴OC=DC=BO=BD,∴四边形OBDC为菱形,∴OD⊥BC,∴△OCD和△OBD都是等边三角形,∴∠COD=∠BOD=60°,∴∠COP=∠EOP=60°,∵∠MPB=∠ADC,而∠ADC=∠ABC,∴∠ABC=∠MPB,∴PM∥BC,∴OE⊥PM,∴OE=OP,∵PC为⊙O的切线,∴OC⊥PC,∴OC=OP,∴OE=OC,而OE⊥PC,∴PM是⊙O的切线;(2)在Rt△OPC中,OC=PC=×=1,=2××12=.∴四边形OCDB的面积=2S△OCD41.(2018•邵阳)如图所示,AB是⊙O的直径,点C为⊙O上一点,过点B作BD⊥CD,垂足为点D,连结BC.BC平分∠ABD.求证:CD为⊙O的切线.【分析】先利用BC平分∠ABD得到∠OBC=∠DBC,再证明OC∥BD,从而得到OC⊥CD,然后根据切线的判定定理得到结论.【解答】证明:∵BC平分∠ABD,∴∠OBC=∠DBC,∵OB=OC,∴∠OBC=∠OCB,∴∠OCB=∠DBC,∴OC∥BD,∵BD⊥CD,∴OC⊥CD,∴CD为⊙O的切线.42.(2018•黄石)如图,已知A、B、C、D、E是⊙O上五点,⊙O的直径BE=2,∠BCD=120°,A 为的中点,延长BA到点P,使BA=AP,连接PE.(1)求线段BD的长;(2)求证:直线PE是⊙O的切线.【分析】(1)连接DB,如图,利用圆内接四边形的性质得∠DEB=60°,再根据圆周角定理得到∠BDE=90°,然后根据含30度的直角三角形三边的关系计算BD的长;(2)连接EA,如图,根据圆周角定理得到∠BAE=90°,而A为的中点,则∠ABE=45°,再根据等腰三角形的判定方法,利用BA=AP得到△BEP为等腰直角三角形,所以∠PEB=90°,然后根据切线的判定定理得到结论.【解答】(1)解:连接DB,如图,∵∠BCD+∠DEB=180°,∴∠DEB=180°﹣120°=60°,∵BE为直径,∴∠BDE=90°,在Rt△BDE中,DE=BE=×2=,BD=DE=×=3;(2)证明:连接EA,如图,∵BE为直径,∴∠BAE=90°,∵A为的中点,∴∠ABE=45°,∵BA=AP,而EA⊥BA,∴△BEP为等腰直角三角形,∴∠PEB=90°,∴PE⊥BE,∴直线PE是⊙O的切线.43.(2018•怀化)已知:如图,AB是⊙O的直径,AB=4,点F,C是⊙O上两点,连接AC,AF,OC,弦AC平分∠FAB,∠BOC=60°,过点C作CD⊥AF交AF的延长线于点D,垂足为点D.(1)求扇形OBC的面积(结果保留);(2)求证:CD是⊙O的切线.【分析】(1)由扇形的面积公式即可求出答案.(2)易证∠FAC=∠ACO,从而可知AD∥OC,由于CD⊥AF,所以CD⊥OC,所以CD是⊙O的切线.【解答】解:(1)∵AB=4,∴OB=2∵∠COB=60°,==∴S扇形OBC(2)∵AC平分∠FAB,∴∠FAC=∠CAO,∵AO=CO,∴∠ACO=∠CAO∴∠FAC=∠ACO∴AD∥OC,∵CD⊥AF,∴CD⊥OC∵C在圆上,∴CD是⊙O的切线44.(2018•新疆)如图,PA与⊙O相切于点A,过点A作AB⊥OP,垂足为C,交⊙O于点B.连接PB,AO,并延长AO交⊙O于点D,与PB的延长线交于点E.(1)求证:PB是⊙O的切线;(2)若OC=3,AC=4,求sinE的值.【分析】(1)要证明是圆的切线,须证明过切点的半径垂直,所以连接OBB,证明OB⊥PE即可.(2)要求sinE,首先应找出直角三角形,然后利用直角三角函数求解即可.而sinE既可放在直角三角形EAP中,也可放在直角三角形EBO中,所以利用相似三角形的性质求出EP或EO的长即可解决问题【解答】(1)证明:连接OB∵PO⊥AB,∴AC=BC,∴PA=PB在△PAO和△PBO中∴△PAO和≌△PBO∴∠OBP=∠OAP=90°∴PB是⊙O的切线.(2)连接BD,则BD∥PO,且BD=2OC=6在Rt△ACO中,OC=3,AC=4∴AO=5在Rt△ACO与Rt△PAO中,∠APO=∠APO,∠PAO=∠ACO=90°∴△ACO∼△PAO=∴PO=,PA=∴PB=PA=在△EPO与△EBD中,BD∥PO∴△EPO∽△EBD∴=,解得EB=,PE=,∴sinE==45.(2018•安顺)如图,在△ABC中,AB=AC,O为BC的中点,AC与半圆O相切于点D.(1)求证:AB是半圆O所在圆的切线;(2)若cos∠ABC=,AB=12,求半圆O所在圆的半径.【分析】(1)先判断出∠CAO=∠BAO,进而判断出OD=OE,即可得出结论;(2)先求出OB,再用勾股定理求出OA,最后用三角形的面积即可得出结论.【解答】解:(1)如图,作OE⊥AB于E,连接OD,OA,∵AB=AC,点O是BC的中点,∴∠CAO=∠BAO,∵AC与半圆O相切于D,∴OD⊥AC,∵OE⊥AB,∴OD=OE,∵AB径半圆O的半径的外端点,∴AB是半圆O所在圆的切线;(2)∵AB=AC,O是BC的中点,∴AO⊥BC,在Rt△AOB中,OB=AB•cos∠ABC=12×=8,根据勾股定理得,OA==4,=AB•OE=OB•OA,由三角形的面积得,S△AOB∴OE==,即:半圆O所在圆的半径为.46.(2018•衡阳)如图,⊙O是△ABC的外接圆,AB为直径,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC分别交AC、AB的延长线于点E、F.(1)求证:EF是⊙O的切线;(2)若AC=4,CE=2,求的长度.(结果保留π)【分析】(1)连接OD,由OA=OD知∠OAD=∠ODA,由AD平分∠EAF知∠DAE=∠DAO,据此可得∠DAE=∠ADO,继而知OD∥AE,根据AE⊥EF即可得证;(2)作OG⊥AE,知AG=CG=AC=2,证四边形ODEG是矩形得OA=OB=OD=CG+CE=4,再证△ADE∽△ABD得AD2=48,据此得出BD的长及∠BAD的度数,利用弧长公式可得答案.【解答】解:(1)如图,连接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠EAF,∴∠DAE=∠DAO,∴∠DAE=∠ADO,∴OD∥AE,∵AE⊥EF,∴OD⊥EF,∴EF是⊙O的切线;(2)如图,作OG⊥AE于点G,连接BD,则AG=CG=AC=2,∠OGE=∠E=∠ODE=90°,∴四边形ODEG是矩形,∴OA=OB=OD=CG+CE=2+2=4,∠DOG=90°,∵∠DAE=∠BAD,∠AED=∠ADB=90°,∴△ADE∽△ABD,∴=,即=,∴AD2=48,在Rt△ABD中,BD==4,在Rt△ABD中,∵AB=2BD,∴∠BAD=30°,∴∠BOD=60°,则的长度为=.47.(2018•孝感)如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,交AC于点E,过点D作DF⊥AC于点F,交AB的延长线于点G.(1)求证:DF是⊙O的切线;(2)已知BD=2,CF=2,求AE和BG的长.【分析】(1)连接OD,AD,由圆周角定理可得AD⊥BC,结合等腰三角形的性质知BD=CD,再根据OA=OB知OD∥AC,从而由DG⊥AC可得OD⊥FG,即可得证;(2)连接BE.BE∥GF,推出△AEB∽△AFG,可得=,由此构建方程即可解决问题;【解答】解:(1)连接OD,AD,∵AB为⊙O的直径,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=CD,又∵OA=OB,∴OD∥AC,∵DG⊥AC,∴OD⊥FG,∴直线FG与⊙O相切;(2)连接BE.∵BD=2,∴,∵CF=2,∴DF==4,∴BE=2DF=8,∵cos∠C=cos∠ABC,∴=,∴=,∴AB=10,∴AE==6,∵BE⊥AC,DF⊥AC,∴BE∥GF,∴△AEB∽△AFG,∴=,∴=,∴BG=.48.(2018•江西)如图,在△ABC中,O为AC上一点,以点O为圆心,OC为半径做圆,与BC相切于点C,过点A作AD⊥BO交BO的廷长线于点D,且∠AOD=∠BAD.(1)求证:AB为⊙O的切线;(2)若BC=6,tan∠ABC=,求AD的长.【分析】(1)作OE⊥AB,先由∠AOD=∠BAD求得∠ABD=∠OAD,再由∠BOC=∠D=90°及∠BOC=∠AOD求得∠OBC=∠OAD=∠ABD,最后证△BOC≌△BOE得OE=OC,依据切线的判定可得;(2)先求得∠EOA=∠ABC,在Rt△ABC中求得AC=8、AB=10,由切线长定理知BE=BC=6、AE=4、OE=3,继而得BO=3,再证△ABD∽△OBC得=,据此可得答案.【解答】解:(1)过点O作OE⊥AB于点E,∵AD⊥BO于点D,∴∠D=90°,∴∠BAD+∠ABD=90°,∠AOD+∠OAD=90°,∵∠AOD=∠BAD,∴∠ABD=∠OAD,又∵BC为⊙O的切线,∴AC⊥BC,∴∠BOC=∠D=90°,∵∠BOC=∠AOD,∴∠OBC=∠OAD=∠ABD,在△BOC和△BOE中,∵,∴△BOC≌△BOE(AAS),∴OE=OC,∵OE⊥AB,∴AB是⊙O的切线;(2)∵∠ABC+∠BAC=90°,∠EOA+∠BAC=90°,∴∠EOA=∠ABC,∵tan∠ABC=、BC=6,∴AC=BC•tan∠ABC=8,则AB=10,由(1)知BE=BC=6,∴AE=4,∵tan∠EOA=tan∠ABC=,∴=,∴OE=3,OB==3,∵∠ABD=∠OBC,∠D=∠ACB=90°,∴△ABD∽△OBC,∴=,即=,∴AD=2.49.(2018•金华)如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=,求⊙O的半径.【分析】(1)连接OD,由OD=OB,利用等边对等角得到一对角相等,再由已知角相等,等量代换得到∠1=∠3,求出∠4为90°,即可得证;(2)设圆的半径为r,利用锐角三角函数定义求出AB的长,再利用勾股定理列出关于r的方程,求出方程的解即可得到结果.【解答】(1)证明:连接OD,∵OB=OD,∴∠3=∠B,∵∠B=∠1,∴∠1=∠3,在Rt△ACD中,∠1+∠2=90°,∴∠4=180°﹣(∠2+∠3)=90°,∴OD⊥AD,则AD为圆O的切线;(2)设圆O的半径为r,在Rt△ABC中,AC=BCtanB=4,根据勾股定理得:AB==4,∴OA=4﹣r,在Rt△ACD中,tan∠1=tanB=,∴CD=ACtan∠1=2,根据勾股定理得:AD2=AC2+CD2=16+4=20,在Rt△ADO中,OA2=OD2+AD2,即(4﹣r)2=r2+20,解得:r=.50.(2018•南充)如图,C是⊙O上一点,点P在直径AB的延长线上,⊙O的半径为3,PB=2,PC=4.(1)求证:PC是⊙O的切线.(2)求tan∠CAB的值.【分析】(1)可以证明OC2+PC2=OP2得△OCP是直角三角形,即OC⊥PC,PC是⊙O的切线(2))AB是直径,得∠ACB=90°,通过角的关系可以证明△PBC∽△PCA,进而,得出tan∠CAB=.【解答】解:(1)如图,连接OC、BC∵⊙O的半径为3,PB=2∴OC=OB=3,OP=OB+PB=5∵PC=4∴OC2+PC2=OP2∴△OCP是直角三角形,∴OC⊥PC∴PC是⊙O的切线.(2)∵AB是直径∴∠ACB=90°∴∠ACO+∠OCB=90°∵OC⊥PC∴∠BCP+∠OCB=90°∴∠BCP=∠ACO∵OA=OC∴∠A=∠ACO∴∠A=∠BCP在△PBC和△PCA中:∠BCP=∠A,∠P=∠P ∴△PBC∽△PCA,∴∴tan∠CAB=。

