人教版八年级数学上册第15章 分式单元测试试卷及答案(B卷)

合集下载

人教版八年级上数学第15章 分式单元检测(含答案)(含答案)

人教版八年级上数学第15章 分式单元检测(含答案)(含答案)

数学人教版八年级上第十五章 分式单元检测一、选择题(本大题共8小题,每小题4分,共32分.在每小题所给的4个选项中,只有一项是符合题目要求的,请将正确答案的代号填在题后括号内)1.在2a b -,(3)x x x +,5πx +,a b a b +-中,是分式的有( ). A .1个B .2个C .3个D .4个 2.如果把分式2x x y+中的x 和y 都扩大2倍,那么分式的值( ). A .不变B .扩大2倍C .扩大4倍D .缩小2倍 3.分式22x y x y-+有意义的条件是( ). A .x ≠0 B .y ≠0C .x ≠0或y ≠0D .x ≠0且y ≠04.下列分式中,计算正确的是( ).A .2()23()3b c a b c a +=+++ B .222a b a b a b +=++ C .22()1()a b a b -=-+ D .2212x y xy x y y x -=--- 5.化简211a a a a --÷的结果是( ). A .1a B .a C .a -1 D .11a - 6.化简21131x x x +⎛⎫- ⎪--⎝⎭·(x -3)的结果是( ). A .2B .21x -C .23x -D .41x x -- 7.化简1111x x -+-,可得( ). A .221x - B .221x -- C .221x x - D .221x x -- 8.甲、乙两班学生植树造林,已知甲班每天比乙班多植5棵树,甲班植80棵树所用的天数与乙班植70棵树所用的天数相等,若设甲班每天植树x 棵,则根据题意列出的方程是( ).A .80705x x =-B .80705x x =+C .80705x x =+D .80705x x =- 二、填空题(本大题共8小题,每小题4分,共32分.把答案填在题中横线上)9.当x =__________时,分式13x -无意义. 10.化简:22x y x y x y---=__________. 11.随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 000 7 mm 2,这个数用科学记数法表示为__________ mm 2. 12.已知x =2 012,y =2 013,则(x +y )·2244x y x y+-=__________. 13.观察下列各等式:1111212=-⨯,1112323=-⨯,1113434=-⨯,…,根据你发现的规律计算:2222122334(1)n n +++⋅⋅⋅+⨯⨯⨯+=__________(n 为正整数). 14.甲计划用若干天完成某项工作,在甲独立工作两天后,乙加入此项工作,且甲、乙两人工效相同,结果提前两天完成任务,设甲计划完成此项工作的天数是x ,则x 的值是__________.15.含有同种果蔬但浓度不同的A ,B 两种饮料,A 种饮料重40千克,B 种饮料重60千克,现从这两种饮料中各倒出一部分,且倒出部分的重量相同,再将每种饮料所倒出的部分与另一种饮料余下的部分混合.如果混合后的两种饮料所含的果蔬浓度相同,那么从每种饮料中倒出的相同的重量是__________千克.16.某市为治理污水,需要铺设一段全长为300 m 的污水排放管道.铺设120 m 后,为了尽量减少施工对城市交通所造成的影响,后来每天铺设管道的长度比原计划增加20%,结果共用30天完成这一任务.求原计划每天铺设管道的长度.如果设原计划每天铺设x m 管道,那么根据题意,可得方程__________.三、解答题(本大题共5小题,共36分)17.(本题满分6分)化简:32322222b b ab b a b a a b ab b a++÷--+-. 18.(本题满分6分)已知x -3y =0,求2222x y x xy y +-+·(x -y )的值. 19.(本题满分10分,每小题5分)解方程:(1)271326x x x +=++; (2)11222x x x -=---.20.(本题满分7分)已知y =222693393x x x x x x x +++÷-+--.试说明不论x 为任何有意义的值,y 的值均不变.21.(本题满分7分)为抗旱救灾,某部队计划为驻地村民新修水渠3 600米,为了水渠能尽快投入使用,实际工作效率是原计划工作效率的1.8倍,结果提前20天完成修水渠任务.问原计划每天修水渠多少米?参考答案1.B 点拨:(3)x x x +和a b a b+-是分式,故选B. 2.A 3.C 点拨:若分式22x y x y-+有意义,则x 2+y 2≠0,所以x ≠0或y ≠0.故选C. 4.D 点拨:2222212(2)()x y x y x y xy x y x xy y x y y x ---===----+---,故选D. 5.B 点拨:221111a a a a a a a a ---÷=⨯-=a .故选B. 6.B 点拨:21131x x x +⎛⎫- ⎪--⎝⎭·(x -3)=1-211x x +-·(x -3)=1-22223222111x x x x x x --+==---.故选B. 7.B 点拨:原式=2211112(1)(1)(1)(1)11x x x x x x x x x x -+----==-+-+---.故选B. 8.D9.3 点拨:当x =3时,分式的分母为0,分式无意义.10.x +y 点拨:2222()()x y x y x y x y x y x y x y x y-+--==----=x +y . 11.7×10-7 12.-1 点拨:(x +y )·2244x y x y +-=(x +y )·222222()()x y x y x y ++-=(x +y )·221x y -=(x +y )·11()()x y x y x y=+--, 当x =2 012,y =2 013时,原式=1120122013x y =--=-1. 13.21n n + 点拨:222122334++⨯⨯⨯+…+211112(1)122334(1)n n n n ⎡⎤=+++⋅⋅⋅+⎢⎥+⨯⨯⨯+⎣⎦ =1111111121223341n n ⎛⎫-+-+-+⋅⋅⋅+- ⎪+⎝⎭=122111n n n ⎛⎫-= ⎪++⎝⎭. 14.6 点拨:由题意得24x x x x--+=1,解得x =6,检验知x =6是原分式方程的根且符合题意.15.24 点拨:设A 种饮料浓度为a ,B 种饮料浓度为b ,倒出的重量为x 千克,由题意得(40)(60)4060bx a x ax b x +-+-=,解得x =24. 16.12030012030(120%)x x -+=+(或1201801.2x x +=30) 点拨:根据题意可得题中的相等关系为前后两次铺设共用的时间等于30天,铺设120 m 后每天的工效为1.2x m ,铺设120 m 所用时间为120x 天,后来所用时间为3001201.2x -天,因此可列方程1206001201.2x x-+=30. 17.解:原式=322()(2)()()b b b a b a b a a ab b a b a b ++÷--+-+- =32()()()()b b b a b a b a a b a b a b ++÷---+- =32()()()()b b a b a b a b a a b b a b -+-+⋅--+ =22()()()b b ab b a b a a b a a b a a b -=----- =2()ab b b a a b a-=-. 18.解:2222x y x xy y +-+·(x -y )=22()x y x y +-·(x -y )=2x y x y +-. 当x -3y =0时,x =3y .原式=677322y y y y y y +==-. 19.解:(1)去分母,得2x ×2+2(x +3)=7,解得,x =16, 经检验,x =16是原方程的解. (2)方程两边同乘(x -2)得,1-x =-1-2(x -2),解得,x =2.检验,当x =2时,x -2=0,所以x =2不是原方程的根,所以原分式方程无解.20.解:2269(3)393x x x x y x x x ++-=÷-+-+=2(3)(3)3 (3)(3)3x x xxx x x+-⨯-+ +-+=x-x+3=3.所以不论x为任何有意义的值,y的值均不变,其值为3. 21.解:设原计划每天修水渠x米.根据题意得360036001.8x x-=20,解得x=80,经检验:x=80是原分式方程的解.答:原计划每天修水渠80米.。

人教版八年级上册数学第15章《分式》单元测试卷(含答案解析)

人教版八年级上册数学第15章《分式》单元测试卷(含答案解析)

