生物强化技术在难降解有机物处理中的应用
污水处理中的生物强化技术

污水处理中的生物强化技术在当今社会,随着工业化和城市化进程的加速,污水的排放量不断增加,水质污染问题日益严重。
为了保护生态环境和人类健康,污水处理技术的研究和应用变得至关重要。
生物强化技术作为一种新兴的污水处理方法,具有高效、经济、环保等优点,逐渐受到人们的关注和重视。
一、生物强化技术的概念生物强化技术是指通过向传统的生物处理系统中引入具有特定功能的微生物、酶或基因工程菌等,以提高污水处理系统的性能和效率。
这些引入的微生物或生物制剂能够增强系统对难降解有机物、有毒有害物质的去除能力,改善污泥性能,提高系统的稳定性和抗冲击能力。
二、生物强化技术的作用机制1、直接作用引入的高效微生物能够直接降解污水中的污染物。
这些微生物经过筛选和培养,具有特定的代谢途径和酶系,能够快速分解和转化目标污染物,从而提高处理效果。
2、共代谢作用某些微生物在降解主要污染物的同时,能够产生一些酶或中间产物,促进其他微生物对难降解污染物的分解。
这种共代谢作用可以拓宽污水处理系统的污染物去除范围。
3、竞争抑制作用引入的优势微生物能够与原有的微生物群落竞争生存空间和营养物质,抑制有害微生物的生长和繁殖,从而优化微生物群落结构,提高处理系统的稳定性。
4、生物刺激作用添加一些营养物质、生长因子或电子受体等,可以刺激微生物的生长和代谢活性,增强其对污染物的去除能力。
三、生物强化技术的应用形式1、投加高效微生物菌剂这是最常见的生物强化方式。
通过筛选和培养具有特定功能的微生物,制成菌剂投加到污水处理系统中。
例如,对于含有芳香烃类化合物的污水,可以投加能够降解这类化合物的微生物菌剂。
2、固定化微生物技术将微生物固定在特定的载体上,如多孔材料、凝胶等,使其在处理系统中保持较高的生物量和活性。
固定化微生物技术能够提高微生物对环境变化的适应能力,减少微生物的流失。
3、基因工程菌的应用利用基因工程技术构建具有特定降解能力的基因工程菌,并将其引入污水处理系统。
生物强化技术在难降解有机物处理中应用

生物强化技术在难降解有机物处理中的应用摘要:总结生物强化技术的方法及优缺点,阐述生物强化技术的广阔应用范围与前景,并提出现在以及今后发展的热点方向。
关键词:生物强化;难降解有机污染物;微生物;生物修复1、概述目前实施生物强化技术可通过如下三条途径:投加有效降解微生物;优化现有处理系统的营氧供给、添加基质(底物)类似物来刺激微生物生长或提高其活力;投加遗传工程菌(gem)。
1.1投加有效降解微生物实施该技术的前提是获得可降解待定有毒难降解有机污染物的菌株,降解菌大多数在纯培养体系中表现高活性,对于多菌株共存的生物处理系统中,投加难降解菌株能否起到强化有机物降解的作用,尚需评估。
edgehill等人认为有效的菌剂应满足:①投加后,菌体活性高;②菌体可快速降解目标污染物;③在系统中(如曝气池)不仅能竞争性生存,且可维持相当的数量。
为了解决投加纯营氧物所出现的问题, stenstrom研究小组开发一种非线性富营氧反应器(er)工艺。
所谓er实际上是一个或多个sbr,以富集足够数量可连续供给主体反应器的驯化培养物,同时以有毒物本身及其降解过程的某些代谢中间体作为维持驯化作用的选择压力。
er培养的驯化培养物投加至主体工艺,强化有毒有机物的生物降解作用。
1.2投加营氧物质或基质类似物由于大多数难降解有机污染物的降解是通过共代谢途径进行的,在常规活性污泥系统中可降解目标污染物的微生物数量与活性比较低,添加某些营氧物质包括碳源与能源性物质,或提供目标污染物降解过程中所需的因素,将有助于降解菌的生长,改善处理系统的运行性能。
投加基质类似物是针对代谢酶的可诱导性而提出的,利用目标污染物的降解产物、前体作为酶的诱导物,提高酶活性。
作为诱导物(基质类物质)应考虑:毒性相对较低、价格低廉且有多种用途,并在无富集基质(目标污染物)时,诱导物可维持富集培养物的生长特性与污染物降解动力学。