2021年中考一轮复习九年级数学高频考点《切线的判定与性质》专题训练(附答案)

2021年中考一轮复习九年级数学高频考点《切线的判定与性质》专题训练(附答案)

2021年春九年级数学中考一轮复习高频考点《切线的判定与性质》专题训练(附答案)1.如图,在△ABC中,O为BC边上的一点,以O为圆心的半圆分别与AB,AC相切于点M,N.已知∠BAC=120°,AB+AC=16,的长为π,则图中阴影部分的面积为.2.如图,已知AB是⊙O的直径,BC与⊙O相切于点B,连接AC,OC.若sin∠BAC=,则tan∠BOC=.3.如图,将一块三角板和半圆形量角器按图中方式叠放,三角板的一直角边与量角器的零刻度线所在直线重合,斜边与半圆相切,对应的圆心角(∠AOB)为120°,OC长为3,则图中扇形AOB的面积是.4.已知AB为⊙O的直径且长为2r,C为⊙O上异于A,B的点,若AD与过点C的⊙O的切线互相垂直,垂足为D.①若等腰三角形AOC的顶角为120度,则CD=r,②若△AOC为正三角形,则CD=r,③若等腰三角形AOC的对称轴经过点D,则CD=r,④无论点C在何处,将△ADC沿AC折叠,点D一定落在直径AB上,其中正确结论的序号为.5.如图,在Rt△AOB中,OA=OB=4.⊙O的半径为2,点P是AB边上的动点,过点P作⊙O的一条切线PQ(点Q为切点),则线段PQ长的最小值为.6.如图,在矩形ABCD中,AB=5,BC=4,以CD为直径作⊙O.将矩形ABCD绕点C 旋转,使所得矩形A′B′CD′的边A′B′与⊙O相切,切点为E,边CD′与⊙O相交于点F,则CF的长为.7.如图,P A、PB为圆O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交圆O于点D,下列结论不一定成立的是()A.P A=PB B.∠BPD=∠APD C.AB⊥PD D.AB平分PD 8.如图,P A、PB分别与⊙O相切于A、B两点,点C为⊙O上一点,连接AC、BC,若∠P=50°,则∠ACB的度数为()A.60°B.75°C.70°D.65°9.已知,如图,△ABC中,AB=10,BC=6,AC=8,半径为1的⊙O与三角形的边AB、AC都相切,点P为⊙O上一动点,点Q为BC边上一动点,则PQ的最大值与最小值的和为()A.11B.5+4C.5+5D.1210.我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l:y=kx+4与x轴、y轴分别交于A、B,∠OAB=30°,点P在x轴上,⊙P与l相切,当P在线段OA上运动时,使得⊙P成为整圆的点P个数是()A.6B.8C.10D.1211.如图,P A,PB切⊙O于A、B两点,CD切⊙O于点E,交P A,PB于C,D.若⊙O 的半径为r,△PCD的周长等于3r,则tan∠APB的值是()A.B.C.D.12.如图,G为△ABC的重心.若圆G分别与AC、BC相切,且与AB相交于两点,则关于△ABC三边长的大小关系,下列何者正确?()A.BC<AC B.BC>AC C.AB<AC D.AB>AC13.如图,AB是⊙O的直径,⊙O交BC的中点于D,DE⊥AC于点E,连接AD,则下列结论正确的个数是()①AD⊥BC;②∠EDA=∠B;③OA=AC;④DE是⊙O的切线.A.1个B.2个C.3个D.4个14.矩形的两邻边长分别为2.5和5,若以较长一边为直径作半圆,则矩形的各边与半圆相切的线段最多有()A.0条B.1条C.2条D.3条15.如图,在直角梯形ABCD中,AD∥BC,AB⊥BC,AD=1,BC=3,CD=4.梯形的高DH与中位线EF交于点G,则下列结论中:①△DGF≌△EBH;②四边形EHCF是菱形;③以CD为直径的圆与AB相切于点E.正确的有()A.1个B.2个C.3个D.0个16.如图,⊙O的内接△ABC的外角∠ACE的平分线交⊙O于点D.DF⊥AC,垂足为F,DE⊥BC,垂足为E.给出下列4个结论:①CE=CF;②∠ACB=∠EDF;③DE是⊙O 的切线;④.其中一定成立的是()A.①②③B.②③④C.①③④D.①②④17.如图,AB是⊙O的直径,点D在⊙O上,AD的延长线与过点B的切线交于点C,E 为线段AD上的点,过点E的弦FG⊥AB于点H.(1)求证:∠C=∠AGD;(2)已知BC=6,CD=4,且CE=2AE,求EF的长.18.如图,AB是⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D.(1)求证:∠CAD=∠CAB;(2)若=,AC=2,求CD的长.19.如图,在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,AE与过点D 的切线互相垂直,垂足为E.(1)求证:AD平分∠BAE;(2)若CD=DE,求sin∠BAC的值.20.如图,△ABC的外角∠BAM的平分线与它的外接圆相交于点E,连接BE,CE,过点E 作EF∥BC,交CM于点D.求证:(1)BE=CE;(2)EF为⊙O的切线.21.如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心,OA为半径的圆交AC于点D,E是BC的中点,连结DE、OE.(1)判断DE与⊙O的位置关系,并说明理由.(2)求证:BC2=2CD•OE.22.如图,AN是⊙M的直径,NB∥x轴,AB交⊙M于点C.(1)若点A(0,6),N(0,2),∠ABN=30°,求点B的坐标;(2)若D为线段NB的中点,求证:直线CD是⊙M的切线.23.如图,已知AB是⊙O的直径,⊙O经过Rt△ACD的直角边DC上的点F,交AC边于点E,点F是弧EB的中点,∠C=90°,连接AF.(1)求证:直线CD是⊙O切线.(2)若BD=2,OB=4,求tan∠AFC的值.24.如图1,在四边形ABCD中,AD∥BC,∠DAB=90°,AB是⊙O的直径,CO平分∠BCD.(1)求证:直线CD与⊙O相切;(2)如图2,记(1)中的切点为E,P为优弧上一点,AD=1,BC=2.求tan∠APE 的值.参考答案1.解:如图,连接OM、ON,∵半圆分别与AB,AC相切于点M,N.∴OM⊥AB,ON⊥AC,∵∠BAC=120°,∴∠MON=60°,∴∠MOB+∠NOC=120°,∵的长为π,∴=π,∴r=3,∴OM=ON=r=3,连接OA,在Rt△AON中,∠AON=30°,ON=3,∴AN=,∴AM=AN=,∴BM+CN=AB+AC﹣(AM+AN)=16﹣2,∴S阴影=S△OBM+S△OCN﹣(S扇形MOE+S扇形NOF)=3×(BM+CN)﹣()=(16﹣2)﹣3π=24﹣3﹣3π.故答案为:24﹣3﹣3π.2.解:∵AB是⊙O的直径,BC与⊙O相切于点B,∴AB⊥BC,∴∠ABC=90°,∵sin∠BAC==,∴设BC=x,AC=3x,∴AB===2x,∴OB=AB=x,∴tan∠BOC==,故答案为:.3.解:∵∠AOB=120°,∠ACB=90°,∴∠OBC=∠AOB﹣∠ACB=30°,∵OC=3,∴OB=2OC=6,∵∠AOB=120°,∴图中扇形AOB的面积是=12π,故答案为:12π.4.解:①如图1,∵∠AOC=120°,∴∠CAO=∠ACO=30°,∵CD和圆O相切,AD⊥CD,∴∠OCD=90°,AD∥CO,∴∠ACD=60°,∠CAD=30°,∴CD=AC,∵C为⊙O上异于A,B的点,∴AC<AB,∴CD≠r,故①错误;②如图2,过点A作AE⊥OC,垂足为E,若△AOC为正三角形,∠AOC=∠OAC=60°,AC=OC=OA=r,∴∠OAE=30°,∴OE=AO,AE=AO=r,∵四边形AECD为矩形,∴CD=AE=r,故②正确;③若等腰三角形AOC的对称轴经过点D,如图3,∴AD=CD,而∠ADC=90°,∴∠DAC=∠DCA=45°,又∠OCD=90°,∴∠ACO=∠CAO=45°∴∠DAO=90°,∴四边形AOCD为矩形,∴CD=AO=r,故③正确;④如图4,过点C作CE⊥AO,垂足为E,连接DE,∵OC⊥CD,AD⊥CD,∴OC∥AD,∴∠CAD=∠ACO,∵OC=OA,∴∠ACO=∠CAO,∴∠CAD=∠CAO,∴CD=CE,在△ADC和△AEC中,∠ADC=∠AEC=90°,CD=CE,AC=AC,∴△ADC≌△AEC(HL),∴AD=AE,∴AC垂直平分DE,则点D和点E关于AC对称,即点D一定落在直径上,故④正确.故正确的序号为:②③④,故答案为:②③④.5.解:连接OQ.∵PQ是⊙O的切线,∴OQ⊥PQ;根据勾股定理知PQ2=OP2﹣OQ2,∴当PO⊥AB时,线段PQ最短,∵在Rt△AOB中,OA=OB=4,∴AB=OA=8,∴OP==4,∴PQ==2.故答案为2.6.解:连接OE,延长EO交CD于点G,作OH⊥B′C于点H,则∠OEB′=∠OHB′=90°,∵矩形ABCD绕点C旋转所得矩形为A′B′C′D′,∴∠B′=∠B′CD′=90°,AB=CD=5、BC=B′C=4,∴四边形OEB′H和四边形EB′CG都是矩形,OE=OD=OC=2.5,∴B′H=OE=2.5,∴CH=B′C﹣B′H=1.5,∴CG=B′E=OH===2,∵四边形EB′CG是矩形,∴∠OGC=90°,即OG⊥CD′,∴CF=2CG=4,故答案为:4.7.解:∵P A,PB是⊙O的切线,∴P A=PB,所以A成立;∠BPD=∠APD,所以B成立;∴AB⊥PD,所以C成立;∵P A,PB是⊙O的切线,∴AB⊥PD,且AC=BC,只有当AD∥PB,BD∥P A时,AB平分PD,所以D不一定成立.故选:D.8.解:连接OA、OB,∵P A、PB分别与⊙O相切于A、B两点,∴OA⊥P A,OB⊥PB,∴∠OAP=∠OBP=90°,∴∠AOB=180°﹣∠P=180°﹣50°=130°,∴∠ACB=∠AOB=×130°=65°.故选:D.9.解:∵△ABC中,AB=10,BC=6,AC=8,∴AB2=AC2+BC2,∴∠ACB=90°,设⊙O与AC相切于点D,与AB相切于点E,连接OD,OE,过点O,作OP1⊥BC垂足为Q1交⊙O于P1,连接AO,延长AO与BC相交于点F,过F作FG⊥AB于点G,如图1,此时垂线段OQ1最短,P1Q1最小值为OQ1﹣OP1,则四边形ODCQ2为矩形,AO平分∠BAC,∴CF=FG,设CF=FG=x,则BF=6﹣x,AC=AG=8,BG=AB﹣AG=10﹣8=2,由勾股定理得,(6﹣x)2﹣x2=22,解得,x=,∴GF=,∵OE∥GF,∴△AOE∽△AFG,∴,即,∴AE=3,∴AF=AE=3,∴OQ1=CD=8﹣3=5,∴P1Q1=OQ1﹣OP1=5﹣1=4,如图2,当Q2与B重合时,连接BO延长BO与⊙O交于点P2,此时P2Q2为最大值P2Q2=OQ2+OP2,∴PQ的最大值与最小值的和为:P1Q1+P2Q2=4+5+1=5+5.故选:C.10.解:∵直线l:y=kx+4与x轴、y轴分别交于A、B,∴B(0,4),∴OB=4,在Rt△AOB中,∠OAB=30°,∴OA=OB=×=12,∵⊙P与l相切,设切点为M,连接PM,则PM⊥AB,∴PM=P A,设P(x,0),∴P A=12﹣x,∴⊙P的半径PM=P A=6﹣x,∵x为整数,PM为整数,∴x可以取0,2,4,6,8,10,6个数,∴使得⊙P成为整圆的点P个数是6.故选:A.11.解:连接OA、OB、OP,延长BO交P A的延长线于点F.∵P A,PB切⊙O于A、B两点,CD切⊙O于点E∴∠OAF=∠PBF=90°,CA=CE,DB=DE,P A=PB,∵△PCD的周长=PC+CE+DE+PD=PC+AC+PD+DB=P A+PB=3r,∴P A=PB=.在Rt△PBF和Rt△OAF中,,∴Rt△PBF∽Rt△OAF.∴===,∴AF=FB,在Rt△FBP中,∵PF2﹣PB2=FB2∴(P A+AF)2﹣PB2=FB2∴(r+BF)2﹣()2=BF2,解得BF=r,∴tan∠APB===,故选:B.12.解:∵G为△ABC的重心,∴△ABG面积=△BCG面积=△ACG面积,又∵GH a=GH b>GH c,∴BC=AC<AB.故选:D.13.解:∵AB是直径,∴∠ADB=90°,∴AD⊥BC,故①正确;连接DO,∵点D是BC的中点,∴CD=BD,∴△ACD≌△ABD(SAS),∴AC=AB,∠C=∠B,∵OD=OB,∴∠B=∠ODB,∴∠ODB=∠C,OD∥AC,∴∠ODE=∠CED,∴ED是圆O的切线,故④正确;由弦切角定理知,∠EDA=∠B,故②正确;∵点O是AB的中点,故③正确,故选:D.14.解:以较长的边为直径作圆,半径正好与另一边相等,所以如上图可知,与半圆相切的线段有3条.故选D.15.解:∵直角梯形ABCD中,AD∥BC,AB⊥BC,∴四边形ADHB是矩形,∴CH=BC﹣BH=2.∵FG是△DHC的中位线,∴FG=CH÷2=1=BH,∠DGF=∠DHC=∠B=90°,∴AB=DH==2,∴BE=,∴EH==2,∴△DGF≌△EBH(HL).(1)成立∵EF∥HC,EF=HC,∴四边形EHCF是平行四边形,∵EH=HC=2,∴四边形EHCF是菱形(2)成立.∵EF⊥AE,EF=2,∴点F到AB的距离等于半径2,∴以CD为直径的圆与AB相切于点E.(3)成立故选:C.16.解:①∵∠DCE=∠DCF,∠DEC=∠DFC,DC=DC,∴△CDE≌△CDF,得CE=CF.故成立;②∠ACB+∠ACE=180°,根据四边形内角和定理得∠ACE+∠EDF=180°,所以∠ACB=∠EDF,故成立;③连接OD、OC.则∠ODC=∠OCD.假如DE是切线,则OD⊥DE,因BE⊥DE,所以OD∥BE,∠DCE=∠ODC=∠OCD,而∠DCE=∠DCA,∠OCD≠∠DCA,故DE 不是切线;④根据圆内接四边形的外角等于内对角得∠DCE=∠DAB,所以∠DAB=∠DCA,根据圆周角定理判断弧AD=弧BD.故成立.17.(1)证明:如图1,连接BD,∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∵BC是⊙O的切线,∴∠ABC=90°,∴∠C+∠CAB=90°,∴∠C=∠ABD,∵∠AGD=∠ABD,∴∠AGD=∠C;(2)解:∵∠BDC=∠ABC=90°,∠C=∠C,∴△ABC∽△BDC,∴,∴=,∴AC=9,∴AB==3,∴AE=3,CE=6,∵FH⊥AB,∴FH∥BC,∴△AHE∽△ABC,∴,∴==,∴AH=,EH=2,如图2,连接AF,BF,∵AB是⊙O的直径,∴∠AFB=90°,∴∠AFH+∠BFH=∠AFH+∠F AH=90°,∴∠F AH=∠BFH,∴△AFH∽△FBH,∴=,∴=,∴FH=,∴EF=﹣2.18.(1)证明:如图1,连接OC,,∵CD是切线,∴OC⊥CD.∵AD⊥CD,∴AD∥OC,∴∠1=∠4.∵OA=OC,∴∠2=∠4,∴∠1=∠2,即∠CAD=∠CAB.(2)解:如图2,连接BC,∵=,∴设AD=2x,AB=3x,∵AB是⊙O的直径,∴∠ACB=∠ADC=90°,∴∠ACB=90°,∵AD⊥DC,∴∠ADC=90°,∵∠DAC=∠CAB,∴△ACD∽△ABC,∴=,∴=,解得,x1=2,x2=﹣2(舍去),∴AD=4,∴CD==2.19.(1)证明:连接OD,如图,∵DE为切线,∴OD⊥DE,∵DE⊥AE,∴OD∥AE,∴∠1=∠ODA,∵OA=OD,∴∠2=∠ODA,∴∠1=∠2,∴AD平分∠BAE;(2)解:连接BD,如图,∵AB为直径,∴∠ADB=90°,∵∠2+∠ABD=90°,∠3+∠ABD=90°,∴∠2=∠3,∵sin∠1=,sin∠3=,而DE=DC,∴AD=BC,设CD=x,BC=AD=y,∵∠DCB=∠BCA,∠3=∠2,∴△CDB∽△CBA,∴CD:CB=CB:CA,即x:y=y:(x+y),整理得x2+xy﹣y2=0,解得x=y或x=y(舍去),∴sin∠3==,即sin∠BAC的值为.20.证明:(1)∵四边形ACBE是圆内接四边形,∴∠EAM=∠EBC,∵AE平分∠BAM,∴∠BAE=∠EAM,∵∠BAE=∠BCE,∴∠BCE=∠EAM,∴∠BCE=∠EBC,∴BE=CE;(2)如图,连接EO并延长交BC于H,连接OB,OC,∵OB=OC,EB=EC,∴直线EO垂直平分BC,∴EH⊥BC,∴EH⊥EF,∵OE是⊙O的半径,∴EF为⊙O的切线.21.(1)证明:连接OD,∵AB为圆O的直径,∴∠ADB=90°,在Rt△BDC中,E为斜边BC的中点,∴CE=DE=BE=BC,∴∠C=∠CDE,∵OA=OD,∴∠A=∠ADO,∵∠ABC=90°,即∠C+∠A=90°,∴∠ADO+∠CDE=90°,即∠ODE=90°,∴DE⊥OD,又OD为圆的半径,∴DE为圆O的切线;(2)证明:连接OE,∵E是BC的中点,O点是AB的中点,∴OE是△ABC的中位线,∴AC=2OE,∵∠C=∠C,∠ABC=∠BDC=90°,∴△ABC∽△BDC,∴=,即BC2=AC•CD.∴BC2=2CD•OE;22.解:(1)∵A的坐标为(0,6),N(0,2),∴AN=4,∵∠ABN=30°,∠ANB=90°,∴AB=2AN=8,∴由勾股定理可知:NB==,∴B(,2).(2)连接MC,NC∵AN是⊙M的直径,∴∠ACN=90°,∴∠NCB=90°,在Rt△NCB中,D为NB的中点,∴CD=NB=ND,∴∠CND=∠NCD,∵MC=MN,∴∠MCN=∠MNC,∵∠MNC+∠CND=90°,∴∠MCN+∠NCD=90°,即MC⊥CD.∴直线CD是⊙M的切线.23.(1)证明:连结OF,BE,如图:∵AB是⊙O的直径,∴∠AEB=90°,∵∠C=90°,∴∠AEB=∠ACD,∴BE∥CD,∵点F是弧BE的中点,∴OF⊥BE,∴OF⊥CD,∵OF为半径,∴直线CD是⊙O的切线;(2)解:∵∠C=∠OFD=90°,∴AC∥OF,∴△OFD∽△ACD,∴=,∵BD=2,OF=OB=4,∴OD=6,AD=10,∴AC===,∴CD===,∵AC∥OF,OA=4,∴=,即=,解得:CF=,∴tan∠AFC===.24.(1)证明:作OE⊥CD于E,如图1所示:则∠OEC=90°,∵AD∥BC,∠DAB=90°,∴∠OBC=180°﹣∠DAB=90°,∴∠OEC=∠OBC,∵CO平分∠BCD,∴∠OCE=∠OCB,在△OCE和△OCB中,,∴△OCE≌△OCB(AAS),∴OE=OB,又∵OE⊥CD,∴直线CD与⊙O相切;(2)解:作DF⊥BC于F,连接BE,如图2所示:则四边形ABFD是矩形,∴AB=DF,BF=AD=1,∴CF=BC﹣BF=2﹣1=1,∵AD∥BC,∠DAB=90°,∴AD⊥AB,BC⊥AB,∴AD、BC是⊙O的切线,由(1)得:CD是⊙O的切线,∴ED=AD=1,EC=BC=2,∴CD=ED+EC=3,∴DF===2,∴AB=DF=2,∴OB=,∵CO平分∠BCD,∴CO⊥BE,∴∠BCH+∠CBH=∠CBH+∠ABE=90°,∴∠ABE=∠BCH,∵∠APE=∠ABE,∴∠APE=∠BCH,∴tan∠APE=tan∠BCH==.。