人教版八年级上册数学第15章《分式》单元测试卷一.选择题(共10小题,满分30分)1.下列式子中,属于分式的是()A.B.C.D.2.分式的值是零,则x的值为()A.3B.﹣3C.3或﹣3D.03.已知某新型感冒病毒的直径约为0.000002022米,将0.000002022用科学记数法表示为()A.2.022×10﹣5B.0.2022×10﹣5C.2.022×10﹣6D.20.22×10﹣74.计算的结果是()A.B.C.D.5.在①x2﹣x+,②﹣3=a+4,③+5x=6,④=1中,其中关于x的分式方程的个数为()A.1B.2C.3D.46.如果把分式中的x、y的值都扩大2倍,那么分式的值()A.扩大2倍B.扩大4倍C.扩大6倍D.不变7.若将分式与通分,则分式的分子应变为()A.6m2﹣6mn B.6m﹣6nC.2(m﹣n)D.2(m﹣n)(m+n)8.分式,的最简公分母是()A.a B.ab C.3a2b2D.3a3b39.计算结果等于2的是()A.|﹣2|B.﹣|2|C.2﹣1D.(﹣2)0 10.已知,则的值是()A.66B.64C.62D.60二.填空题(共10小题,满分30分)11.分式的最简公分母是.12.要使分式有意义,则分式中的字母b满足条件.13.若表示一个整数,则整数x可取的个数有个.14.约分:=.15.方程的解是.16.若解分式方程产生增根,则m=.17.用漫灌方式给绿地浇水,a天用水10吨,改用喷灌方式后,10吨水可以比原来多用5天,那么喷灌比漫灌平均每天节约用水吨.18.已知若x﹣=3,则x2+=.19.将分式化为最简分式,所得结果是.20.扶贫工作小组对果农进行精准扶贫,帮助果农将一种有机生态水果拓宽了市场.与去年相比,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了1元,批发销售总额比去年增加了20%.已知去年这种水果批发销售总额为10000元,则这种水果今年每千克的平均批发价是元.三.解答题(共7小题,满分90分)21.神舟十三号飞船搭载实验项目中,四川省农科院生物技术研究所共有a粒水稻种子,每粒种子质量大约0.0000325千克;甘肃省天水市元帅系苹果的b粒干燥种粒,每粒种子质量大约0.002275千克,参与航天搭载诱变选育.(1)用科学记数法表示上述两个数.(2)若参与航天搭载这两包种子的质量相等,求的值.(3)若这两包种子的质量总和为1.04千克,水稻种子粒数是苹果种子粒数10倍,求a,b的值.22.若式子无意义,求代数式(y+x)(y﹣x)+x2的值.23.下列分式中,哪些是最简分式?,,;,,,.24.(1)计算:;(2)解不等式组:.25.若关于x 的方程有增根,求实数m的值.26.一船在河流上游A港顺流而下直达B港,用一个小时将货物装船后返航,已知船在静水中的速度是50千米/时,A、B两地距离为150千米,则该船从A港出发到返回A港共用了7.25小时,如果设水流速度是x千米/时,那么x应满足怎样的方程?27.阅读理解材料:为了研究分式与分母x的变化关系,小明制作了表格,并得到如下数据:x…﹣4﹣3﹣2﹣101234…10.50.0.25……﹣0.25﹣0.﹣0.5﹣1无意义从表格数据观察,当x>0时,随着x 的增大,的值随之减小,并无限接近0;当x<0时,随着x 的增大,的值也随之减小.材料2:对于一个分子、分母都是多项式的分式,当分母的次数高于分子的次数时,我们把这个分式叫做真分式.当分母的次数不低于分子的次数时,我们把这个分式叫做假分式.有时候,需要把一个假分式化成整式和真分式的代数和,像这种恒等变形,称为将分式化为部分分式.如:.根据上述材料完成下列问题:(1)当x>0时,随着x的增大,1+的值(增大或减小);当x<0时,随着x的增大,的值(增大或减小);(2)当x>1时,随着x的增大,的值无限接近一个数,请求出这个数;(3)当0≤x≤2时,求代数式值的范围.。

人教版数学八年级上册第十五章分式-测试题带答案

人教版数学八年级上册第十五章分式-测试题带答案

人教版数学八年级上册第十五章《分式》考试试卷(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.分式x-1x+1的值为0,则x=(B )A.-1B.1C.±1D.02.将分式方程1x =2x-2去分母后得到的整式方程,正确的是(A )A.x -2=2x B.x 2-2x =2x C.x -2=x D.x =2x -43.化简xy-2yx 2-4x+4的结果是(D )A.x x +2 B.x x -2C.y x +2 D.y x -24.已知a=2-2,b=(3-1)0,c=(-1)3,则a,b,c 的大小关系是(B )A.a >b >c B.b >a >c C.c >a >bD.b >c >a5.一种微粒的半径是0.000041米,0.000041这个数用科学记数法表示为(B )A.41×10-6B.4.1×10-5C.0.41×10-4D.4.1×10-46.下列运算正确的是(D )A.a a -b -b b -a =1B.m a -n b =m -na -bC.b a -b +1a =1aD.2a -b -a +b a 2-b 2=1a -b7.化简(1-2x+1)÷1x 2-1的结果是(B )A.(x +1)2B.(x -1)2C.1(x +1)2 D.1(x -1)28.分式方程1x-1-2x+1=4x 2-1的解是(D )A.x =0B.x =-1C.x =±1D.无解9.两个小组同时从甲地出发,匀速步行到乙地,甲乙两地相距7500米,第一组步行的速度是第二组的1.2倍,并且比第二组早15分钟到达乙地.设第二组的步行速度为x 千米/小时,根据题意可列方程是(D )A.7500x -75001.2x =15B.7500x -75001.2x =14C.7.5x -7.51.2x=15D.7.5x -7.51.2x =1410.已知关于x 的分式方程m x-1+31-x =1的解是非负数,则m 的取值范围是(C )A.m >2B.m ≥2C.m ≥2且m ≠3D.m >2且m ≠3二、填空题(每小题3分,共18分)11.计算:xy2xy=__y __.12.计算:(-2xy -1)-3=__-y 38x3__.13.方程2x-1x-3=1的根是x=__-2__.14.若(x-y-2)2+|xy+3|=0,则(3x x-y -2x x-y )÷1y 的值是__-32__.15.若a 2+5ab-b 2=0,则b a -a b 的值为__5__.16.已知x 2-3x-4=0,则代数式x x 2-x-4的值是__12__.三、解答题(共72分)17.(12分)计算:(1)4a 2b÷(b 2a )-2·a b 2;(2)(a a-2-4a 2-2a )÷a+2a;解:ab解:1(3)a 2-b 2a ÷(a-2a-b2a ).解:a +b a -b18.(6分)x2+xx2-2x+1÷(2x-1-1x).(1)化简已知分式;(2)从-2<x≤2的范围内选取一个合适的x的整数值代入求值.解:(1)x2 x-1(2)∵x≠±1,且x≠0,且-2<x≤2,∴x=2,将x=2代入得原式=4 19.(8分)解下列分式方程.(1)2x+3=1x-1;解:x=5,经检验x=5是分式方程的解(2)1x-2=1-x2-x-3.解:解得x=2.检验:x=2时,x-2=0,所以x=2不是原方程的解,∴原方程无解20.(7分)当x为何值时,分式3-x2-x的值比分式1x-2的值大3?解:解得x=1.经检验,x=1是方程3-x2-x-1x-2=3的解.即当x=1时,分式3-x2-x的值比分式1x-2的值大321.(7分)已知:[(x 2+y 2)-(x-y)2+2y(x-y)]÷4y=1,求4x 4x 2-y 2-12x+y的值.解:∵[(x 2+y 2)-(x -y )2+2y (x -y )]÷4y =x -12y ,∴x -12y =1,∴4x 4x 2-y 2-12x +y =12x -y =12(x -12y )=1222.(7分)已知关于x 的方程1x-2+k x+2=3x 2-4无解,求k 的值.解:去分母,得(1+k )x =2k +1,∵方程无解,∴x =±2,将x =2代入得不成立,将x =-2代入得k =-3423.(7分)已知x 2x 2-2=3,求(11-x -11+x )÷(xx 2-1+x)的值.解:原式化简,得-2x 2.∵x 2x 2-2=3,∴x 2-2x 2=13,∴1-2x 2=13,∴-2x 2=-2324.(8分)马小虎的家距离学校1800米,一天马小虎从家去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,在距离学校200米的地方追上了他,已知爸爸的速度是马小虎速度的2倍,求马小虎的速度.解:设马小虎的速度为x 米/分,则爸爸的速度是2x 米/分,依题意得1800-200x=1800-2002x+10,解得x =80.经检验,x =80是原方程的根.答:马小虎的速度是80米/分25.(10分)“汉十”高速铁路襄阳段正在建设中,甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的13,这时乙队加入,两队还需同时施工15天,才能完成该项工程.(1)若乙队单独施工,需要多少天才能完成该项工程?(2)若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?解:(1)设乙队单独施工,需要x 天才能完成该项工程,∵甲队单独施工30天完成该项工程的13,∴甲队单独施工90天完成该项工程,根据题意可得:13+15(190+1x)=1,解得:x=30,检验得:x =30是原方程的根,答:乙队单独施工,需要30天才能完成该项工程(2)设乙队参与施工y 天才能完成该项工程,根据题意可得:190×36+y×130≥1,解得:y≥18,答:乙队至少施工18天才能完成该项工程。

人教版八年级数学上:第15章《分式》单元测试(含答案)(含答案)

人教版八年级数学上:第15章《分式》单元测试(含答案)(含答案)