在分批培养的条件下,已有很多研究证实投加营氧物可刺激有毒难降解有机物的生物降解。
染料废水处理技术

染料废水处理技术染料品种数以万计,印染加工过程中约有10%~20%的染料随废水排出,每排放It染料废水,就会污染20t水体。
废水中的染料能吸收光线,降低水体透明度,造成视觉上的污染。
染料废水是难处理的工业废水之一,具有色度深、碱性大、有机污染物含量高和水质变化大的特点。
大多数染料为有毒难降解有机物,化学稳定性强,具有致癌、致畸、致突变作用;直接危害人类健康,还严重破坏水体、土壤及生态环境,造成难以想象的后果。
有效解决染料废水处理问题是消除印染行业发展瓶颈的关键所在。
1、染料废水及其污染染料工业污染中尤以染料废水的污染问题最为突出。
近些年来,我国每年污水排放量达390多亿吨,其中工业污水占51%,而染料废水又占总工业废水排放量的35%,而且还以1%的速度在逐年增加。
每排放It染料废水,就能造成20t水体的污染。
各行业中,印染纺织业的COD排放量排在第4位,而且排放比重还在逐年增加。
“三河三湖”中,染料废水对太湖、淮河流域造成的污染状况尤其严重。
染料废水主要来自于染料及染料中间体的生产企业,由染整过程中排放出的染料、浆料、助剂等组成。
随着印染工业的迅猛发展,染料废水已成为水体中几种最主要的污染源之一。
目前世界染料年产量约为(8~9)x105t•我国是纺织品生产和加工大国,纺织品出口额已多年来列居世界首位,每年的染料生产量达1.5X105t,其中大约10%~15%的染料会直接随废水排入水体中。
染料废水色度高、水量大、碱性大、组成成分复杂,属于比较难处理的工业废水之。
染料是染料废水中的主要污染物,带有各类显色基团(如-N=N-,-N=O等)和部分极性基团(-S03Na,-OH,-NH2),成分复杂,大多数是以芳煌和杂环为母体,属较难降解的有机污染物,也是我国各大水域的重要污染源。
大多数有机染料化学稳定性强,具有三致(致癌、致畸、致突变)作用,是典型有毒难降解有机污染物。
止匕外,废水中的染料能吸收光线,降低水体的透明度,对水生生物、微生物的生长不利,并且降低了水体的自净能力,同时导致视觉污染,严重破坏水体、土壤及生态环境,直接和间接地危害人类身体健康。
难降解有机物质的生物降解技术分析

技术应用与研究2018·0149Chenmical Intermediate当代化工研究难降解有机物质的生物降解技术分析*丁智晖 董子萱 于水利(同济大学 上海 200092)摘要:广泛存在于人们生产生活中的难降解化学物质,一方面为人们的物质生活提供方便,另一方面因难降解的特性长期滞留于人们的生活空间,因致癌、致畸、致突变的特性给人类健康带来了潜在危险。
为了减轻难降解有机物质对生态环境的影响与危害,国内外对难降解有机物的处理方法进行了大量研究,目前,主要方法包括生物法、物化法、化学氧化法等。
本文将根据国内外生物处理难降解有机物的进展作一简要介绍。
关键词:生物降解;难降解有机物;技术进展中图分类号:Q 文献标识码:AThe analysis of Biodegradation Technology in the field of Refractory organic mattersDing Zhihui, Dong Zixuan, Yu Shuili(Tongji University, Shanghai, 200092)Abstract:The refractory chemicals Widely existing in people's production life not only provide convenience for people,but also pose a potential danger to human health due to their carcinogenic, teratogenic, mutagenic properties and long-retention. In order to reduce the influence