中考真题;切线的判定与性质(答案详解)

中考真题;切线的判定与性质(答案详解)

中考复习:切线的判定与性质知识考点:1、掌握切线的判定及其性质的综合运用,在涉及切线问题时,常连结过切点的半径,切线的判定常用以下两种方法:一是连半径证垂直,二是作垂线证半径。

2、掌握切线长定理的灵活运用,掌握三角形和多边形的内切圆,三角形的内心。

精典例题:【例1】如图,AC 为⊙O 的直径,B 是⊙O 外一点,AB 交⊙O 于E 点,过E 点作⊙O 的切线,交BC 于D 点,DE =DC ,作EF ⊥AC 于F 点,交AD 于M 点。

(1)求证:BC 是⊙O 的切线;(2)EM =FM 。

:【例2】如图,△ABC 中,AB =AC ,O 是BC 的中点,以O 为圆心的圆与AB 相切于点D 。

求证:AC 是⊙O 的切线。

》【例3】如图,已知AB 是⊙O 的直径,BC 为⊙O 的切线,切点为B ,OC 平行于弦AD ,OA =r 。

<(1)求证:CD 是⊙O 的切线; (2)求OC AD ⋅的值;(3)若AD +OC =r 29,求CD 的长。

•例1图321MFOEDCB A例2图 EO D C B A •例3图321OD C BA探索与创新:【问题一】如图,以正方形ABCD 的边AB 为直径,在正方形内部作半圆,圆心为O ,CG 切半圆于E ,交AD 于F ,交BA 的延长线于G ,GA =8。