第15章分式一、解答题1.某市一项民生改造工程,由甲、乙两工程队合作20天可完成,若单独完成此项工程,甲工程对所用天数是乙工程队的2倍.(1)甲、乙两工程队单独完成此项工程各需要多少天?(2)甲工程队单独做a天后,再由甲、乙两工程队合作______(用含a的代数式表示)可完成此项工程.已知甲工程队施工费每天1万元,乙工程队每天施工费2.5万元,求甲工程队要单独施工多少天后,再由甲、乙两工程队合作完成剩下的工程,才能使工程费不超过64万元.2.某市修通一条与省会城市相连接的高速铁路,动车走高速铁路线到省会城市路程是500千米,普通列车走原铁路线路程是560千米.已知普通列车与动车的速度比是2:5,从该市到省会城市所用时间动车比普通列车少用4.5小时,求普通列车、动车的速度.3.市实验学校为创建书香校园,去年进一批图书.经了解,科普书的单价比文学书的单价多4元,用1500元购进的科普书与1000元购进的文学书本数相等.(1)求去年购进的文学书和科普书的单价各是多少元?(2)若今年书和科普书的单价与去年相比保持不变,该校打算用1250元再购进一批文学书和科普书,问购进科普书65本后至多还能购进多少本文学书?4.列分式方程解应用题:为绿化环境,某校在3月12日组织七、八年级学生植树.在植树过程中,八年级学生比七年级学生每小时多植10棵树,八年级学生植120棵树与七年级学生植100棵树所用时间相等,七年级学生和八年级学生每小时分别植多少棵树?5.某工程开准备招标,指挥部现接到甲乙两个工程队的投标书,从投标书中得知:乙队单独完成这项工程所需天数是甲队单独完成这项工程所需天数的2倍;该工程若由甲队先做6天,剩下的工程再由甲、乙合作16天可以完成.求甲、乙两队单独完成这项工程各需多少天.6.(2014•晋江市)某水果店老板用400元购进一批葡萄,由于葡萄新鲜,很快售完,老板又用500元购进第二批葡萄,所购数量与第一批相同,但每千克比第一批多了2元.(1)求:第一批葡萄进价每千克多少元?(请列方程求解)(2)若水果店老板以每千克11元的价格将两批葡萄全部售出,可以盈利多少元?7.为了进一步落实“节能减排”措施,冬季供暖来临前,某单位决定对7200平方米的“外墙保温”工程进行招标,现有甲、乙两个工程队参与投标,比较这两个工程队的标书发现:乙队每天完成的工程量是甲队的1.5倍,这样乙队单独干比甲队单独干能提前15天完成任务.问甲队每天完成多少平方米?8.某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完.(1)该种干果的第一次进价是每千克多少元?(2)超市销售这种干果共盈利多少元?9.某文具厂计划加工3000套画图工具,为了尽快完成任务,实际每天加工画图工具的数量是原计划的1.2倍,结果提前4天完成任务,求该文具厂原计划每天加工这种画图工具的数量.10.济宁市“五城同创”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了x天完成,乙做另一部分用了y 天完成,其中x、y均为正整数,且x<46,y<52,求甲、乙两队各做了多少天?11.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?12.荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?13.某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务.原来每天制作多少件?14.学校计划选购甲、乙两种图书作为“校园读书节”的奖品.已知甲图书的单价是乙图书单价的1.5倍;用600元单独购买甲种图书比单独购买乙种图书要少10本.(1)甲、乙两种图书的单价分别为多少元?(2)若学校计划购买这两种图书共40本,且投入的经费不超过1050元,要使购买的甲种图书数量不少于乙种图书的数量,则共有几种购买方案?15.某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A 款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?16.甲、乙两座城市的中心火车站A,B两站相距360km.一列动车与一列特快列车分别从A,B两站同时出发相向而行,动车的平均速度比特快列车快54km/h,当动车到达B站时,特快列车恰好到达距离A站135km处的C站.求动车和特快列车的平均速度各是多少?17.某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价(利润率==).(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?18.从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.19.马小虎的家距离学校1800米,一天马小虎从家去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,在距离学校200米的地方追上了他,已知爸爸的速度是马小虎速度的2倍,求马小虎的速度.20.几个小伙伴打算去音乐厅观看演出,他们准备用360元钱购买门票.下面是两个小伙伴的对话:根据对话的内容,请你求出小伙伴们的人数.21.某服装商预测一种应季衬衫能畅销市场,就用8000元购进一批衬衫,面市后果然供不应求,服装商又用17600元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了8元.商家销售这种衬衫时每件定价都是100元,最后剩下10件按8折销售,很快售完.在这两笔生意中,商家共盈利多少元?22.端午节期间,某食堂根据职工食用习惯,用700元购进甲、乙两种粽子260个,其中甲粽子比乙种粽子少用100元,已知甲种粽子单价比乙种粽子单价高20%,乙种粽子的单价是多少元?甲、乙两种粽子各购买了多少个?23.杨梅是漳州的特色时令水果,杨梅一上市,水果店的老板用1200元购进一批杨梅,很快售完;老板又用2500元购进第二批杨梅,所购件数是第一批的2倍,但进价比第一批每件多了5元.(1)第一批杨梅每件进价多少元?(2)老板以每件150元的价格销售第二批杨梅,售出80%后,为了尽快售完,决定打折促销,要使第二批杨梅的销售利润不少于320元,剩余的杨梅每件售价至少打几折?(利润=售价﹣进价)24.某校枇杷基地的枇杷成熟了,准备请专业摘果队帮忙摘果,现有甲、乙两支专业摘果队,若由甲队单独摘果,预计6天才能完成,为了减少枇杷因气候变化等原因带来的损失,现决定由甲、乙两队同时摘果,则2天可以完成,请问:(1)若单独由乙队摘果,需要几天才能完成?(2)若有三种摘果方案,方案1:单独请甲队;方案2:同时请甲、乙两队;方案3:单独请乙队.甲队每摘果一天,需支付给甲队1000元工资,乙队每摘果一天,须支付给乙队1600元工资,你认为用哪种方案完成所有摘果任务需支付给摘果队的总工资最低?最低总工资是多少元?25.某市区一条主要街道的改造工程有甲、乙两个工程队投标.经测算:若由两个工程队合做,12天恰好完成;若两个队合做9天后,剩下的由甲队单独完成,还需5天时间,现需从这两个工程队中选出一个队单独完成,从缩短工期角度考虑,你认为应该选择哪个队?为什么?26.某“爱心义卖”活动中,购进甲、乙两种文具,甲每个进货价高于乙进货价10元,90元买乙的数量与150元买甲的数量相同.(1)求甲、乙进货价;(2)甲、乙共100件,将进价提高20%进行销售,进货价少于2080元,销售额要大于2460元,求有几种方案?27.甲、乙两人准备整理一批新到的图书,甲单独整理需要40分钟完工;若甲、乙共同整理20分钟后,乙需再单独整理30分钟才能完工.问乙单独整理这批图书需要多少分钟完工?28.国家实施高效节能电器的财政补贴政策,某款空调在政策实施后.每购买一台,客户每购买一台可获得补贴500元.若同样用11万元所购买此款空调,补贴后可购买的台数比补贴前前多20%,则该款空调补贴前的售价为每台多少元?29.某校选派一部分学生参加“六盘水市马拉松比赛”,要为每位参赛学生购买一顶帽子.商场规定:凡一次性购买200顶或200顶以上,可按批发价付款;购买200顶以下只能按零售价付款.如果为每位参赛学生购买1顶,那么只能按零售价付款,需用900元;如果多购买45顶,那么可以按批发价付款,同样需用900元.问:(1)参赛学生人数x在什么范围内?(2)若按批发价购买15顶与按零售价购买12顶的款相同,那么参赛学生人数x是多少?30.为了保护环境,某开发区综合治理指挥部决定购买A,B两种型号的污水处理设备共10台.已知用90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,每台设备价格及月处理污水量如下表所示:污水处理设备A型B型价格(万元/台)m m﹣3月处理污水量(吨/台)220 180(1)求m的值;(2)由于受资金限制,指挥部用于购买污水处理设备的资金不超过165万元,问有多少种购买方案?并求出每月最多处理污水量的吨数.第15章分式参考答案与试题解析一、解答题1.某市一项民生改造工程,由甲、乙两工程队合作20天可完成,若单独完成此项工程,甲工程对所用天数是乙工程队的2倍.(1)甲、乙两工程队单独完成此项工程各需要多少天?(2)甲工程队单独做a天后,再由甲、乙两工程队合作天(用含a的代数式表示)可完成此项工程.已知甲工程队施工费每天1万元,乙工程队每天施工费2.5万元,求甲工程队要单独施工多少天后,再由甲、乙两工程队合作完成剩下的工程,才能使工程费不超过64万元.【解答】解:(1)设乙工程队单独完成此项工程需要x天,由题意得: +=,解得:x=30,经检验:x=30是原分式方程的解,2x=60.答:甲、乙两工程队单独完成此项工程各需要60天,30天;(2)甲工程队单独做a天后,再由甲、乙两工程队合作:(1﹣a×)÷(+)=(天),由题意可得:1•a+(1+2.5)•≤64,解得:a≥36,答:甲工程队要单独施工36天后,再由甲、乙两工程队合作完成剩下的工程,才能使工程费不超过64万元.