and harm by refractory organic matters to the environment, a large number of studies have been done on the treatment of refractory organic matters both at home and abroad, mainly including biological method, physicochemical method, chemical oxidation method and so on. In this paper, the research progress of biodegradation methods at home and abroad will be introduced briefly.Key words:biodegradation;refractory organic matters;technical progress1.前言进入工业时代以来,每年都有新型化学物质问世。
环境化学课后答案(戴树桂)主编_第二版(4-7章)

第四章土壤环境化学1.什么是土壤的活性酸度与潜性酸度?试用它们二者的关系讨论我国南方土壤酸度偏高的原因。
根据土壤中H+的存在方式,土壤酸度可分为活性酸度与潜性酸度两大类。
(1)活性酸度:土壤的活性酸度是土壤溶液中氢离子浓度的直接反映,又称有效酸度,通常用pH表示。
(2)潜性酸度:土壤潜性酸度的来源是土壤胶体吸附的可代换性H+和Al3+。
当这些离子处于吸附状态时,是不显酸性的,但当它们经离子交换作用进入土壤溶液后,即可增加土壤溶液的H+浓度,使土壤pH值降低。
南方土壤中岩石或成土母质的晶格被不同程度破坏,导致晶格中Al3+释放出来,变成代换性Al3+,增加了土壤的潜性酸度,在一定条件下转化为土壤活性酸度,表现为pH值减小,酸度偏高。
2.土壤的缓冲作用有哪几种?举例说明其作用原理。
土壤缓冲性能包括土壤溶液的缓冲性能和土壤胶体的缓冲性能:(1)土壤溶液的缓冲性能:土壤溶液中H2CO3、H3PO4、H4SiO4、腐殖酸和其他有机酸等弱酸及其盐类具有缓冲作用。
以碳酸及其钠盐为例说明。
向土壤加入盐酸,碳酸钠与它生成中性盐和碳酸,大大抑制了土壤酸度的提高。
Na2CO3 + 2HCl2NaCl + H2CO3当加入Ca(OH)2时,碳酸与它作用生成难溶碳酸钙,也限制了土壤碱度的变化范围。
H2CO3 + Ca(OH)2CaCO3 + 2H2O土壤中的某些有机酸(如氨基酸、胡敏酸等)是两性物质,具有缓冲作用,如氨基酸既有氨基,又有羧基,对酸碱均有缓冲作用。
RCHNH2COOH+ HClNH3ClR CHCOOH+ NaOH + H 2ORCHNH 2COOH R CH NH 2COONa(2)土壤胶体的缓冲作用:土壤胶体吸附有各种阳离子,其中盐基离子和氢离子能分别对酸和碱起缓冲作用。
对酸缓冲(M -盐基离子):土壤胶体 M +HCl 土壤胶体 H +MCl对碱缓冲:土壤胶体 H +MOH 土壤胶体 M +H 2OAl 3+对碱的缓冲作用:在pH 小于5的酸性土壤中,土壤溶液中Al 3+有6个水分子围绕,当OH -增多时,Al 3+周围的6个水分子中有一、二个水分子离解出H +,中和OH -:2Al(H 2O)63+ + 2OH - [Al 2(OH)2(H 2O)8]4+ + 4H 2O3.植物对重金属污染产生耐性作用的主要机制是什么?不同种类的植物对重金属的耐性不同,同种植物由于其分布和生长的环境各异可能表现出对某种重金属有明显的耐性。
生物强化技术处理难降解有机污染物的研究进展

污染 物 的反 应 J 。应用 此技 术 的基 本前 提 是本 土
维普资讯
化 20 07年第 2 7卷第 2期
0
P
工
环 保 Βιβλιοθήκη ENVI R0N M ENTAL PROTECT1 0N F CHEM I 0 CAL N DUSTRY I
一
c
口 .