(1)求∠G 的余弦值;!(2)求AE 的长。

【问题二】如图,已知△ABC 中,AC =BC ,∠CAB =α(定值),⊙O 的圆心O 在AB 上,并分别与AC 、BC 相切于点P 、Q 。

,(1)求∠POQ ;(2)设D 是CA 延长线上的一个动点,DE 与⊙O 相切于点M ,点E 在CB 的延长线上,试判断∠DOE 的大小是否保持不变,并说明理由。

(|•问题一图 G F E O DCB A 问题二图NQ P EO DC BA答案精典例题:【例1】如图,AC 为⊙O 的直径,B 是⊙O 外一点,AB 交⊙O 于E 点,过E 点作⊙O 的切线,交BC 于D 点,DE =DC ,作EF ⊥AC 于F 点,交AD 于M 点。

2018年全国中考数学真题分类 线段垂直平分线、角平分线、中位线解析版(精品文档)

2018年全国中考数学真题分类  线段垂直平分线、角平分线、中位线解析版(精品文档)

2018年全国中考数学真题分类线段垂直平分线、角平分线、中位线(二)一、选择题1. (2018黑龙江大庆,9,3) 如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB的度数是( )A.30°B.35°C.45°D.60°【答案】B,【解析】过点M作MN⊥AD于N,根据角平分线上的点到角的两边的距离相等可得MC=MN,然后求出MB=MN,再根据到角的两边距离相等的点在角的平分线上判断出AM是∠BAD的平分线,然后求出∠AMB,再根据直角三角形两锐角互余求解即可.二、填空题1. (2018山东省东营市,15,3分)如图,在RT△ABC中,∠B=90°,以顶点C为圆心,适当长为半径画弧,分别交AC,BC于点E,F,再分别以点E,F为圆心,大于12EF的长为半径画弧,两弧交于点P,作射线CP交AB于点D,若BD=3,AC=10,则△ACD的面积是。

15.(2018山东省东营市,15,3分)如图,在RT△ABC中,∠B=90°,以顶点C为圆心,适当长为半径画弧,分别交AC,BC于点E,F,再分别以点E,F为圆心,大于12EF的长为半径画弧,两弧交于点P,作射线CP交AB于点D,若BD=3,AC=10,则△ACD的面积是。

【答案】15【解析】由作图语言叙述知CD是∠ACB的平分线,所以过D作AC的垂线段的长就是△ACD的高,而这个垂线段的长由角平分线的性质定理知它等于BD的长。

所以△ACD的面积12AC BD=15.【知识点】角平分线性质定理,三角形的面积公式。

2. (2018年江苏省南京市,14,2分) .如图,在ABC△中,用直尺和圆规作AB、AC的垂直平分线,分别交AB、AC于点D、E,连接DE.若10cmBC=,则DE=cm.【答案】5【解析】∵用直尺和圆规作AB、AC的垂直平分线,∴D为AB的中点,E为AC的中点,∴DE是△ABC的中位线,∴DE=BC=5cm.故答案为:5.【知识点】线段垂直平分线中位线3. (2018贵州省毕节市,17,3分)如图,在△ABC中,AC=10,BC=6,AB的垂直平分线交AB于点D,交AC于点E,则△BCE的周长是________.[来源:【答案】16.第15题图第16题图【解析】∵DE 是AB 垂直平分线,∴AE =BE , ∴C △BCE =BC +CE +BE =BC +CE +AE =BC +AC =6+10=16.【知识点】线段垂直平分线的性质;三角形的周长公式4. (2018山西省,14题,3分) 如图,直线MN ∥PQ.直线AB 分别与MN,PQ 相交于点A,B.小宇同学利用尺规按以下步骤作图:①以点A 为圆心,以任意长为半径作弧交AN 于点C,交AB 于点D;②分别以C,D 为圆心,以大于12CD 长为半径作弧,两弧在∠NAB 内交于点E;③作射线AE 交PQ于点F.若AB=2.∠ABP =60°则线段AF 的长为 .【答案】2√3【解析】解:过点A 作AG ⊥PQ 交PQ 与点G由作图可知,AF 平分∠NAB ∵ MN ∥PQ ;AF 平分∠NAB ;∠ABP =60°∴ ∠AFG =30°在Rt △ABG 中,∠ABP =60°,AB=2;∴ AG =√3在Rt △AFG 中,∠AFG =30°,AG =√3;∴ AF =2√3【知识点】角平分线、特殊角三角函数PP5. (2018内蒙古通辽,16,3分)如图,在△ABC 中,按以下步骤作图:①分别以点A 和点C 为圆心,以大于12AC 的长为半径作弧,两弧相交于M 、N 两点;②作直线MN 交BC 于点D ,连接A D .若AB =BD ,AB =6,∠C =30°,则△ACD 的面积为 .【答案】9 3【解析】依题意MN 是AC 的垂直平分线,所以∠C =∠DAC =30°,所以∠ADB =∠C +∠DAC =60°,又AB =BD ,所以△ABD 为等边三角形,∠BAD =60°,所以∠BAC =∠DAC +∠BAD =90°,因为AB=6,所以AC =63,所以△ABC 的面积为12×6×63=183.又BD =AD =DC ,所以S △ACD =12S △ABC =93,故应填:93.6.(2018辽宁省抚顺市,题号16,分值3)如图,ABCD 中,AB=7,BC=3,连接AC ,分别以点连接AE ,则△AED 的周长是__________.【答案】10【解析】由题可知,直线MN 是线段AC 的垂直平分线,∴AE=EC.∵在ABCD 中DE+EC=CD=AB=7,AD=BC=3,∴△AED 的周长为AD+DE+AE=BC+DE+EC=BC+CD=10.【知识点】用尺规作垂直平分线,垂直平分线的性质.三、解答题1. (2018甘肃省兰州市,20,6分)如图,在Rt△ABC中.(1)利用尺度作图,在BC边上求作一点P,使得点P到AB的距离(PD的长)等于PC的长;(2)利用尺规作图,作出(1)中的线段PD.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)【思路分析】PC⊥AC,要使P到AB的距离(PD的长)等于PC的长,即求∠A的角平分线与BC的交点.【解题过程】(1)作∠A的平分线AD,交BC于P;(2)过点P作直线AB的垂线,垂中为D。【知识点】尺规作图2. (2018湖北省江汉油田潜江天门仙桃市,18,5分)图①、图②都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.点O,M,N,A,B均在格点上,请仅用无刻度直尺在网格中完成下列画图.(1)在图①中,画出∠MON的平分线OP;(2)在图②中,画一个Rt△ABC,使点C在格点上.CA B第20题图【思路分析】(1)在只能用直尺画角平分线的情况下,就设法将∠MON 放置在能画出角平分线的图形中,如菱形.(2)原图是由全等的小菱形组成的,∴要想找到直角就要从菱形的对角线方面入手考虑.设法找让三角形中的一个顶点处在两个菱形的对角线交点位置,并且在格点上.【解题过程】解:(1)如图①,将∠MON 放在菱形AOBC 中,连接对角线OC ,并取格点P ,OP 即为所求.2分 如图②所示,△ABC 或△ABC 1均可.3. (2018湖南省怀化市,19,10分)已知:如图,点A ,F ,E ,C 在同一直线上,AB//DC ,AB =CD ,D B ∠=∠(1)求证:∆ABE ≅∆CDF ;(2)若点E ,G 分别为线段FC ,FD 的中点,连接EG ,且EG =5,求AB 的长.(第18题图) 图①图② B A ONM第18题答图 PA 图①O NMBC C 1 C 图② B A【思路分析】(1)首先根据AB//DC 可得CFD AEB ∠=∠,再加上条件AB =CD ,D B ∠=∠可利用AAS定理证明三角形全等.(2)根据(1)中的全等,可知AB =CD ,再根据三角形中位线定理可知已知量EG 和未知量CD 的等量关系,即可求出CD ,继而求出AB 的长度.【解题过程】(1)证明:∵AB//DC ∴CFD AEB ∠=∠,又∵D B ∠=∠,AB =CD ,∴在∆ABE 和∆CDF中,⎪⎩⎪⎨⎧=∠=∠∠=∠,,,CD AB D B CFD AED ∴∆ABE ≅∆CDF(AAS)(2)∵点E ,G 分别为线段FC ,FD 的中点,∴线段EG 为CDF ∆的中位线,根据三角形中位线的性质定理,可得:CD EG 21=,又∵∆ABE ≅∆CDF ∴AB =CD ∴52121===AB CD EG , ∴521=AB ,即10=AB . 【知识点】全等三角形的判定方法 三角形中位线定理。