故答案为:天.2.某市修通一条与省会城市相连接的高速铁路,动车走高速铁路线到省会城市路程是500千米,普通列车走原铁路线路程是560千米.已知普通列车与动车的速度比是2:5,从该市到省会城市所用时间动车比普通列车少用4.5小时,求普通列车、动车的速度.【解答】解:设普通列车的速度2x千米/小时,则动车的速度是5x千米/小时,由题意有:解得:x=40,经检验:x=40是分式方程的解,∴2x=80,5x=200.答:普通列车的速度80千米/小时,动车的速度是200千米/小时.3.市实验学校为创建书香校园,去年进一批图书.经了解,科普书的单价比文学书的单价多4元,用1500元购进的科普书与1000元购进的文学书本数相等.(1)求去年购进的文学书和科普书的单价各是多少元?(2)若今年书和科普书的单价与去年相比保持不变,该校打算用1250元再购进一批文学书和科普书,问购进科普书65本后至多还能购进多少本文学书?【解答】解:(1)设文学书的单价是x元,则科普书的单价是(x+4)元,根据题意,得=,解得x=8.经检验:x=8是原分式方程的解,x+4=12.答:文学书的单价是8元,则科普书的单价是12元.(2)设购进科普书65本后还能购进y本文学书,则12×65+8y≤1250,解得:y≤58.75,∵y为整数,∴y最大是58,答:购进科普书65本后至多还能购进58本文学书.4.(2014•西藏)列分式方程解应用题:为绿化环境,某校在3月12日组织七、八年级学生植树.在植树过程中,八年级学生比七年级学生每小时多植10棵树,八年级学生植120棵树与七年级学生植100棵树所用时间相等,七年级学生和八年级学生每小时分别植多少棵树?【解答】解:设七年级学生每小时植x棵,则八年级每小时植(x+10)棵,由题意得:=,解得:x=50,经检验:x=50是原分式方程的解,则x+10=50+10=60,答:七年级学生每小时植50棵,则八年级每小时植60棵.5.某工程开准备招标,指挥部现接到甲乙两个工程队的投标书,从投标书中得知:乙队单独完成这项工程所需天数是甲队单独完成这项工程所需天数的2倍;该工程若由甲队先做6天,剩下的工程再由甲、乙合作16天可以完成.求甲、乙两队单独完成这项工程各需多少天.【解答】解:设甲队单独完成这项工程需x天,由题意得:×6+(+)×16=1,解得:x=30,经检验:x=30是原分式方程的解,2x=60,答:甲队单独完成这项工程需30天,乙队单独完成这项工程需60天.6.某水果店老板用400元购进一批葡萄,由于葡萄新鲜,很快售完,老板又用500元购进第二批葡萄,所购数量与第一批相同,但每千克比第一批多了2元.(1)求:第一批葡萄进价每千克多少元?(请列方程求解)(2)若水果店老板以每千克11元的价格将两批葡萄全部售出,可以盈利多少元?【解答】解:(1)设第一批葡萄进价每千克x元,则第二批葡萄的进价为(x+2)元,依题意得,,解得:x=8,经检验,x=8是原方程的解,且符合题意.答:第一批葡萄进价每千克8元.(2)由题意,得第一批的数量为:,50×2×11﹣(400+500)=200答:可盈利200元.7.为了进一步落实“节能减排”措施,冬季供暖来临前,某单位决定对7200平方米的“外墙保温”工程进行招标,现有甲、乙两个工程队参与投标,比较这两个工程队的标书发现:乙队每天完成的工程量是甲队的1.5倍,这样乙队单独干比甲队单独干能提前15天完成任务.问甲队每天完成多少平方米?【解答】解:设甲队每天完成x米2,乙队每天完成1.5 x米2,根据题意得.﹣=15,解得x=160,经检验,x=160,是所列方程的解.答:甲队每天完成160米2.8.某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完.(1)该种干果的第一次进价是每千克多少元?(2)超市销售这种干果共盈利多少元?【解答】解:(1)设该种干果的第一次进价是每千克x元,则第二次进价是每千克(1+20%)x元,由题意,得=2×+300,解得x=5,经检验x=5是方程的解.答:该种干果的第一次进价是每千克5元;(2)[+﹣600]×9+600×9×80%﹣(3000+9000)=(600+1500﹣600)×9+4320﹣12000=1500×9+4320﹣12000=13500+4320﹣12000=5820(元).答:超市销售这种干果共盈利5820元.9.某文具厂计划加工3000套画图工具,为了尽快完成任务,实际每天加工画图工具的数量是原计划的1.2倍,结果提前4天完成任务,求该文具厂原计划每天加工这种画图工具的数量.【解答】解:设文具厂原计划每天加工x套这种画图工具.根据题意,得﹣=4.解得 x=125.经检验,x=125是原方程的解,且符合题意.答:文具厂原计划每天加工125套这种画图工具.10.济宁市“五城同创”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了x天完成,乙做另一部分用了y 天完成,其中x、y均为正整数,且x<46,y<52,求甲、乙两队各做了多少天?【解答】解:(1)设乙工程队单独完成这项工作需要a天,由题意得+36()=1,解之得a=80,经检验a=80是原方程的解.答:乙工程队单独做需要80天完成;(2)∵甲队做其中一部分用了x天,乙队做另一部分用了y天,∴=1即y=80﹣x,又∵x<46,y<52,∴,解得42<x<46,∵x、y均为正整数,∴x=45,y=50,答:甲队做了45天,乙队做了50天.11.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?【解答】解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得:﹣=4,解得:x=50,经检验x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m2),答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)设应安排甲队工作y天,根据题意得:0.4y+×0.25≤8,解得:y≥10,答:至少应安排甲队工作10天.12.荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?【解答】解:(1)设购买该品牌一个手电筒需要x元,则购买一个台灯需要(x+20)元.根据题意得=×解得 x=5经检验,x=5是原方程的解.所以 x+20=25.答:购买一个台灯需要25元,购买一个手电筒需要5元;(2)设公司购买台灯的个数为a,则还需要购买手电筒的个数是(2a+8﹣a)由题意得 25a+5(2a+8﹣a)≤670解得 a≤21∴荣庆公司最多可购买21个该品牌的台灯.13.某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务.原来每天制作多少件?【解答】解:设原来每天制作x件,根据题意得:﹣=10,解得:x=16,经检验x=16是原方程的解,答:原来每天制作16件.14.学校计划选购甲、乙两种图书作为“校园读书节”的奖品.已知甲图书的单价是乙图书单价的1.5倍;用600元单独购买甲种图书比单独购买乙种图书要少10本.(1)甲、乙两种图书的单价分别为多少元?(2)若学校计划购买这两种图书共40本,且投入的经费不超过1050元,要使购买的甲种图书数量不少于乙种图书的数量,则共有几种购买方案?【解答】解:(1)设乙种图书的单价为x元,则甲种图书的单价为1.5x元,由题意得﹣=10解得:x=20则1.5x=30,经检验得出:x=20是原方程的根,答:甲种图书的单价为30元,乙种图书的单价为20元;(2)设购进甲种图书a本,则购进乙种图书(40﹣a)本,根据题意得解得:20≤a≤25,所以a=20、21、22、23、24、25,则40﹣a=20、19、18、17、16、15∴共有6种方案.15.某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A 款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?【解答】解:(1)设今年5月份A款汽车每辆售价m万元.则:,解得:m=9.经检验,m=9是原方程的根且符合题意.答:今年5月份A款汽车每辆售价9万元;(2)设购进A款汽车x辆.则:99≤7.5x+6(15﹣x)≤105.解得:6≤x≤10.∵x的正整数解为6,7,8,9,10,∴共有5种进货方案;(3)设总获利为W万元,购进A款汽车x辆,则:W=(9﹣7.5)x+(8﹣6﹣a)(15﹣x)=(a﹣0.5)x+30﹣15a.当a=0.5时,(2)中所有方案获利相同.此时,购买A款汽车6辆,B款汽车9辆时对公司更有利.16.甲、乙两座城市的中心火车站A,B两站相距360km.一列动车与一列特快列车分别从A,B两站同时出发相向而行,动车的平均速度比特快列车快54km/h,当动车到达B站时,特快列车恰好到达距离A站135km处的C站.求动车和特快列车的平均速度各是多少?【解答】解:设特快列车的平均速度为xkm/h,则动车的速度为(x+54)km/h,由题意,得: =,解得:x=90,经检验得:x=90是这个分式方程的解.x+54=144.答:特快列车的平均速度为90km/h,动车的速度为144km/h.17.某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价(利润率==).(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?【解答】解:(1)设这款空调每台的进价为x元,根据题意得:=9%,解得:x=1200,经检验:x=1200是原方程的解.答:这款空调每台的进价为1200元;(2)商场销售这款空调机100台的盈利为:100×1200×9%=10800元.。