专 论 与 综 述
‘ , , 曼 , , ^ , 0 , ≯ ≯ ,
生 物 强 化 技 术 处 理 难 降 解 有 机 污 染 物 的 研 究 进 展
徐军祥 杨翔华 姚 秀清 许 , , , 谦 佟 明友 张 , , 全
( .辽 宁白 油 化 工 大学 环境 与牛 物 工 程 学 院 , 宁 抚顺 130 ; 1 辽 10 1 2 .中 国石 油 化 工 股 份 有 限公 司 抚 顺 石 油 化 工 研 究 院 , 宁 抚 顺 130 ) 辽 0 1 1
L a nn 10 1 C i ; .F s u sac nt ueo erlu n e o h mia ,SNOP C,F su i nn 0 1 Chn ) io ig 1 3 0 , hn 2 u h nReerh I stt f t e m a d P  ̄ c e c s 1 a i P o l E u h n L a ig 1 3 0 , i o 1 a
[ 摘要 ] 阐述 了生物强化技术的原理 , 括了陶内外有关生物强化技术处理难降解有机 污染物 的应用实例及效果 。 概 介绍 了牛物强化技术应用 中有关高效降解菌和生物强化 菌剂的研究 与开发现状 , 进一步讨论 了应用 生物强化技 术
生物强化技术KONODO

生物强化技术2020目前,污水处理领域生物技术的应用研究,主要集中在优势菌种的筛选、驯化、纯化等传统的微生物工程技术方面。
一、生物强化技术的原理1、生物强化技术(Bio-augmentation),发端于20世纪70年代中期,80年代以后逐步得到关注、研究和应用。
该技术的基本原理是,为了提高生物降解反应器或原体系中微生物的降解能力,通过投加外源微生物或营养调节成分来保持、强化反应器中微生物的活性,从而提高生物降解效果。
生物强化技术所利用的微生物可以来源于原有的生物降解体系,经过驯化、富集、筛选、培养获得:也可能是原来生物降解体系中不存在的微生物。
通过投加外源微生物对有机物的降解作用,包括微生物的直接降解作用和微生物的共代谢作用。
直接降解作用:通过投加能够降解目标污染物的微生物,提升生物反应器中生物降解活性,微生物以污染物为碳源或能源,实现对污染物的直接降解。
共代谢作用:有些污染物质,微生物不能直接以其碳源和能源生长,但在其它基质存在的条件下,能促进其降解。
共代谢过程主要通过不同类型的微生物相互协作降解污染物质,在生物降解过程中有着极其重要的作用。
2、采用生物强化技术,实现对污染物的直接降解作用和共代谢作用,前提是获得功能性降解微生物或者微生物菌群。
获取具有降解功能的微生物或菌群主要途径有:1、通过长时间驯化,获得具有一定降解能力的菌株或菌群;2、从特定的环境中分离纯化、获得某些具有特定降解能力的微生物菌株;3、通过基因工程技术改造微生物,使其获得或增强特定降解能力。
3、从本质意义上讲,在生产中投入活性污泥也属于生物强化技术。
但对于污水中含有难生物降解或毒性强的污染物,则需要经过长期驯化,尤其是自然的筛选和淘汰过程,才能逐步在反应器中建立生物降解菌群,实现生物降解过程。
而且,污泥来源的微生物菌群并非常常有效。
因此,在常规污水处理的生化系统中通过投加外源性具有降解功能的微生物,实现对生物降解微生态系统的优化,提高生物降解的广谱性和生物降解的效能,就成了实际应用中的一个选项。
焦化废水生物处理方法