《切线的性质》精编测试题及参考答案

《切线的性质》精编测试题及参考答案测试(一)一、选择题1.如图,线段AB是⊙O的直径,点C,D为⊙O上的点,过点C作⊙O的切线交AB的延长线于点E,若∠E=40°,则∠CDB等于( )A.20°B.25°C.30°D.40°(1题图)(2题图)(3题图)(4题图)2.如图,AB是⊙O的直径,AC切⊙O于A,BC交⊙O于点D,若∠C=70°,则∠AOD的度数( )A.70°B.35°C.20°D.40°3.如图,AB与⊙O切于点B,AO=6cm,AB=4cm,则⊙O的半径为( )A.4√5cm B.2√5cm C.2√13cm D.√13 m4.如图,CD是⊙O的直径,弦AB⊥CD于点G,直线EF与⊙O相切于点D,则下列结论中不一定正确的是( )A.AG=BGB.AB∥EFC.AD∥BCD.∠ABC=∠ADC5.如图,BM与⊙O相切于点B,若∠MBA=140°,则∠ACB的度数为( )A.40°B.50°C.60°D.70°(5题图)(6题图)(7题图)(8题图)6.如图,等腰直角三角形ABC中,AB=AC=8,O为BC的中点,以O为圆心作半圆,使它与AB,AC 都相切,切点分别为D,E,则⊙O的半径为( )A.8B.6C.5D.47.如图,AB是⊙O的直径,C,D是⊙O上一点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E等于( )A.40° B.50° C.60° D.70°8.如图,已知⊙O 上三点A,B,C,半径OC=1,∠ABC=30°,切线PA 交OC 延长线于点P,则PA 的长为( )A .2B . 3C . 2D .12二、填空题9.如图,已知∠AOB=30°,M 为OB 边上任意一点,以M 为圆心,•2cm•为半径作⊙M ,当OM=______cm 时,⊙M 与OA 相切.(9题图) (10题图) (11题图) (12题图)10.在△ABC 中,AB=5,BC=3,AC=4,以点C 为圆心的圆与AB 相切,则⊙C 的半径为______.11.在Rt △ABC 中,∠C=90°,∠A=30°,BC=2,⊙C 的半径为1,点P 是斜边AB 上的点,过点P 作⊙C 的一条切线PQ(点Q 是切点),则线段PQ 的最小值为______.12.平行四边形一边AB 为直径的圆恰好与对边CD 相切于点D,则∠C 的度数______.三、解决问题13.如图,AB 是⊙O 的直径,直线BC 与⊙O 相切于点B,∠ABC 的平分线BD 交⊙O 于点D,AD 的延长线交BC 于点C .(1)求∠BAC 的度数;(2)求证:AD=CD .14.如图,已知直线PA 交⊙O 于A,B 两点,AE 是⊙O 的直径,点C 为⊙O 上一点,且AC 平分∠PAE,过C 作CD ⊥PA,垂足为D.(1)求证:CD 为⊙O 的切线;(2)若DC +DA=6,⊙O 的直径为10,求AB 的长.15.如图,AB是半圆O的直径,点P在BA的延长线上,PD切⊙O于点C,BD⊥PD,垂足为D,连接BC.(1)求证:BC平分∠PDB;(2)若PA=6,PC=6√2,求半径的长.16. 如图,⊙O的直径AB=4,点C为⊙O上的一个动点,连接OC,过点A作⊙O的切线,与BC的延长线交于点D,点E为AD的中点,连接CE. 求证:CE是⊙O的切线.17. 如图,⊙O是△ABC的外接圆,FH是⊙O 的切线,切点为F,FH∥BC,连结AF交BC于E,∠ABC的平分线BD交AF于D,连结BF.(1)证明:AF平分∠BAC;(2)证明:BF=FD;测试(二)一、选择题1.如图,AB是⊙O的直径,CD是⊙O的切线,切点为D,CD与AB的延长线交于点C,∠A=30°,给出下面三个结论:①AD=CD;②BD=BC;③AB=2BC.其中正确结论的个数是( )A.3B.2C.1D.0(1题图)(2题图)(3题图)(4题图)2.如图,AB为⊙O的直径,C为⊙O外一点,过点C作⊙O的切线,切点为B,连结AC交⊙O于D,∠C=38°,点E在AB右侧的半圆上,则∠AED的度数( )A.62°B.52°C.38°D.28°3.如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA,CB分别相交于点P,Q,则线段PQ的最小值( )A.5B.4C.4.75D.4.84.如图,从⊙O外一点P引⊙O的两条切线PA,PB,切点分别为A,B.如果∠APB=60°,PA=8,那么弦AB的长是( )A.4B.8C.4 3D.8 35.如图,PA,PB分别与⊙O相切于A,B两点.若∠C=65°,则∠P的度数为( )A.65°B.130°C.50°D.100°(5题图)(6题图)(7题图)(8题图)6.如图,四边形ABCD四边分别与⊙O相切,且AB=16,CD=10,则四边形ABCD周长为( )A.50B.52C.54D.567.如图,PA、PB切⊙O于点A、B,PA=8,CD切⊙O于点E,交PA、PB于C、D两点,则△PCD的周长是( )A.8B.18C.16D.148.如图,PA、PB分别与⊙O相切于A、B两点,点C为⊙O上一点,连接AC、BC,若∠P=50°,则∠ACB的度数为( )A.60°B.75° C.70° D.65°二、填空题9.已知△ABC的内切圆⊙O与BC边相切于点D,连接OB,OD.若∠ABC=40°,则∠BOD的度数是________.(9题图)(10题图)(11题图)10.如图,AB,AC,BD是⊙O的切线,P,C,D为切点,如果AB=5,AC=3,则BD长为______.11.如图,AB是⊙O的直径,PA与⊙O相切于点A,OP与⊙O相交于点C,连接CB,若∠OPA=40°,求∠ABC的度数______.三、解答题12.如图,AB是⊙O的切线,B为切点,圆心在AC上,∠A=30,D为弧BC的中点.(1)求证:AB=BC;(2)求证:四边形BOCD是菱形.13.如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,切线DE交AC于点E.(1)求证:∠A=∠ADE;(2)若AD=8,DE=5,求BC的长.14.如图,点A、B在⊙O上,直线AC是⊙O的切线,OC⊥OB,连接AB交OC于点D.(1)求证:AC=CD;(2)若AC=2,AO=√5,求OD的长度.ABCDO3015.如图,在⊙O中,点C是直径AB延长线上一点,过点C作⊙O的切线,切点为D,连结BD.(1)求证:∠A=∠BDC;(2)若CM平分∠ACD,且分别交AD、BD于点M、N,当DM=1时,求MN的长.参考答案测试(一)一、选择题BDBCA DBB二、填空题9. 410. 2.411.√212. 45°三、解决问题13(1)略(2)45°14(1)连接OC,易证OC∥PB.(2)615(1)略(2)316.提示:△OEC≌△OEA17.略测试(二)一、选择题ACDBC BCD二、填空题9. 70°10. 211. 25°三、解决问题12(1)略(2)提示:边条边相等的四边形是菱形.13 (1)析:∠A+∠B=90°,∠ADE+∠ODB=90°, ∠B=∠ODB(2) 提示:设BD的长是x,在Rt△BDC中,BC2=62+x2, 在Rt△ABC中,BC2=(x+8)2−102.14(1)略(2)提示:OC2=AC2+AO2,(OD+2)2=22+(√5)2,OD=1.15(1)略(2)提示:边条边相等的四边形是菱形.。

2023年安徽中考数学总复习专题:圆的综合题(切线的性质)(PDF版,有答案)

2023年安徽中考数学总复习专题:圆的综合题1.如图,AB为半圆O的直径,BC切半圆O于点B,连结AC交半圆于点D,点E为AD的中点,连结BE交AC于点F.(1)求证:CB=CF.(2)若EFFB=13,BC=6,求AB的长.2.如图,AB是⊙O的直径,点D是AB延长线上的一点,DC与⊙O相切于点C.连接BC,AC.(1)求证:∠A=∠BCD;(2)若∠D=45°,⊙O的半径为2,求线段AD的长.3.如图,在△ABC中,∠ABC=90°,∠BAC=30°,以AB为直径作⊙O,交AC于点D,过点D作⊙O的切线DM交BC于点M.(1)求证:CM=BM.(2)若AD=23,P为AB上一点,当PM+PD为最小值时,求AP的长.4.如图,⊙O的直径AB垂直于弦DC于点F,点P在AB的延长线上,CP与⊙O相切于点C.(1)求证:∠PCB=∠PAD;(2)若⊙O的直径为4,弦DC平分半径OB,求:图中阴影部分的面积.5.如图,在Rt△ABC中,∠ACB=90°,以BC为直径的⊙O交AB于点D,过点D作⊙O 的切线交AC于点E,交BC的延长线于点F,连接OE.(1)求证:CE=AE;(2)若OB=3,CF=2,求AE的长.6.如图,AB是⊙O的直径,点C、D是⊙O上两点,CE与⊙O相切,交DB延长线于点E,且DE⊥CE,连接AC,DC.(1)求证:∠ABD=2∠A;(2)若DE=2CE,AC=8,求BE的长度.7.如图,在△ABC中,以△ABC的边AB为直径作⊙O,交AC于点D,DE是⊙O的切线,且DE⊥BC,垂足为点E.(1)求证:AB=BC;(2)若DE=3,AC=610,求⊙O的半径.8.如图,AB是⊙O的直径,点C是AB上一点,AC>BC,AC的垂直平分线交⊙O于点E,交AC于点D,过点A作⊙O的切线交CE的延长线于点F.(1)求证:EA=EF;(2)若OD=1,OC=2,求AF的长.9.如图,四边形ABCD是⊙O的内接四边形,且对角线BD为直径,过点A作⊙O的切线AE,与CD的延长线交于点E,已知DA平分∠BDE.(1)求证:AE⊥DE;(2)若⊙O的半径为5,CD=6,求AD的长.10.如图,点C在以AB为直径的⊙O上,过C作⊙O的切线交AB的延长线于E,AD⊥CE 于D,连结AC.(1)求证:∠ACD=∠ABC(2)若tan∠CAD=34,AD=8,求⊙O直径AB的长.11.阅读下列材料,完成相应任务:古希腊数学家毕达哥拉斯认为:“一切平面图形中最美的是圆”,它的完美来自对称,其中切弦(chordofcontact)亦称切点弦,是一条特殊弦,从圆外一点向圆引两条切线,连接这两个切点的弦称为切弦.此时,圆心与已知点的连线垂直平分切弦.(1)任务一:为了说明切弦性质的正确性,需要对其进行证明,如下给出了不完整的“已知”和“求证”,请补充完整,并写出“证明”过程.已知:如图1,P是⊙O外一点, .求证: .证明:(2)任务二:如图2,在任务一的条件下,CD是⊙O的直径,连接AD、BC,若∠ADC =50°,∠BCD=70°,OC=6,求OP的长.参考答案1.(1)证明:如图,连结AE,∵BC是⊙O的切线,∴BC⊥OB,∴∠ABC=90°,∴∠CBF=90°﹣∠ABE,∴AB是⊙O的直径,∴∠E=90°,∴∠CFB=∠AFE=90°﹣∠DAE,∵点E为AD的中点,∴AE=DE,∴∠ABE=∠DAE,∴90°﹣∠ABE=90°﹣∠DAE,∴∠CBF=∠CFB,∴CB=CF.(2)解:如图,作CG⊥BF于点G,∵BC=CF=6,∴GF=GB=12 FB,∵EFFB=13,∴EF=13 FB,∴EFGF=13FB12FB=23,∵∠FGC=∠E=90°,∠AFE=∠DFG,∴△AFE∽△CFG,∴AFCF=EFGF=23,∴AF=23CF=23×6=4,∴AC=AF+CF=4+6=10,∴AB=AC2―BC2=102―62=8,∴AB的长是8.2.(1)证明:连接OC,∵DC是⊙O的切线,∴∠OCD=90°,即∠BCD+∠OCB=90°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠A+∠OBC=90°,∵OC=OB,∴∠OCB=∠OBC,∴∠A=∠BCD;(2)解:在Rt△OCD中,∠D=45°,OC=2,∴OC=CD=2,∴OD=2OC=22,∴AD=OA+OD=2+22.3.(1)证明:连接OD,OM,∵∠BAC=30°,∴∠DOB=2∠A=60°,∵DM与⊙O相切于点D,∴∠ODM=90°,∵∠ABC=90°,OD=OB,OM=OM,∴Rt△ODM≌Rt△OBM(HL),∴∠DOM=∠BOM=12∠DOB=30°,∴∠A=∠BOM,∴AC∥OM,∵OA=OB,∴BM=CM;解法二:连接BD,∵DM,BC都是⊙O的切线,∴MD=MB,∴∠MBD=∠MDB,∵∠C+∠CBD=90°,∠CDM+∠BDM=90°,∴∠C=∠MDC,∴MC=MD,∴CM=MB.(2)连接DB,过点D作DE⊥AB,垂足为E,并延长交⊙O于点D′,则DE=D′E,∴点D与点D′关于AB对称,连接D′M交AB于点P,连接DP,此时PM+PD的值最小,∵AB是⊙O的直径,∴∠ADB=90°,∵AD=23,∠DAB=30°,∴BD=AD•tan30°=23×33=2,∴AB=2BD=4,∴OA=OB=OD=12AB=2,在Rt△ABC中,BC=AB•tan30°=4×33=433,∴CM=BM=12BC=233,∵∠DOB=60°,∴△DOB是等边三角形,∵DE⊥OB,∴OE=EB=12OB=1,∴DE=3OE=3,∴DE=D′E=3,∵∠D′EP=∠CBP=90°,∠MPB=∠EPD′,∴△MBP∽△D′EP,∴BMD′E=BPEP,∴2333=BP1―BP,∴BP=2 5,∴AP=AB﹣BP=18 5,∴AP的长为18 5.解法二:以B为原点,构造平面直角坐标系.作点D关于x轴的对称点F,连接FM交AB于点P,连接PD,此时PD+PM的值最小.由方法一可知F(﹣1,―3),M(0,233),设直线FM的解析式为y=kx+b,则有―k+b=―3 b=233,∴直线FM放解析式为y=533x+233,令y=0,可得x=―2 5,∴AP=AB﹣PB=18 5.4.(1)证明:连接OC,∵CP与⊙O相切,∴OC⊥PC,∴∠PCB+∠OCB=90°,∵AB⊥DC,∴∠PAD+∠ADF=90°,∵OB=OC,∴∠OBC=∠OCB,由圆周角定理得:∠ADF=∠OBC,∴∠PCB=∠PAD;(2)解:连接OD,在Rt△ODF中,OF=12 OD,则∠ODF=30°,∴∠DOF=60°,∵AB⊥DC,∴DF=FC,∵BF=OF,AB⊥DC,∴S△CFB=S△DFO,∴S阴影部分=S扇形BOD=60π×22360=23π.5.(1)证明:连接CD,∵BC是⊙O的直径,∴∠CDB=∠ADC=90°,∴∠A+∠ACD=90°,∵∠ACB=90°,OC为半径,∴AC是⊙O的切线,∵ED是⊙O的切线,∴DC=ED,∴∠ECD=∠EDC,∵∠EDC+∠ADE=90°,∴∠A=∠ADE,∴AE=DE,∴CE=AE;(2)解:连接OD,∵OB=3,CF=2,∴OB=OC=OD=3,OF=5∵DE是⊙O的切线,∴∠ODF=90°,∴DF=OF2―OD2=4,∵∠ODF=∠ECF=90°,∵∠F=∠F,∴△CEF∽△DOF,∴FCFD=CEDO,即24=CE3,∴CE=3 2,∴AE=CE=3 2.6.(1)证明:连接OC,∵CE与⊙O相切,∴OC⊥CE,∵DE⊥CE,∴OC∥DE,∴∠ABD=∠BOC,由圆周角定理得:∠BOC=2∠A,∴∠ABD=2∠A;(2)解:连接BC,∵AB是⊙O的直径,∴∠ACB=90°,∵DE=2CE,∴tan D=CEDE=12,由圆周角定理得:∠A=∠D,∴tan A=BCAC=12,∴BC=4,∴AB=AC2+BC2=82+42=45,∵∠A=∠BCE,∠ACB=∠CEB,∴△ACB∽△CEB,∴BCBE=ABBC,即4BE=454,解得:BE=45 5.7.(1)证明:连接OD,∵DE是⊙O的切线,∴OD⊥DE,∵DE⊥BC,∴OD∥BC,∴∠ADO=∠C,∵OA=OD,∴∠A=∠ADO,∴∠A=∠C,∴BA=BC;(2)解:连接BD,∵AB是⊙O的直径,∴∠ADB=90°,∵BA=BC,BD⊥AC,∴AD=CD=12AC=310,∵DE⊥BC,∴∠DEC=90°,在Rt△DEC中,DE=3,∴CE=CD2―DE2=(310)2―32=9,∵∠ADB=∠DEC=90°,∠A=∠C,∴△ADB∽△CED,∴ABCD=ADCE,∴AB310=3109,∴AB=10,∴⊙O的半径为5.8.(1)证明:∵AF是⊙O的切线,AB是⊙O的直径,∴AF⊥AB,∴∠CAF=90°,∴∠CAE+∠EAF=90°,∠ACF+∠F=90°,∵ED垂直平分AC,∴EA=CE,∴∠CAE=∠ACE,∴∠F=∠EAF,∴EA=EF;(2)解:连接OE,∵OD=1,OC=2,∴CD=OD+OC=3,∵ED垂直平分AC,∴AD=DC,∴OA=OE=OD+AD=1+3=4,∴DE=OE2―OD2=42―12=15,∵AE=EF,AE=CE,∴EF=CE,又∵AD=CD,∴DE为△ACF的中位线,∴DE=12 AF,∴AF=2DE=215.9.(1)证明:连接OA,∵AE是⊙O切线,∴∠OAE=90°,∵DA平分∠BDE,∴∠ADE=∠ADO,∵OA=OD,∴∠OAD=∠ADO,∴∠OAD=∠ADE,∴OA∥DE,∴∠E=180°﹣∠OAE=90°,∴AE⊥DE;(2)解:过点O作OF⊥CD,垂足为F,∴DF=FC=12DC=3,∠OFD=90°,∵∠OAE=∠E=90°,∴四边形AEFO是矩形,∴EF=OA=5,AE=OF,∴DE=EF﹣DF=5﹣3=2,在Rt△OFD中,OF=OD2―DF2=52―32=4,∴AE=OF=4,在Rt△AED中,AD=AE2+DE2=42+22=25,∴AD的长是25.10.(1)证明:连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∵DE与⊙O相切于点C,∴∠DCO=90°,∴∠DCO﹣∠ACO=∠ACB﹣∠ACO,∴∠DCA=∠OCB,∵OC=OB,∴∠OCB=∠ABC,∴∠ACD=∠ABC;(2)解:∵AD⊥CE,∴∠D=90°,∵tan∠CAD=34,AD=8,∴CD=AD•tan∠CAD=8×34=6,∴AC=AD2+CD2=82+62=10,∵∠D=∠ACB=90°,∠ACD=∠ABC,∴△ADC∽△ACB,∴ADAC=ACAB,∴810=10AB,∴AB=25 2,∴⊙O直径AB的长为25 2.11.解:(1)已知:如图1,P是⊙O外一点,PA、PB与⊙O分别相切于点A、B,连接AB、OP,求证:OP垂直平分AB.证明:连接OA、OB,∵PA、PB与⊙O分别相切于点A、B,∴PA=PB,∵OA=OB,∴OP垂直平分AB,故答案为:PA、PB与⊙O分别相切于点A、B,连接AB、OP;OP垂直平分AB;(2)连接OA、OB,∵OA=OD,∴∠ADC=∠DAO=50°,∴∠AOD=180°﹣∠ADC﹣∠DAO=80°,∵OB=OC,∴∠DCB=∠OBC=70°,∴∠BOC=180°﹣∠DCB﹣∠OBC=40°,∴∠AOB=∠180°﹣∠AOD﹣∠BOC=60°,∵PA、PB与⊙O分别相切于点A、B,∴OA⊥PA,∠AOP=∠BOP=30°,∴OP=OAcos∠AOP=632=43.。