人教版八年级数学上册第十五章《分式》单元测试题(含答案)

人教版八年级数学上册第十五章《分式》单元测试题(含答案)

人教版八年级数学上册第十五章《分式》单元测试题(含答案)一、选择题(每小题3分,共24分)1.在式子x y 3,πa ,13+x ,31+x ,a a 2中,分式有( ) A .1个 B .2个 C .3个 D .4个2.分式32+x x 无意义的条件是( ) A .x≠—3 B . x=-3 C .x=0 D .x=33.下列各分式中与分式ba a --的值相等是( ) A .b a a -- B .b a a +- C .a b a - D .—a b a - 4.计算(2-a a —2+a a )·a a 24-的结果是( ) A . 4 B . -4 C .2a D .-2a5.分式方程2114339x x x +=-+-的解是( ) A .x=-2 B .x=2 C . x=±2 D .无解6.把分式(0)xy x y x y+≠+中的x ,y 都扩大3倍,那么分式的值( ) A .扩大为原来的3倍 B .缩小为原来的13C .扩大为原来的9倍D .不变 7.若分式34922+--x x x 的值为0,则x 的值为( ) A .3 B .3或-3 C .-3 D .08.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求需提前5 天交货.设每天应多做x 件,则x 应满足的方程为 ( )A .72072054848x -=+ B .72072054848x+=+ C .720720548x -= D .72072054848x -=+ 二、填空题(每小题4分,共32分)9.当x= 时,分式22x x --值为零.10.计算.2323()a b a b --÷= .11.用科学记数法表示0.002 014= . 12.分式222439x x x x --与的最简公分母是____ ______. 13.若方程322x m x x-=--无解,则m =__________________. 14.已知a 1-b 1=21,则b a ab -的值为________________. 15.若R 1=11R +21R (R 1≠R 2),则表示R 1的式子是________________. 16.(2013年泰安)某电子元件厂准备生产4600个电子元件,甲车间独立生产一半后,由于要尽快投入市场,乙车间也加入了该电子元件的生产.若乙车间每天生产的电子元件个数是甲车间的1.3倍,结果用33天完成任务.问:甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x 个,根据题意可得方程为________________.三、解答题(共64分)17.(14分)计算:(1)(2x -3y 2)-2÷(x -2y )3; (2)21+-x x ÷41222-+-x x x +11-x .18.(8分)先化简,再求值:211122x x x -⎛⎫-÷ ⎪++⎝⎭,其中2x =.19.(8分)解方程21124x x x -=--.20.(10分)先仔细看(1)题,再解答(2)题.(1)a 为何值时,方程 3x x -= 2 + 3a x -会产生增根? 解:方程两边乘(x-3),得x = 2(x-3)+a①.因为x=3是原方程的增根,•但却是方程①的解,所以将x=3代入①,得3=2×(3-3)+a ,所以a=3.(2)当m 为何值时,方程1y y --2m y y -=1y y-会产生增根?25.(12分)贵港市在旧城改造过程中,需要整修一段全长2400米的道路,为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务,求原计划每小时修路的长度.26.(12分)荷花文化节前夕,我市对观光路工程招标时,接到甲、乙两个工程队的投标书,甲、乙施工一天的工程费用分别为1.5万元和1.1万元,市政局根据甲、乙两队的投标书测算,有三种施工方案.(1)甲队单独做这项工程刚好如期完成.(2)乙队单独做这项工程,要比规定日期多5天.(3)若甲、乙两队合作4天后,余下的工程由乙队单独做,也正好如期完成.在确保如期完成的情况下,你认为哪种方案最节省工程款,通过计算说明理由.第十五章 分式测试题参考答案一、1. C 2. B 3. C 4. B 5. B 6. A 7. C 8. D二、9.-2 10.a 4b 6 11.-2.014×10-3 12.x(x+3)(x-3) 13.114.-2 15.R 1=RR RR -22 16.333.123002300=++x x x 三、17.(1)7124yx . (2)1. 18.原式=11-x .代入x=2,得原式=1. 19.x=-23. 20.解:方程两边乘y (y-1),得y 2-m=(y-1)2.化简,得m=2y -1.因为y=0和y=1都是原方程的的增根,但却是化简后整式方程的解.故将y=0和y=1分别代入m=2y -1,得m=-1或m=1.所以m =±1.21.解:设原计划每小时修路x 米,根据题意,得8%)201(24002400=+-xx . 解得50=x .经检验.x=50是原方程的解,且符合题意.答:原计划每小时修路50米.22.解:设工程期为x 天,则甲队单独完成用x 天,乙队单独完成用(x +5)天. 根据题意,得415x x x +=+. 解得x=20.经检验,x=20是原方程的解,且符合题意.所以在不耽误工期的情况下,有方案(1)和方案(3)两种方案合乎要求.方案(1)需工程款1.5×20=30(万元),方案(3)需工程款1.5×4+1.1×20=28(万元). 故方案(3)最节省工程款且不误期.人教版八年级上册第十五章分式单元检测(含答案)一、单选题1.在5x ,38a ,2π,1x a -中,属于分式的个数为( ) A .0个B .1个C .2个D .3个 2.下列分式为最简分式的是( )A .11a a --B .235xy y xy -C .22m n n m +-D .22a b a b++ 3.下列各式中,变形不正确的是( )A .2233x x=-- B .66a a b b -=- C .3344x x y y -=- D .5533n n m m --=- 4.计算322b b 1·a a b⎛⎫⎛⎫÷ ⎪ ⎪⎝⎭⎝⎭的值为 ( ) A .222b a B .6ab 2 C .8a D .15.计算:22m-1m -1m m÷的结果是 ( ) A .m m 1+ B .1m C .m-1 D .1m-16.若111u v f+=,则用u 、v 表示f 的式子应该是( ) A .u v uv + B .uv u v + C .v u D .u v7.若234a b c ==,则2222232a bc c a ab c-+--的值是( ) A .13 B .13- C .12 D .12- 8.纳米材料多被应用于建筑、家电等行业,实际上,纳米(nm)是一种长度的度量单位:1纳米=0.000000001米,用科学记数法表示0.12纳米应为( )A.0.12×10-9米B.0.12×10-8米C.1.2×10-10米D.1.2×10-8米 9.计算20140的结果是( )A .1B .0C .2014D .﹣1 10.当m 为何值时,方程会产生增根( ) A.2 B.-1 C.3 D.-311.下列各式中,是分式方程的是( )A.x+y=5B.C.D.12.已知一汽船在顺流中航行46千米和逆流中航行34千米,共用去的时间,正好等于它在静水中航行80千米用去的时间,且水流速度是2千米/时,求汽船在静水中的速度,若设汽船在静水中速度为x 千米/时,则所列方程正确的是( ) A.+= B.+= C.=- D.=+二、填空题13.当x =_________时,分式242x x -+的值为0. 14.当x =__________时,分式3x x-无意义. 15.若a+b=1,且a ∶b=2∶5,则2a-b=____________.16.计算:(12)﹣2+(﹣2)3﹣20110=__________.三、解答题17.解方程:(1)233011x x x +-=--;(2)1433162x x -=--. 18.计算:①()223·14a aa a a ----; ②211a a a ---; ③225611x x x x x+⎛⎫-÷ ⎪--⎝⎭ 19.22322222244(82)25356a b ab b b a b b ab a b ab a ++-÷⋅---+,其中12a =-,14b =. 