活性污泥法活性污泥法处理焦化废水,是利用活性污泥在废水中的凝聚、吸附、氧化、分解和沉淀等作用,从而达到去除废水中有机污染物的目的。
该法向废水中连续通入空气,因好氧微生物繁殖,经一定时间后形成污泥状絮凝物,其上栖息着以菌胶团为主的微生物群,具有很强的吸附与氧化有机物的能力。
活性污泥法主要应用于焦化废水预处理后的二级处理。
生物脱氮技术传统生物脱氮技术可分为A-O、A-A-O、O-A-O等工艺,新型生物脱氮技术主要有半硝化工艺(SHARON)、厌氧氨氧化工艺(ANAMMOX)、半硝化-厌氧氨氧化工艺(SHARON-ANAMMOX)、生物膜内自养脱氮工艺(CAUON)。
其中,半硝化-厌氧氨氧化工艺与传统的硝化-反硝化工艺相比,耗氧量明显减少,不需要添加碳源,而且产生的剩余污泥量很少。
生物流化床技术生物流化床技术是一种新型的生物膜法工艺,其载体在流化床内呈流化状态,使固(生物膜)、液(废水)、气(空气)三相间得到充分接触,颗粒之间剧烈碰撞,生物膜表面不断更新,微生物始终处于生长旺盛阶段,保持高浓度的生物量,传质效率极高,水力停留时间短,运转负荷比一般活性污泥法高10~20倍,耐冲击负荷能力强。
因此近几年在处理难降解有机废水方面应用得越来越广泛。
生物强化处理技术与传统生物处理工艺相比,生物强化技术使用了特效微生物菌群和维持菌群活性的生物催化剂,可大大缩短处理工艺流程和工程投资,无二次污染,可抑制污泥膨胀,提高废水处理系统运行的稳定性,因此在有机废水处理中越来越受到重视。
序批式反应器序批式反应器(SBR)是一个间歇注水的反应器系统,包括一个独立的完全混合式反应器,活性污泥工艺的所有步骤都在其中发生,典型流程包括进水、反应、沉淀、排水、闲置等5个过程,是一个集生物降解和脱氮除磷于一体的间歇运行的废水处理工艺。
曝气生物滤池曝气生物滤池(BAF)工艺具有去除SS、COD、BOD、硝化、脱氮、除磷、去除AOX(有害物质)的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生物强化技术在难降解有机物处理中的应用
摘要:总结生物强化技术的方法及优缺点,阐述生物强化技术的广阔应用范围与前景,并提出现在以及今后发展的热点方向。
关键词:生物强化;难降解有机污染物;微生物;生物修复
1、概述
目前实施生物强化技术可通过如下三条途径:投加有效降解微生物;优化现有处理系统的营氧供给、添加基质(底物)类似物来刺激微生物生长或提高其活力;投加遗传工程菌(GEM)。
1.1投加有效降解微生物
实施该技术的前提是获得可降解待定有毒难降解有机污染物的菌株,降解菌大多数在纯培养体系中表现高活性,对于多菌株共存的生物处理系统中,投加难降解菌株能否起到强化有机物降解的作用,尚需评估。
Edgehill等人认为有效的菌剂应满足:①投加后,菌体活性高;②菌体可快速降解目标污染物;③在系统中(如曝气池)不仅能竞争性生存,且可维持相当的数量。
为了解决投加纯营氧物所出现的问题,Stenstrom研究小组开发一种非线性富营氧反应器(ER)工艺。
所谓ER实际上是一个或多个SBR,以富集足够数量可连续供给主体反应器的驯化培养物,同时以有毒物本身及其降解过程的某些代谢中间体作为维持驯化作用的选择压力。
ER培养的驯化培养物投加至主体工艺,强化有毒有机物的生物降解作用。
1.2投加营氧物质或基质类似物