2020年九年级数学中考压轴专题: 切线的性质与判定(含答案)

2020年九年级数学中考压轴专题:切线的性质与判定(含答案)切线的性质1.如图1,在Rt△ABC中,∠ABC=90°,以AB为直径作☉O,点D为☉O上一点,且CD=CB,连接DO并延长交CB 的延长线于点E.(1)判断直线CD与☉O的位置关系,并说明理由;(2)若BE=2,DE=4,求☉O的半径及AC的长.图12.如图2,在△ABC中,AB=AC,以AB为直径的☉O与边BC,AC分别交于D,E两点,过点D作DH⊥AC于点H.(1)判断DH与☉O的位置关系,并说明理由;(2)求证:点H为CE的中点.图23.如图3,BE是☉O的直径,点A和点D是☉O上的两点,过点A作☉O的切线交BE的延长线于点C.(1)若∠ADE=25°,求∠C的度数;(2)若AB=AC,CE=2,求☉O的半径长.图34.如图4,AB是☉O的直径,点C为☉O上一点,CN为☉O的切线,OM⊥AB于点O,分别交AC,CN于D,M两点.(1)求证:MD=MC;(2)若☉O的半径为5,AC=4√5,求MC的长.图4|类型2| 切线的判定5.如图5,☉O与△ABC的AC边相切于点C,与AB,BC边分别交于点D,E,DE∥OA,CE是☉O的直径.(1)求证:AB是☉O的切线;(2)若BD=4,CE=6,求AC的长.图56.如图6,△ABC内接于☉O,∠B=60°,CD是☉O的直径,点P是CD延长线上一点,且AP=AC.(1)求证:P A是☉O的切线;(2)若PD=√5,求☉O的直径.图67.如图7,点P在☉O外,PC是☉O的切线,C为切点,直线PO与☉O相交于点A,B.(1)若∠A=30°,求证:P A=3PB;(2)小明发现,∠A在一定范围内变化时,始终有∠BCP=1(90°-∠P)成立.请你写出推理过程.2图78.如图8,BD是☉O的直径,弦BC与OA相交于点E,AF与☉O相切于点A,交DB的延长线于点F,∠F=30°,∠BAC=120°,BC=8.(1)求∠ADB的度数;(2)求AC的长度.图8【参考答案】1.解:(1)直线CD与☉O相切.理由如下:连接CO.∵点D在圆上,∴OD=OB,又∵CD=CB,CO=CO,∴△COD≌△COB(SSS).∵∠ABC=90°,∴∠ODC=∠ABC=90°,∴OD⊥DC,∴直线CD与☉O相切.(2)设☉O的半径为x,∵DE=4,∴OE=4-x.在Rt△OBE中,BE2+BO2=OE2,即22+x2=(4-x)2,解得x=1.5,∴OD=OB=1.5.AB=2OB=3.∵CB,CD是圆的切线,∴CB=CD.则设CB=CD=y,在Rt△CDE中,CD2+DE2=CE2,即y2+42=(y+2)2,解得y=3,∴BC=3.在Rt△ABC中,AC=√AB2+BC2=3√2.2.(1)连接OD,AD,先利用圆周角定理得到∠ADB=90°,再根据等腰三角形的性质得BD=CD,再证明OD为△ABC 的中位线得到OD∥AC,根据DH⊥AC,所以OD⊥DH,然后根据切线的判定定理可判断DH为☉O的切线. (2)连接DE,由圆内接四边形的性质得∠DEC=∠B,再证明∠DEC=∠C,然后根据等腰三角形的性质得到CH=EH.解:(1)DH与☉O相切.理由如下:连接OD,AD,如图,∵AB为直径,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=CD,而AO=BO,∴OD为△ABC的中位线,∴OD∥AC,∵DH⊥AC,∴OD⊥DH,∴DH为☉O的切线.(2)证明:连接DE,如图,∵四边形ABDE为☉O的内接四边形,∴∠DEC=∠B,∵AB=AC,∴∠B=∠C,∴∠DEC=∠C,∵DH⊥CE,∴CH=EH,即H为CE的中点.3.解:(1)如图,连接OA,∵AC为☉O的切线,OA是☉O的半径,∴OA⊥AC.∴∠OAC=90°.∵∠ADE=25°,∴∠AOE=2∠ADE=50°.∴∠C=90°-∠AOE=90°-50°=40°. (2)∵AB=AC,∴∠B=∠C.∵∠AOC=2∠B,∴∠AOC=2∠C.∵∠OAC=90°,∴∠AOC+∠C=90°,∴3∠C=90°,∠C=30°.OC.∴OA=12设☉O 的半径为r , ∵CE=2,∴r=12(r +2).∴r=2.∴☉O 的半径为2. 4.解:(1)证明:连接OC , ∵CN 为☉O 的切线, ∴OC ⊥CM ,∴∠OCA +∠MCD=90°. ∵OM ⊥AB ,∴∠OAC +∠ODA=90°. ∵OA=OC , ∴∠OAC=∠OCA , ∴∠MCD=∠ODA. 又∵∠ODA=∠MDC , ∴∠MCD=∠MDC , ∴MD=MC.(2)依题意可知AB=5×2=10,AC=4√5, ∵AB 为☉O 的直径,∴∠ACB=90°, ∴BC=√102-(4√5)2=2√5. ∵∠AOD=∠ACB ,∠A=∠A , ∴△AOD ∽△ACB , ∴OD BC=AO AC,即2√5=4√5,得OD=52.设MC=MD=x ,在Rt △OCM 中, 由勾股定理得x +522=x 2+52, 解得x=154,即MC=154.5.解:(1)证明:连接OD ,∵DE ∥OA ,∴∠AOC=∠OED ,∠AOD=∠ODE , ∵OD=OE ,∴∠OED=∠ODE , ∴∠AOC=∠AOD , 又∵OA=OA ,OD=OC ,∴△AOC ≌△AOD (SAS),∴∠ADO=∠ACO. ∵CE 是☉O 的直径,AC 为☉O 的切线, ∴OC ⊥AC ,∴∠OCA=90°, ∴∠ADO=∠OCA=90°,∴OD ⊥AB. ∵OD 为☉O 的半径, ∴AB 是☉O 的切线.(2)∵CE=6,∴OD=OC=3, ∵∠BDO=180°-∠ADO=90°, ∴BO 2=BD 2+OD 2, ∴OB=√42+32=5, ∴BC=8,∵∠BDO=∠OCA=90°,∠B=∠B , ∴△BDO ∽△BCA , ∴BD BC =ODAC , ∴48=3AC , ∴AC=6.6.解:(1)证明:连接OA ,∵∠B=60°,∴∠AOC=2∠B=120°,又∵OA=OC,∴∠OAC=∠OCA=30°,又∵AP=AC,∴∠P=∠ACP=30°,∴∠OAP=∠AOC-∠P=90°,∴OA⊥P A,∴P A是☉O的切线.(2)在Rt△OAP中,∵∠P=30°,∴PO=OD+PD=2OA,又∵OA=OD,∴PD=OA,∵PD=√5,∴CD=2OA=2PD=2√5.∴☉O的直径为2√5.7.解:(1)证明:∵AB是直径,∴∠ACB=90°,∵∠A=30°,∴AB=2BC.连接OC.AB,∵PC是☉O的切线,∴∠OCP=90°,∴∠BCP=∠P=30°,∴PB=BC,又∵BC=12∴P A=3PB.(2)∵点P在☉O外,PC是☉O的切线,C为切点,直线PO与☉O相交于点A,B,∴∠BCP=∠ACO=∠A,∵∠A+∠P+∠ACB+∠BCP=180°,且∠ACB=90°,∴2∠BCP=90°-∠P,(90°-∠P).∴∠BCP=128.解:(1)∵AF与☉O相切于点A,∴AF⊥OA,∵BD是☉O的直径,∴∠BAD=90°,∵∠BAC=120°,∴∠DAC=30°,∴∠DBC=∠DAC=30°,∵∠F=30°,∴∠F=∠DBC,∴AF∥BC,∴OA⊥BC,∴∠BOA=90°-30°=60°,∠AOB=30°.∴∠ADB=12(2)∵OA ⊥BC ,∴BE=CE=12BC=4,∴AB=AC ,∵∠AOB=60°,OA=OB ,∴△AOB 是等边三角形,∴AB=OB , ∵∠OBE=30°,∴OE=12OB ,BE=√3OE=4,∴OE=4√33,∴AC=AB=OB=2OE=8√33.。