20.某书商去图书批发市场购买某本书,第一次用12000元购书若干本,并把该书按定价7元/本出售,很快售完,由于该书畅销,书商又去批发市场采购该书,第二次购书时,每本书批发价已比第一次提高了20%,他用15000元所购书数量比第一次多了100本. (1)求第一次购书的进价是多少元一本?第二次购进多少本书?(2)若第二次购进书后,仍按原定价7元/本售出2000本时,出现滞销,书商便以定价的n 折售完剩余的书,结果第二次共盈利100m 元(n 、m 为正整数),求相应的n 、m 的值.答案1.C 2.D 3.D 4.C 5.A 6.B 7.C 8.C 9.A10.C 11.D 12.B 13.2 14.315.-1 716.﹣517.(1)x=0;(2)23 x=.18.①11aa-+;②11a-;③-5x19.242a ba b+-+,020.(1)第一次购书的进价为5元/本,且第二次买了2500本;(2)当n=4时,m=4;当n=6时,m=11;当n=8时,m=18人教版八年级上数学第十五章分式单元测试(解析)一、选择题(每小题3分,共24分)1.若代数式在实数范围内有意义,则实数x的取值范围是( )A.x<3B.x>3C.x≠3D.x=32.下列等式成立的是( )A.+=B.=C.=D.=-3.下列运算结果为x-1的是( )A.1-B.·C.÷D.4.化简+的结果是( )A.m+nB.n-mC.m-nD.-m-n5.当x=6,y=3时,代数式·的值是( )A.2B.3C.6D.96.计算÷-的结果为( )A. B. C. D.a7.甲、乙两人同时从A地出发到B地,如果甲的速度v保持不变,而乙先用v的速度到达中点,再用2v的速度到达B地,则下列结论中正确的是( )A.甲、乙同时到达B地B.甲先到达B地C.乙先到达B地D.谁先到达B地与v有关8.(2016黑龙江龙东中考)关于x的分式方程=3的解是正数,则字母m的取值范围是( )A.m>3B.m<3C.m>-3D.m<-3二、填空题(每小题3分,共24分)9.某种电子元件的面积大约为0.000 000 69平方毫米,将0.000 000 69这个数用科学记数法表示为.10.当x= 时,分式的值为0.11.某市为治理污水,需要铺设一段全长600 m的污水排放管道.铺设120 m后,为加快施工速度,后来每天比原计划增加20 m,结果共用11天完成这一任务,求原计划每天铺设管道的长度.如果设原计划每天铺设x m管道,那么根据题意,可列方程: .12.计算:÷= .13.如图15-4-1,点A、B在数轴上,它们所对应的数分别是-4、,且点A、B到原点的距离相等,则x= .图15-4-114.甲、乙二人做某种机械零件,已知甲是技术能手,每小时比乙多做3个,甲做30个所用的时间与乙做20个所用的时间相等,那么甲每小时做个零件.15.计算(x+1)的结果是.16.若a2+5ab-b2=0,则-的值为.三、解答题(共52分)17.(4分)化简:-.18.(5分)计算:÷.19.(6分)(2016山东菏泽中考)列方程或方程组解应用题:为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,这份资料的总质量为160克.已知每页薄型纸比厚型纸轻0.8克,求A4薄型纸每页的质量.(墨的质量忽略不计)20.(6分)先化简,再求值:÷·,其中a=-,b=.21.(7分)解分式方程:(1)(2016广西贵港中考)+1=-;(2)(2016湖北天门中考)=-1.22.(6分)(2015四川广元中考)先化简:÷,然后解答下列问题:(1)当x=3时,求代数式的值;(2)原代数式的值能等于-1吗?为什么?23.(8分)(2016辽宁铁岭中考)先化简,再求值:÷-,其中a=(3-)0+-.24.(10分)(2016新疆乌鲁木齐中考)某商场用24 000元购入一批空调,然后以每台3 000元的价格销售,因天气炎热,空调很快售完;商场又以52 000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元.(1)商场第一次购入的空调每台进价是多少元?(2)商场既要尽快售完第二次购入的空调,又要在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售,最多可将多少台空调打折出售?第十五章分式答案解析满分:100分;限时:60分钟一、选择题(每小题3分,共24分)1.若代数式在实数范围内有意义,则实数x的取值范围是( )A.x<3B.x>3C.x≠3D.x=3答案 C 由分式有意义的条件得x-3≠0,解得x≠3.故选C.2.下列等式成立的是( )A.+=B.=C.=D.=-答案 C +=,所以A错误;=不成立,所以B错误;==,所以C正确;=-,所以D错误,故选C.3.下列运算结果为x-1的是( )A.1-B.·C.÷D.答案 B 选项A的运算结果为,选项B的运算结果为x-1,选项C的运算结果是,选项D的运算结果为x+1.故选B.4.化简+的结果是( )A.m+nB.n-mC.m-nD.-m-n答案 A +=-==m+n,故选A.5.当x=6,y=3时,代数式·的值是( )A.2B.3C.6D.9答案 C ·=·=.当x=6,y=3时,原式==6.6.计算÷-的结果为( )A. B. C. D.a答案 C ÷-=÷-=×-=-=,故选C.7.甲、乙两人同时从A地出发到B地,如果甲的速度v保持不变,而乙先用v的速度到达中点,再用2v的速度到达B地,则下列结论中正确的是( )A.甲、乙同时到达B地B.甲先到达B地C.乙先到达B地D.谁先到达B地与v有关答案 B 设从A地到B地的距离为2s,∵甲的速度v保持不变,∴甲所用时间为,∵乙先用v的速度到达中点,再用2v的速度到达B地,∴乙所用时间为+=+,∵s>0,v>0,∴+>,故甲先到达B地.8.(2016黑龙江龙东中考)关于x的分式方程=3的解是正数,则字母m的取值范围是( )A.m>3B.m<3C.m>-3D.m<-3答案D解分式方程,得x=-3-m,∵方程的解为正数,∴-3-m>0,解得m<-3,∵x+1≠0,∴x≠-1,∴-3-m≠-1,解得m≠-2,∴m<-3,故选D.二、填空题(每小题3分,共24分)9.某种电子元件的面积大约为0.000 000 69平方毫米,将0.000 000 69这个数用科学记数法表示为.答案 6.9×10-7解析0.000 000 69=6.9×10-7.10.当x= 时,分式的值为0.答案 2解析分式的值为0,则即所以当x=2时,原分式的值为0.11.某市为治理污水,需要铺设一段全长600 m的污水排放管道.铺设120 m后,为加快施工速度,后来每天比原计划增加20 m,结果共用11天完成这一任务,求原计划每天铺设管道的长度.如果设原计划每天铺设x m管道,那么根据题意,可列方程: .答案+=11解析根据题意,可列方程为+=11.12.计算:÷= .答案解析原式=a4b2c-2÷=a4b2c-2÷=b6c-2=.13.如图15-4-1,点A、B在数轴上,它们所对应的数分别是-4、,且点A、B到原点的距离相等,则x= .图15-4-1答案解析由题意,得=4,解得x=,经检验,x=是方程=4的解.14.甲、乙二人做某种机械零件,已知甲是技术能手,每小时比乙多做3个,甲做30个所用的时间与乙做20个所用的时间相等,那么甲每小时做个零件. 答案9解析设甲每小时做x个零件,则乙每小时做(x-3)个零件,根据题意可得=,解得x=9.经检验,x=9是方程的解,且符合题意.因此甲每小时做9个零件.15.计算(x+1)的结果是.答案x解析(x+1)=(x+1)=(x+1)=x.16.若a2+5ab-b2=0,则-的值为.答案 5解析由a2+5ab-b2=0,得b2-a2=5ab,∴-===5.三、解答题(共52分)17.(4分)化简:-.解析原式=-=-==1.18.(5分)计算:÷.解析原式=·=·=·=.19.(6分)(2016山东菏泽中考)列方程或方程组解应用题:为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,这份资料的总质量为160克.已知每页薄型纸比厚型纸轻0.8克,求A4薄型纸每页的质量.(墨的质量忽略不计)解析设A4薄型纸每页的质量为x克,则厚型纸每页的质量为(x+0.8)克.