由于大多数难降解有机污染物的降解是通过共代谢途径进行的,在常规活性污泥系统中可降解目标污染物的微生物数量与活性比较低,添加某些营氧物质包括碳源与能源性物质,或提供目标污染物降解过程中所需的因素,将有助于降解菌的生长,改善处理系统的运行性能。
投加基质类似物是针对代谢酶的可诱导性而提出的,利用目标污染物的降解产物、前体作为酶的诱导物,提高酶活性。
作为诱导物(基质类物质)应考虑:毒性相对较低、价格低廉且有多种用途,并在无富集基质(目标污染物)时,诱导物可维持富集培养物的生长特性与污染物降解动力学。
在分批培养的条件下,已有很多研究证实投加营氧物可刺激有毒难降解有机物的生物降解。
1.3投加遗传工程菌GEM
近10多年来,通过基因工程技术构建具有特殊降解功能的GEM已有一些进展。
这些GEM菌株在纯培养时,可有效降解一些异生合成物。
但投加于复杂生态系统的废水处理构筑物中,它们是否可强化污染物降解,这一问题已有一些报道。
英国Wales大学理论与应用生物系的Fry等人将带有质粒的PD10(3CB+)的P.UWC1,投加到实验室规模AS系统中,发现该菌株可存活8个星期,对系统中其它原核微生物和原生动物无不良影响,但不能强化3-氯苯甲酸(3-CB)的降解速率,然而由于降解性质粒具有转移接合的特性,该工程菌所携带的PD10可转移至活性污泥土菌性菌株中,分离所获得的菌株中,AS2菌株降解3-CB的活性远高于菌株UWC1。
这项研究揭示了在GEM构建时必需考虑受体菌的生态适应性。
2、固定化生物技术是实现生物强化技术的桥梁
固定化生物技术是将实验室筛选的优势菌种通过化学或物理手段固定于某种载体上,使其密度密集,并保持活性反复利用的方法,是国际上从20世纪60年代后期开始迅速发展的一项技术。
固定化生物技术是实现污水处理生物强化技术的桥梁。
20世纪70年代后期开始应用于废水处理,主要有结合固定化、交联固定化、包埋固定化、自固定化等几种方法。
2.1包埋固定化技术
包埋固定化技术是指通过某些多聚体化合物包埋微生物,从而达到固定微生物的目的。
它具有两大特点:一是可快速简捷地获得固定微生物;二是可以选择性地固定不同菌属的微生物。
Anselmo等人研究了用琼脂、海藻硅酸钠、卡拉胶和聚乙烯酰胺等载体包埋固定化微生物降解苯酚。
随后,他们又以聚氨酯泡沫为载体固定镰刀菌菌丝体,在完全混合器中降解苯酚。
结果表明,与游离菌相比之下,固定化细胞降解苯酚的速度大大提高,且固定化细胞生物产量低。
2.2 其它固定化技术
除包埋固定化技术固定优势菌种处理焦化废水外,国内外有许多学者对其它固定化技术进行了研究。
吴立波等人以喹啉为唯一碳源驯化高效菌种,将其一部分附着在陶粒材料上,比较了自固定化前后菌种活性的变化。
然后再用活性污泥处理焦化废水时,以3种投加高效菌种的方式强化处理焦化废水:①只投加悬浮高效菌种;②投加悬浮菌种和空白陶粒;③投加附着高效菌种的陶粒。
实验结果表明:菌种自固定化后,活性略有下降,但在泥龄短时活性较好。
固定化技术的特点是细胞密度高,反应迅速,微生物流失少,产物分离容易,反应过程控制较容易,污泥产量少,可去除氮和高浓度有机物或某些难降解物质。
资料显示,与厌氧水解酸化、A/ O、A2/ O 技术相比,固定化技术对焦化废水中
的处理效果较好。
3、生物强化技术的应用
3.1 在土壤中的应用
①投菌堆肥法:Alves等研究了在堆肥式处理装置中投加菌种和营养的方法。
席北斗等利用高效复合微生物菌群对生活垃圾和污泥混合堆肥,较系统地研究了高效复合微生物菌群在堆肥中的应用。