中考数学总复习《切线的性质与判定》练习题(含答案)

切线的性质与判定1-3题做垂直证半径,4-15题连半径证垂直.一 、解答题1.如图,ABC ∆为等腰三角形,AB AC =,O 是底边BC 的中点,O ⊙与腰AB 相切于点D ,求证AC 与O ⊙相切.2.如图所示在Rt ABC ∆中,90B ∠=︒,A ∠的平分线交BC 于D ,E 为AB 上一点,DE DC =,以D 为圆心,以DB 的长为半径画圆.求证:(1)AC 是D ⊙的切线;(2)AB EB AC +=.3.如图所示在Rt ABC ∆中,90B ∠=︒,A ∠的平分线交BC 于D ,E 为AB 上一点,DE DC =,以D 为圆心,以DB 的长为半径画圆.求证:(1)AC 是D ⊙的切线;(2)AB EB AC +=.4.已知:如图,C 为O ⊙上一点,DA 交O ⊙于B ,连结AC BC 、,且DCB CAB ∠=∠.求证:(1)DC 为O ⊙的切线;(2)2CD AD BD =⋅.E BE BE BE B5.已知:如图, AB 是⊙O 的直径, AB=AC ,BC 交⊙O 于点D ,延长CA 交⊙O 于点F ,连接DF ,DE ⊥CF 于点E . (1)求证:DE 是⊙O 的切线; (2)若AB =10,4cos 5C ∠=,求EF 的长.6.如图,等腰三角形ABC 中,6AC BC ==,8AB =.以BC 为直径作O 交AB 于点D ,交AC 于点G ,DF AC ⊥,垂足为F ,交CB 的延长线于点E . (1)求证:直线EF 是O 的切线; (2)求sin E ∠的值.7.如图,以等腰ABC ∆中的腰AB 为直径作O ,交BC 于点D .过点D 作DE AC ⊥,垂足为E .(1)求证:DE 为O 的切线;OFEDCBA(2)若O 的半径为5,60BAC ∠=︒,求DE 的长.8.如图,四边形内接于,是的直径,,垂足为,平分.(1)求证:是的切线;(2)若,求的长.9.已知:如图,点是⊙的直径延长线上一点,点 在⊙上,且(1)求证:是⊙的切线;(2)若点是劣弧上一点,与相交 于点,且,,求⊙的半径长.10.如图,以等腰ABC ∆中的腰AB 为直径作O ,交BC 于点D .过点D 作DE AC ⊥,垂足为E .(1)求证:DE 为O 的切线;(2)若O 的半径为5,60BAC ∠=︒,求DE 的长.C ABCD O BD O AE CD ⊥E DA BDE ∠AE O 301cm DBC DE ∠==,BDD O CA B O .OA AB AD ==BD OE BC AE BCF 8BE =tan BFA ∠=O CD11.已知:O 为BAC ∠平分线上一点,OD AB ⊥于D ,以O 为圆心.以OD 为半径作圆O .求证:O ⊙与AC 相切.12.如图,AB 是⊙O 的直径,BD 交⊙O 于点C ,AE 平分BAC ∠,EF AB ⊥,垂足为F ,D CAB ∠=∠. (1)求证:AD 为⊙O 的切线; (2)若4sin 5D =,6AD =,求CE 的长.13.如图,ABC △内接于O ,AB AC =,点D 在O 上,AD AB ⊥于点A ,AD 与BC交于点E ,点F 在DA 的延长线上,AF AE =. (1)求证:BF 是O 的切线;(2)若4AD =,4cos 5ABF ∠=,求BC 的长.CDB14.已知:如图,在Rt ABC △中,90C ∠=,点O 在AB 上,以O 为圆心,OA 长为半径的圆与AC AB ,分别交于点D E ,,且CBD A ∠=∠. (1)判断直线BD 与O 的位置关系,并证明你的结论; (2)若:8:5AD AO =,2BC =,求BD 的长.15.已知:如图,C 为O ⊙上一点,DA 交O ⊙于B ,连结AC BC 、,且DCB CAB ∠=∠.求证:(1)DC 为O ⊙的切线;(2)2CD AD BD =⋅.ODCBAEA BCDODCOABE切线的性质与判定答案解析一 、解答题1.解法一:连结OD ,过O 点作OE AC ⊥于E .∵AB AC =,∴B C ∠=∠, ∵O 是BC 中点,∴OB OC = OD AB ⊥∵O ⊙与AB 相切于D ,∴∴BOD COE ∆∆≌, ∴OE OD =, ∵OE AC ⊥, ∴AC 与O ⊙相切.解法二:连结OD OA 、,过O 点作OE AC ⊥于E . ∵AB AC =,O 是BC 中点, ∴AO 平分BAC ∠,∵O ⊙与AB 相切于D ,∴OD AB ⊥ ∵OE AC ⊥,∴OD OE =, ∴AC 与O ⊙相切.2.(1)如图所示,过点D 作DF AC ⊥于F .∵AB 为D ⊙的切线,AD 平分BAC ∠, ∴BD DF =∴AC 是D ⊙的切线;(2)在Rt BDE ∆和Rt DCF ∆中, ∵BD DF =,DE DC =, ∴BDE FDC ∆∆≌ ∴EB FC = 又AB AF = ∴AB EB AC +=.3.(1)如图所示,过点D 作DF AC ⊥于F .∵AB 为D ⊙的切线,AD 平分BAC ∠, ∴BD DF =∴AC 是D ⊙的切线;(2)在Rt BDE ∆和Rt DCF ∆中, ∵BD DF =,DE DC =, ∴BDE FDC ∆∆≌ ∴EB FC = 又AB AF = ∴AB EB AC +=.4.(1)连结OC 并延长交O ⊙于E ,连结BE .可知CE 是O ⊙的直径,∴90CBE ∠=︒,∴90E BCE ∠+∠=︒ ∵CAB E DCB CAB ∠=∠∠=∠,,∴DCB E ∠=∠, ∴90DCB BCE ∠+∠=︒∵CE 是直径,∴CD 是O ⊙的切线.. (2)∵DCB CAB D ∠=∠∠,是公共角, ∴BDC CDA ∆∆∽, ∴CD BDAD DC=,即2CD AD BD =⋅. 【点评】不是所有证明切线的问题只要连半径就都能解决,例如此题,遇到圆周角的关系,只连半径就不太好用了,就要变半径为直径.“弦切角”已经从初中课本中删除,作为预习课我们这里也不作介绍,如果学生水平较高,这里老师也可以稍微提一下.5.(1)连接OD , ∵OB =OD ,∴∠B =∠1.∵AB=AC, ∴∠B=∠C .∴∠1=∠C .∴OD ∥AC . ∵DE ⊥CF 于点E ,∴∠CED =90°. ∴∠ODE =∠CED =90°.∴ DE 是⊙O 的切线.(2) 连接AD ,∵AB 是⊙O 的直径, ∴∠ADB =90°.∵cosC=cosB=54. ∵AB=10,∴BD=AB ·cosB=8. ∵∠F=∠B =∠C . ∴DF=DC=8.且cosF=cosC=45.在Rt △DEF 中,EF=DF ·cosF=532. 6.(1)证明:如图,连结CD ,则90BDC ∠=︒.∴CD AB ⊥.∵ AC BC =, ∴AB BD =. ∴D 是AB 的中点. ∵O 是BC 的中点,∴DO AC ∥.∵EF AC ⊥于F . ∴EF DO ∥.∴ EF 是O 的切线.( 2 ) 连结BG ,∵BC 是直径, ∴90BGC CFE ∠=︒=∠. ∴BG EF ∥. ∴sin FC CGE EC BC∠==. 设CG x =,则6AG x =-. 在Rt BGA △中,222BG BC CG =-. 在Rt BGC △中,222BG AB AG =-. ∴()2222686x x -=--. 解得23x =.即23CG =. 在Rt BGC △中.∴ 213sin 69CG E BC ∠===. 7.(1)证明:连接AD ,OD .∵AB 是直径,∴90ADB ∠=︒,即AD BC ⊥ 又∵AB AC =,∴CD BD =,∴OD AC ∥ 又∵DE AC ⊥,∴OD DE ⊥ ∴DE 是O 的切线 (2)易知10AD ==∴12DE AD = DFG COBEA8.(1)证明:连接,∵DA 平分,∴BDA EDA ∠=∠.∵OA OD =,∴ODA OAD ∠=∠.∴OAD EDA ∠=∠.∴OA CE ∥.∵AE DE ⊥,∴90AED ∠=︒,90OAE DEA ∠=∠=︒ ∴AE OA ⊥. ∴AE 是O 的切线.(2)∵BD 是直径,∴90BCD BAD ∠=∠=︒. ∵30DBC ∠=︒,60BDC ∠=︒ ∴120BDE ∠=︒.∵DA 平分BDE ∠,∴60BDA EDA ∠=∠=︒∴30ABD EAD ∠=∠=︒.在Rt AED △中,90AED ∠=︒,30EAD ∠=︒,∴2AD DE =.在Rt ABD △中,90BAD ∠=︒,30ABD ∠=︒,∴24BD AD DE ==.∵DE 的长时1cm ,∴BD 的长是4cm . 9.(1)证明:连接.∵, ∴. ∴是等边三角形. ∴.∵,∴. ∴. ∴ .又∵点在⊙上,∴是⊙的切线 . (2)解:∵是⊙的直径, ∴.在中,, ∴设则,∴ .∴. OA BDE ∠OB ,OA AB OA OB ==OA AB OB ==ABO ∆160BAO ∠=∠=︒AB AD =230D ∠=∠=︒1290∠+∠=︒DB BO ⊥B O DB O CA O 90ABC ∠=︒Rt ABF△tan 2AB BFA BF ∠==,AB =2BF x=3AF x ==23BF AF =CD∵, ∴ ∽ . ∴. ∵,∴ .∴.10.(1)证明:连接AD ,OD .∵AB 是直径,∴90ADB ∠=︒,即AD BC ⊥ 又∵AB AC =,∴CD BD =,∴OD AC ∥ 又∵DE AC ⊥,∴OD DE ⊥ ∴DE 是O 的切线 (2)易知10AD ==∴12DE AD = 11.如图所示,过O 作OE AC ⊥,垂足为E .∵O 为BAC ∠平分线上一点,OD AB ⊥于D ∴OE OD =, ∴O ⊙与AC 相切.【解析】证明与切线有关的问题的辅助线一般有如下两种:①已知直线过圆上某点,那么连接该点与圆心,如第⑴题; ②如果不知直线与圆有无公共点,则过圆心作已知直线的垂线. 12.(1)证明:∵AB 是⊙O 的直径,∴90ACB ∠=︒. ∴90CAB B ∠+∠=︒. ∵D CAB ∠=∠,∴90D B ∠+∠=︒. ∴90DAB ∠=︒.∴AD 为⊙O 的切线.,34C E ∠=∠∠=∠BFE ∆AFC ∆23BE BF AC AF ==8BE =12AC =6AO =(2)解:∵4sin 5D =,6AD =, 在Rt ACD △中, 24sin 5AC AD D =⋅=,185CD =. 在Rt DAB △中,sin D =45AB DB =. ∴8AB =,10DB =.∵AE 平分BAC ∠,EF AB ⊥,90ACB ∠=︒,∴CE EF =.设CE EF x ==, 则18105BE x =--, ∵90EFB DAB ∠=∠=︒,B B ∠=∠,∴BEF △∽BDA △. ∴EF BE DA BD=, 即18105610x x --=. ∴125x =. 即CE 的长为125. 13.(1)如图,连结BD .∵AD AB ⊥,∴DB 是O ⊙的直径.∴1290D ∠+∠+∠=︒.又∵AE AF =,∴BE BF =,23∠=∠.∵AB AC =,∴23D C ∠=∠=∠=∠.∴12390∠+∠+∠=︒.F C即OB BF ⊥于B .∴直线BF 是O ⊙的切线.(2)作AG BC ⊥于点G .∵23D ∠=∠=∠. ∴4cos cos 35D ∠=∠=.在Rt ABD △中,90DAB ∠=︒,4AD =,4cos 5D ∠=,∴5cos AD BD D==, 223AB BD AD =-=. 在Rt ABG △中,90AGB ∠=︒,3AB =,4cos 25∠=,∴12cos 25BG AB =∠=. ∵AB AC = ,∴2425BC BG ==. 14.(1)直线BD 与O 相切.如图1,连结OD .OA OD =,A ADO ∠=∠. 90C ∠=, 90CBD CDB ∴∠+∠=. 又CBD A ∠=∠,90ADO CDB ∴∠+∠=.90ODB ∴∠=.∴直线BD 与O 相切.(2)解法一:如图1,连结DE .AE 是O 的直径,90ADE ∴∠=.:8:5AD AO =,4cos 5AD A AE ∴==. DCO A B E图190C ∠=,CBD A ∠=∠,4cos 5BC CBD BD ∴∠==. 2BC =, 52BD ∴=. 15.(1)连结OC 并延长交O ⊙于E ,连结BE . 可知CE 是O ⊙的直径,∴90CBE ∠=︒,∴90E BCE ∠+∠=︒∵CAB E DCB CAB ∠=∠∠=∠,,∴DCB E ∠=∠,∴90DCB BCE ∠+∠=︒∵CE 是直径,∴CD 是O ⊙的切线..(2)∵DCB CAB D ∠=∠∠,是公共角,∴BDC CDA ∆∆∽, ∴CD BD AD DC=,即2CD AD BD =⋅. 【点评】不是所有证明切线的问题只要连半径就都能解决,例如此题,遇到圆周角的关系,只连半径就不太好用了,就要变半径为直径.“弦切角”已经从初中课本中删除,作为预习课我们这里也不作介绍,如果学生水平较高,这里老师也可以稍微提一下.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.( 2019?凉山州)如图,点 D 是以 AB 为直径的 ⊙O 上一点,过点 B 作 ⊙ O 的切线,交 AD 的延长线于点 C, E 是 BC 的中点,连接 DE 并延长与 AB 的延长线交于点 F .
( 1)求证: DF 是 ⊙ O 的切线; ( 2)若 OB= BF, EF = 4,求 AD 的长.
11.(2019?资阳)如图, AC 是 ⊙ O 的直径, PA 切 ⊙O 于点 A, PB 切 ⊙O 于点 B,且∠ APB= 60°. ( 1)求∠ BAC 的度数; ( 2)若 PA= 1,求点 O 到弦 AB 的距离.
备战中考二轮复习必考专题水平测试题 专题 18 切线的性质与判定
一.填空题 (共 1 小题)
( 1)判断直线 DF 与 ⊙ O 的位置关系,并说明理由;
( 2)若 AB= 6, AE= 12 √3, CE= 4 √7,求 BD 的长.
5
5
【点拨】( 1)连接 OD,根据角平分线的定义得到∠ BAD =∠ CAD ,求得 ?????= ????,? 根据垂径定理得到 OD ⊥BC,根据平行线的性质得到 OD ⊥DF ,于是得到 DF 与 ⊙O 相切; ( 2)根据相似三角形的判定和性质即可得到结论. 【解析】 解:(1) DF 与 ⊙O 相切, 理由:连接 OD, ∵∠ BAC 的平分线交 ⊙ O 于点 D , ∴∠ BAD =∠ CAD , ∴ ?????= ????,?
备战中考二轮复习必考专题水平测试题
专题 18 切线的性质与判定
一.填空题 (共 1 小题)
1.( 2019?眉山)如图,在 Rt△ AOB 中, OA= OB= 4√2. ⊙O 的半径为 2,点 P 是 AB 边上的动点,过点 P
作 ⊙O 的一条切线 PQ(点 Q 为切点),则线段 PQ 长的最小值为
7.( 2019?遂宁)如图,△ ABC 内接于 ⊙ O,直径 AD 交 BC 于点 E,延长 AD 至点 F,使 DF = 2OD,连接
FC 并延长交过点
A 的切线于点
G,且满足
AG∥ BC,连接
OC,若
cos∠ BAC=
1, BC= 6. 3
( 1)求证:∠ COD =∠ BAC;
Hale Waihona Puke ( 2)求 ⊙ O 的半径 OC;
5
5
3.( 2019?雅安)如图,已知 AB 是 ⊙O 的直径, AC, BC 是 ⊙O 的弦, OE∥ AC 交 BC 于 E,过点 B 作 ⊙O 的切线交 OE 的延长线于点 D ,连接 DC 并延长交 BA 的延长线于点 F . ( 1)求证: DC 是 ⊙ O 的切线; ( 2)若∠ ABC=30°, AB= 8,求线段 CF 的长.
9.( 2019?南充)如图,在△ ABC 中,以 AC 为直径的 ⊙ O 交 AB 于点 D,连接 CD,∠ BCD =∠ A. ( 1)求证: BC 是⊙ O 的切线; ( 2)若 BC= 5,BD =3,求点 O 到 CD 的距离.
10.( 2019?成都)如图, AB 为 ⊙O 的直径, C, D 为圆上的两点, OC∥ BD ,弦 AD ,BC 相交于点 E. ( 1)求证: ?????= ????;? ( 2)若 CE= 1,EB = 3,求 ⊙ O 的半径; ( 3)在( 2)的条件下,过点 C 作 ⊙ O 的切线,交 BA 的延长线于点 P,过点 P 作 PQ∥ CB 交 ⊙ O 于 F, Q 两点(点 F 在线段 PQ 上),求 PQ 的长.
4.( 2019?乐山) 如图, 直线 l 与⊙ O 相离, OA⊥l 于点 A,与 ⊙ O 相交于点 P,OA= 5.C 是直线 l 上一点, 连结 CP 并延长交 ⊙ O 于另一点 B,且 AB = AC. ( 1)求证: AB 是 ⊙O 的切线; ( 2)若 ⊙ O 的半径为 3,求线段 BP 的长.