根据题意,得×=.解得,x=3.2.经检验,x=3.2是原分式方程的根,且符合题意.答:A4薄型纸每页的质量为3.2克.20.(6分)先化简,再求值:÷·,其中a=-,b=.解析÷·=··=··=.当a=-,b=时,原式==-6.21.(7分)解分式方程:(1)(2016广西贵港中考)+1=-;(2)(2016湖北天门中考)=-1.解析(1)去分母,得x-3+x-2=-3,移项,得x+x=-3+3+2,合并同类项,得2x=2,系数化为1,得x=1,经检验,x=1为原分式方程的根,∴分式方程的解为x=1.(2)两边同时乘(x+1)(x-1),得3(x-1)=x(x+1)-(x+1)(x-1),解得x=2. 检验:当x=2时,(x+1)(x-1)=(2+1)(2-1)=3≠0,∴原方程的解为x=2.22.(6分)(2015四川广元中考)先化简:÷,然后解答下列问题:(1)当x=3时,求代数式的值;(2)原代数式的值能等于-1吗?为什么? 解析原式=·=·=.(1)当x=3时,原式=2.(2)不能.理由:如果=-1,那么x+1=-x+1,则x=0,当x=0时,原代数式中的除式=0,矛盾, ∴原代数式的值不能等于-1.23.(8分)(2016辽宁铁岭中考)先化简,再求值:÷-,其中a=(3-)0+-.解析 原式=÷- =×- =- =,∵a=(3-)0+-=1+3-1=3,∴原式===-.24.(10分)(2016新疆乌鲁木齐中考)某商场用24 000元购入一批空调,然后以每台3 000元的价格销售,因天气炎热,空调很快售完;商场又以52 000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元.(1)商场第一次购入的空调每台进价是多少元?(2)商场既要尽快售完第二次购入的空调,又要在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售,最多可将多少台空调打折出售? 解析 (1)设第一次购入的空调每台进价是x 元,依题意,得=2×,解得x=2 400,经检验,x=2 400是原方程的解.答:第一次购入的空调每台进价为2 400元.(2)第一次购进空调的数量为24 000÷2 400=10台,总收入为3 000×10=30 000元, 第二次购进空调的数量为52 000÷(2 400+200)=20台,不妨设打折售出y 台空调, 则总收入为(3 000+200)·(20-y)+(3 000+200)·0.95y=(64 000-160y)元.两次空调销售的总利润为[30 000+(64 000-160y)]-(24 000+52 000)=(18 000-160y)元, 依题意,得18 000-160y≥(24 000+52 000)×22%,解得y≤8.答:最多可将8台空调打折出售.人教版八年级上第十五章《分式》单元检测卷(含答案)一、选择题(每题3分,共30分)1.(2019·常州)若代数式x +1x -3有意义,则实数x 的取值范围是( )A .x =-1B .x =3C .x ≠-1D .x ≠3 2.如果把xy x y+中的x 与y 都扩大10倍,那么这个代数式的值() A .不变 B .扩大20倍C .扩大10倍D .缩小为原来的110 3.计算22x y y y x x -⎛⎫÷⋅ ⎪⎝⎭的结果是() A .2x y B .y x C .2x y - D .-x4.已知a =2-2,b =1)0,c =(-1)3,则a ,b ,c 的大小关系是( )A .a >b >cB .b >a >cC .c >a >bD .b >c >a5.花粉的质量很小,一粒某种植物花粉的质量约为0.000037毫克,已知1克=1000毫克,那么0.000037毫克可以用科学记数法表示为( )A .3.7×10-5克B .3.7×10-6克C .3.7×10-7克D .3.7×10-8克6.若(244a -+12a-)⋅w =1,则w =( ) A .a +2(a ≠-2) B .-a +2(a ≠2)C .a -2(a ≠2)D .-a -2(a ≠-2)7.分式方程11x --21x +=211x -的解是( ) A .x =0 B .x =-1 C .x =±1 D .无解 8.若分式22-x 与1互为相反数,则x 的值为( ) A .2B .-2C .1D .-19.(2019·十堰)十堰即将跨入高铁时代,钢轨铺设任务也将完成.现还有6000米的钢轨需要铺设,为确保年底通车,如果实际施工时每天比原计划多铺设20米,就能提前15天完成任务.设原计划每天铺设钢轨x 米,则根据题意所列的方程是( )A.6000x -6000x +20=15 B.6000x +20-6000x =15 C.6000x -6000x -15=20 D.6000x -15-6000x=20 10.已知关于x 的方程22x m x +-=3的解是正数,则m 的取值范围为( ) A .m <-6B .m >-6C .m >-6且m ≠-4D .m ≠-4二、填空题(每题3分,共18分)11.如果分式11x x +-的值为0,那么x 的值为______. 12.某中学图书馆添置图书,用240元购进一种科普书,同时用200元购进一种文学书.由于科普书的单价比文学书的单价高出一半,因此学校所购买的文学书比科普书多4本.求文学书的单价.设这种文学书的单价为x 元,则根据题意,所列的方程是______.13.计算:(-2xy -1)-3=______.14.(2019·绥化)当a =2018时,代数式⎝⎛⎭⎫a a +1-1a +1÷a -1(a +1)2的值是________. 15.若(x -y -2)2+│xy +3│=0,则(3x x y --2x x y -)÷1y的值是. 16.(2019·齐齐哈尔)关于x 的分式方程2x -a x -1-11-x=3的解为非负数,则a 的取值范围为_____________.三、解答题(共52分)17.(12分)(1)计算1-2a b a b -+÷222244a b a ab b -++;(2) (2019·枣庄)先化简,再求值:x 2x 2-1÷⎝⎛⎭⎫1x -1+1,其中x 为整数且满足不等式组⎩⎪⎨⎪⎧x -1>1,5-2x ≥-2.18.(12分)解方程:(1)32x x ++22x -=3;(2)241x -+21x x +-=-1.19.(8分)先化简2249xx--÷(1-13x-),再从不等式2x-3<7的正整数解中选一个使原式有意义的数代入求值.20.(8分)(2019·黄冈)为了对学生进行革命传统教育,红旗中学开展了“清明节祭扫”活动.全校学生从学校同时出发,步行4000米到达烈士纪念馆.学校要求九(1)班提前到达目的地,做好活动的准备工作.行走过程中,九(1)班步行的平均速度是其他班的1.25倍,结果比其他班提前10分钟到达.分别求九(1)班、其他班步行的平均速度.21.(12分)一项工程,甲队单独做需40天完成,若乙队先做30天后,甲、乙两队一起合做20天恰好完成任务,请问:(1)乙队单独做需要多少天才能完成任务?(2)现将该工程分成两部分,甲队做其中一部分工程用了x天,乙队做另一部分工程用了y天,若x,y都是正整数,且甲队做的时间不到15天,乙队做的时间不到70天,那么两队实际各做了多少天?参考答案1.D2.A3.D4.B5.D6.D7.D8.D9.A 10.C 11.-112.45.1240200=-xx 13.-338xy 14.201915.-23 16.a ≤4且a ≠3 17.(1)-b a b+. (2)由⎩⎪⎨⎪⎧x -1>1,5-2x ≥-2得2<x ≤72. ∵x 为整数,∴x =3,∴x 2x 2-1÷⎝⎛⎭⎫1x -1+1=x 2()x +1()x -1÷1+x -1x -1=x 2()x +1()x -1×x -1x =x x +1=34. 18.(1)x =4.(2)x =31.19.答案不唯一,略20.解:设其他班步行的平均速度为x 米/分,则九(1)班步行的平均速度为1.25x 米/分.依题意,得4000x -40001.25x=10,解得x =80, 经检验,x =80是原方程的解,且符合题意,∴1.25x =100.答:九(1)班步行的平均速度为100米/分,其他班步行的平均速度为80米/分.21. (1)乙队单独做需要100天才能完成任务.(2)甲、乙两队实际分别做了14天和65天.。