②投菌生物泥浆法:利用生物泥浆法处理多环芳烃污染的土壤,降解率比其它方法高。
巩宗强等发现,在生物泥浆反应器中投加镰刀菌和毛著霉等真菌对典型多环芳烃(芘)的降解率可达90%和81.5%。
③投菌土耕法:传统的土耕法处理石油污染的土壤,可在几个月的时间内使石油浓度从70000mg/kg土壤降低到100~200mg/kg,是节省成本的方法,但仍存在着不足,即挥发性有机物会造成空气污染,难降解物质的缓慢积累会增加土壤的毒性。
但结合生物强化技术,投入适量的具有固定、共代谢作用的烃降解菌,同时投加H2O2和营养,则可大大提高土壤法的效率,从而增强此法的优势,筛选和使用高效烃基降解菌可以强化污染场地生物自净作用,去除率达98.8%。
3.2生物强化技术在水污染修复中的应用
①投菌活性污泥法:筛选、驯化出具有特异优势菌种制成菌悬液投入到曝气池,使曝气池混合液内特定细菌处于最佳活性状态,提高处理效果。
②生物脱氮除磷技术:缺氧-厌氧-好氧(A2/O工艺)技术是目前较为流行的且具有代表性的生物脱氮除磷技术。
研究发现在活性污泥中有一种能够反硝化、除菌细菌(DPB),可有效的脱氮除磷。
Hung等用曝气塘生物强化技术处理马铃薯废水,使TOC去除率达到98%。
③膜生物反应器:将驯化、培养的优势菌种制成生物膜,用于反应器处理废水,有很好的治污效果。
Saravanane等用生物膜(如生物流化床、升流式厌氧污泥床)使生物强化附着在载体(砂砾、颗粒污泥)上,减少了菌体的流失,稳定了系统。
④固定化微生物技术:利用固定化技术可有目的筛选一些优势菌种,将其固定在载体上以提高反应器内原微生物浓度,有利于反应后的固液分离,缩短了处理时间,产污泥少。
4、生物强化系统的设计与运行
生物强化系统的成功应用要综合考虑污染场地、投菌量、投菌方式、活性检测、反应器类型、生物安全性检测、效果评价和可行性验证等诸多因素。
为了制
订确实可行的生物强化系统,应对污染场地的理化、生化条件以及污染物在环境中的分布、降解速度等进行调查,并经可行性分析,预测污染物的去除率、修复时间、经费,预测投加菌及其代谢产物的生物安全性,从而确定投菌系统可以使用。
投入的微生物在生物强化系统中的状况对污染处理效果的影响极大,仅仅用降解和动力学参数评价生物强化作用,很难掌握投入菌的数量变化、活性高低、投菌日程以及混合菌种中生物强化菌本身对响应的贡献。
5、生物强化技术展望
生物强化技术在污染治理中应用研究十分广泛,已在生物修复中显示优越性,主要体现在:提高对目标污染物的去除效果;改善污泥性能,减少污泥产生;加快系统启动,增强负荷冲击能力和系统稳定性;与其他生物修复相技术结合,提高了运转效率。
上述生物强化技术的大多数研究局限于生物降解的目标评价,要使这项技术符合可持续发展和ISO14000 的有关规定,还必须对以下几个方面进行深度研究:
①研究一种快速高效的投加菌及其代谢产物的生物安全性检测技术。
②进一步研究共代谢机制,治理难降解污染物。
③建立投菌量、活性检测、菌株或复合菌群等参数的模型,使生物强化技术从中试进入应用。
④进一步开展高效降解超级菌、工程菌的研究。
生物强化技术自20 世纪70 年代中期产生以来,经几十年的研究与应用,已在生物修复中显现出了强大的生命力,该方法可有效提高有毒有害污染物的去除效果,将生物强化技术融入到传统的生物修复,并结合现代分子生物技术提供的新方法、手段进行监测、评价,已成为生物修复发展的一种趋势。