二.解答题 (共 10 小题)
2.( 2019?达州)如图, ⊙ O 是△ ABC 的外接圆,∠ BAC 的平分线交 ⊙ O 于点 D ,交 BC 于点 E,过点 D 作 直线 DF ∥ BC.
( 1)判断直线 DF 与 ⊙ O 的位置关系,并说明理由;
( 2)若 AB= 6, AE= 12 √3, CE= 4 √7,求 BD 的长.
( 3)求证: CF 是⊙ O 的切线.
8.( 2019?宜宾)如图,线段 AB 经过 ⊙O 的圆心 O,交 ⊙ O 于 A、 C 两点, BC =1, AD 为 ⊙O 的弦,连结 BD,∠ BAD =∠ ABD= 30°,连结 DO 并延长交 ⊙ O 于点 E,连结 BE 交⊙ O 于点 M . ( 1)求证:直线 BD 是 ⊙O 的切线; ( 2)求 ⊙ O 的半径 OD 的长; ( 3)求线段 BM 的长.
5.( 2019?广安)如图,在 Rt△ ABC 中,∠ ACB=90°, AC= 6, BC= 8, AD 平分∠ BAC,AD 交 BC 于点 D, ED⊥ AD 交 AB 于点 E,△ ADE 的外接圆 ⊙O 交 AC 于点 F ,连接 EF. ( 1)求证: BC 是⊙ O 的切线; ( 2)求 ⊙ O 的半径 r 及∠ 3 的正切值.
【点睛】 本题考查了切线的性质、等腰直角三角形的性质以及勾股定理.此题难度适中,注意掌握辅助 线的作法,注意得到当 PO⊥ AB 时,线段 PQ 最短是关键.
二.解答题 (共 10 小题)
2.( 2019?达州)如图, ⊙ O 是△ ABC 的外接圆,∠ BAC 的平分线交 ⊙ O 于点 D ,交 BC 于点 E,过点 D 作 直线 DF ∥ BC.
1.( 2019?眉山)如图,在 Rt△ AOB 中, OA= OB= 4√2. ⊙O 的半径为 2,点 P 是 AB 边上的动点,过点 P 作 ⊙O 的一条切线 PQ(点 Q 为切点),则线段 PQ 长的最小值为 2√3 .
【点拨】 首先连接 OQ ,根据勾股定理知 PQ2= OP2﹣ OQ2,可得当 OP⊥ AB 时,即线段 PQ 最短,然后 由勾股定理即可求得答案. 【解析】 解:连接 OQ . ∵ PQ 是⊙ O 的切线, ∴ OQ⊥ PQ; 根据勾股定理知 PQ2= OP2﹣ OQ2, ∴当 PO⊥ AB 时,线段 PQ 最短, ∵在 Rt△ AOB 中, OA= OB= 4√2, ∴ AB= √2 OA= 8, ∴ OP= ???????????=??4, ∴ PQ= √???2?- ???2? = 2√3. 故答案为 2√3 .
相关文档
最新文档