【精品】人教版八年级上册数学第十五章分式单元测试题(含答案)【3套】试题

【精品】人教版八年级上册数学第十五章分式单元测试题(含答案)【3套】试题

人教版八年级上册数学第十五章分式单元测试题(含答案)一、选择题1.若x为任意有理数,下列分式中一定有意义的是()A. B. C. D.2.下列各式:(﹣m)2,,,x2+y2,5,,中,分式有()A. 1个B. 2个C. 3个D. 4个3.下面是分式方程的是()A. B. C. D.4.下列四个分式中,是最简分式的为()A. B. C. D.5.若分式的值为,则( )A. B. C. 或 D.6.若a=﹣0.22,b=﹣2﹣2,c=(﹣)﹣2,d=(﹣)0,则它们的大小关系是()A. a<b<c<dB. b<a<d<cC. a<d<c<bD. c<a<d<b7.化简÷(﹣x﹣2)的结果()A. B. C. D.8.关于方程(a+1)x=1,下列结论正确的是()A. 方程无解B. x=C. a≠-1时方程解为任意实数D. 以上结论都不对9.化简的结果是()A. x﹣2B.C.D. x+210.化简的结果是()A. B. a C. D.11.若关于x的方程无解,则()A. m=1B. m=﹣1C. m=0或﹣1D. m=1或﹣1二、填空题12.当x=________时,分式的值等于零.13.计算:()2=________ .14.分式,,,中,最简分式的个数是________个.15.分式的值为0,则x=________.16.约分:=________;=________17.当x=2时,分式(﹣1)÷ 的值是________.18.分式,,的最简公分母为________.19.若分式的值为零,则x的值为________ .20.已知关于x的方程的解是正数,则m的取值范围为:________.21.当m________时,方程= 无解.三、解答题22.通分:(1);(2),;(3);(4).23.计算:.24.化简:(1);(2).25.26.化简:(a+1﹣)÷ ,然后给a从1,2,3中选取一个合适的数代入求值.27.某医药公司有一种药品共300箱,将其分配给批发部和零售部销售.批发部经理对零售部经理说:“如果把你们分得的药品让我们卖可得3500元.”零售部经理对批发部经理说:“如果把你们所分到的药品让我们卖,可卖得7500元.”若设零售部所得的药品是a箱,则:(1)该药品的零售价是每箱多少元?(2)该药品的批发价是每箱多少元?28.要在规定的日期内加工一批机器零件,如果甲单独做,刚好在规定日期内完成,乙单独做则要超过3天.现在甲、乙两人合作2天后,再由乙单独做,正好按期完成,问规定日期是多少天?参考答案一、选择题1. B2. B3. D4. D5. D6.B7. A8. D9.D 10. B 11. D二、填空题12.﹣2 13. 14.3 15.-3 16.;17.-2 18.12a 2b 2c 2 19.1 20.m >﹣3且m≠﹣2 21.m=3﹣1=2三、解答题22.(1)解: = , =(2)解: = ; =(3)解: = ; =(4)解: = = ; = =23.解:原式= + == .24.(1)解:原式= = =(2)解:原式= = =25.解:1+3(x ﹣2)=x ﹣1 整理得:1+3x ﹣6=x ﹣1解得;x=2经检验x=2是原方程的增根,原方程无解26.解:原式= • = • =2(a+2)=2a+4,当a=3时,原式=6+4=1027.解:零售部所得到的药品是a箱时,批发部所得到的药品是(300﹣a)箱.由题意,得(1)零售(300﹣a)箱药品,可得7500元,所以该药品的零售价是元.(2)批发a箱药品,可得3500元,所以该药品的批发价是元.28.解:设规定日期是x天.则甲单独做需要x天,乙单独做需要(x+3)天,根据题意得:(+ )×2+ =1,解得:x=6,经检验,x=6是原方程的根.答:规定的日期是6天人教版八年级上第十五章《分式》单元检测卷(含答案)一、选择题(每题3分,共30分)1.(2019·常州)若代数式x +1x -3有意义,则实数x 的取值范围是( ) A .x =-1B .x =3C .x ≠-1D .x ≠3 2.如果把xy x y+中的x 与y 都扩大10倍,那么这个代数式的值() A .不变 B .扩大20倍C .扩大10倍D .缩小为原来的110 3.计算22x y y y x x -⎛⎫÷⋅ ⎪⎝⎭的结果是() A .2x y B .y x C .2x y - D .-x4.已知a =2-2,b =1)0,c =(-1)3,则a ,b ,c 的大小关系是( )A .a >b >cB .b >a >cC .c >a >bD .b >c >a5.花粉的质量很小,一粒某种植物花粉的质量约为0.000037毫克,已知1克=1000毫克,那么0.000037毫克可以用科学记数法表示为( )A .3.7×10-5克B .3.7×10-6克C .3.7×10-7克D .3.7×10-8克6.若(244a -+12a-)⋅w =1,则w =( ) A .a +2(a ≠-2) B .-a +2(a ≠2)C .a -2(a ≠2)D .-a -2(a ≠-2)7.分式方程11x --21x +=211x -的解是( ) A .x =0 B .x =-1 C .x =±1 D .无解 8.若分式22-x 与1互为相反数,则x 的值为( ) A .2B .-2C .1D .-19.(2019·十堰)十堰即将跨入高铁时代,钢轨铺设任务也将完成.现还有6000米的钢轨需要铺设,为确保年底通车,如果实际施工时每天比原计划多铺设20米,就能提前15天完成任务.设原计划每天铺设钢轨x 米,则根据题意所列的方程是( )A.6000x -6000x +20=15 B.6000x +20-6000x =15 C.6000x -6000x -15=20 D.6000x -15-6000x =2010.已知关于x 的方程22x m x +-=3的解是正数,则m 的取值范围为( ) A .m <-6B .m >-6C .m >-6且m ≠-4D .m ≠-4二、填空题(每题3分,共18分)11.如果分式11x x +-的值为0,那么x 的值为______. 12.某中学图书馆添置图书,用240元购进一种科普书,同时用200元购进一种文学书.由于科普书的单价比文学书的单价高出一半,因此学校所购买的文学书比科普书多4本.求文学书的单价.设这种文学书的单价为x 元,则根据题意,所列的方程是______.13.计算:(-2xy -1)-3=______.14.(2019·绥化)当a =2018时,代数式⎝⎛⎭⎫a a +1-1a +1÷a -1(a +1)2的值是________. 15.若(x -y -2)2+│xy +3│=0,则(3x x y --2x x y -)÷1y的值是. 16.(2019·齐齐哈尔)关于x 的分式方程2x -a x -1-11-x=3的解为非负数,则a 的取值范围为_____________.三、解答题(共52分)17.(12分)(1)计算1-2a b a b -+÷222244a b a ab b -++;(2) (2019·枣庄)先化简,再求值:x 2x 2-1÷⎝⎛⎭⎫1x -1+1,其中x 为整数且满足不等式组⎩⎪⎨⎪⎧x -1>1,5-2x ≥-2.18.(12分)解方程:(1)32x x ++22x -=3;(2)24 1x-+21xx+-=-1.19.(8分)先化简2249xx--÷(1-13x-),再从不等式2x-3<7的正整数解中选一个使原式有意义的数代入求值.20.(8分)(2019·黄冈)为了对学生进行革命传统教育,红旗中学开展了“清明节祭扫”活动.全校学生从学校同时出发,步行4000米到达烈士纪念馆.学校要求九(1)班提前到达目的地,做好活动的准备工作.行走过程中,九(1)班步行的平均速度是其他班的1.25倍,结果比其他班提前10分钟到达.分别求九(1)班、其他班步行的平均速度.21.(12分)一项工程,甲队单独做需40天完成,若乙队先做30天后,甲、乙两队一起合做20天恰好完成任务,请问:(1)乙队单独做需要多少天才能完成任务?(2)现将该工程分成两部分,甲队做其中一部分工程用了x天,乙队做另一部分工程用了y天,若x,y都是正整数,且甲队做的时间不到15天,乙队做的时间不到70天,那么两队实际各做了多少天?参考答案1.D2.A3.D4.B5.D6.D7.D8.D9.A 10.C 11.-112.45.1240200=-xx 13.-338xy 14.201915.-23 16.a ≤4且a ≠3 17.(1)-b a b+. (2)由⎩⎪⎨⎪⎧x -1>1,5-2x ≥-2得2<x ≤72. ∵x 为整数,∴x =3,∴x 2x 2-1÷⎝⎛⎭⎫1x -1+1=x 2()x +1()x -1÷1+x -1x -1=x 2()x +1()x -1×x -1x =x x +1=34. 18.(1)x =4.(2)x =31.19.答案不唯一,略20.解:设其他班步行的平均速度为x 米/分,则九(1)班步行的平均速度为1.25x 米/分.依题意,得4000x -40001.25x=10,解得x =80, 经检验,x =80是原方程的解,且符合题意,∴1.25x =100.答:九(1)班步行的平均速度为100米/分,其他班步行的平均速度为80米/分.21. (1)乙队单独做需要100天才能完成任务.(2)甲、乙两队实际分别做了14天和65天.人教版八年级数学上册第15章分式单元过关测试(含答案)一、选择题:1、下列各式:其中分式共有()个A.2B.3C.4D.52、若式子有意义,的取值范围是( )A. B. C. D.3、下列约分正确的是()A. =B. =1C. =1D. =﹣14、下列分式:①;②;③;④其中最简分式有( )A.1个B.2个C.3个D.4个5、PM2.5是指大气中直径≤0.0000025米的颗粒物,将0.0000025用科学记数法表示为()A.2.5×10﹣7B.2.5×10﹣6C.25×10﹣7D.0.25×10﹣56、把分式中的a、b都扩大6倍,则分式的值()A.扩大12倍B.不变C.扩大6倍D.缩小6倍7、若a=﹣0.32,b=﹣3﹣2,c=(﹣)﹣2,d=(﹣)0,则a、b、c、d大小关系正确的是()A.a<b<c<dB.b<a<d<cC.a<d<c<bD.a<b<d<c8、化简(﹣)的结果是()A.xB.C.D.9、若x2+x﹣2=0,则的值为()A. B. C.2 D.﹣10、A.A=4,B=-9B.A=7,B=1C.A=1,B=7D.A=-35,B=1311、已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2B.m≥2C.m≥2且m≠3D.m>2且m≠312、某市开发区在一项工程招标时,接到甲、乙两个工程队的投标书,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:①甲队单独完成这项工程,刚好如期完工;②乙队单独完成此项工程要比规定工期多用5天;③■■■■■■■,剩下的工程由乙队单独做,也正好如期完工.某同学设规定的工期为x天,根据题意列出了方程:=1,则方案③中被墨水污染的部分应该是( )A.甲先做4天B.甲、乙合做4天C.甲先做工程的D.甲、乙合做工程的二、填空题:13、若,则_________ .14、如果分式的值为零,那么x= .15、计算:(a2b)-2÷(2a-2b-3)-2=___(结果只含有正整数指数幂).16、某车间每天能生产甲种零件120个或乙种零件100个,甲、乙两种零件分别取2个和1个才能配套,要在80天生产最多的成套产品,甲种零件应该生产________天.17、关于x的方程的解是正数,则a的取值范围是_________.18、若,对任意正整数n都成立,则a-b= .三、解答题:19、化简:÷(1+). 20、化简:( +)÷.21、解方程:﹣1= 22、解方程:﹣=1.23、已知a、b、c为实数,且,求的值。

人教版八年级数学上册第十五章《分式》单元练习题(含答案)

人教版八年级数学上册第十五章《分式》单元练习题(含答案)

则运算,若(-3) ? x = 2,则x 的值为( )《分式》单元练习卷•选择题要 使分式一=有意义,则x 的取值要满足(A. "■-如果把分式 ,中的x 和y 都扩大2倍,则分式的值(x+yb bea ac —2a =r (a 丰 0)aA . a > b >cB . c >a > bC . a >c > bD . c > b > a需要的天数为( C .1mn&若a 使关于x 的分式方程a+5 = 1的解为整数,且使关于y 的不等式组“^2^D . 213b = ,这里等式右边是通常的四a -ab3. A .扩大4倍 B .扩大2倍 C . 不变 D .缩小2倍F 列式子从左到右变形正确的是(4.如果 a = (- 2019) 0, b =( - 0.1) 1,c =')-2,那么* b 、c 三数的大小为 () 5. 已知丄- a A A . ,=2,则.的值是(b abB .-<C . 26. 分式方程 3 Y -3:.-::1--:.-的解是(A . x =-x = 2D . x = 4一项工程,甲单独做需要 m 天完成,乙单独做需要 n 天完成,「则甲、乙合作完成工程有解且最多有3个整数解,则所有符合条件的整数a 的值之和是( 2. 2 2 2A . (a+b ) = a +b2 2 2C . a - b =( a - b )竽430-7y^>-aA . m+n18 9.对于实数 a 、b ,定义一种新运算“ ? ”为:a?-C. §D.-—2 2 2丄 2 -10•已知x -—= 2,则x+—匸的值为()玄 K A . 2B . 4C . 6D . 811. “绿水青山就是金山银山”,为了加大深圳城市森林覆盖率,市政府决定在 2019年3月 12日植树节前植树2000棵,在植树400棵后,为了加快任务进程, 采用新设备,植树效 率比原来提升了 25%,结果比原计划提前 5天完成所有计划,设原计划每天植树 x 棵,依题意可列方程()x (14-25%) x 2000 2000-400= 5 x '(1+25%)= 2000-4002000-400二.填空题13 .若 x — 2y : — 3z ,则 的值是___________ .y-z11 爲亠卜I —14已知- 一则的值等于16 .若关于x 的分式」方程」・=—+1有增根,增根是 17 .为了美化校园环境,某中学今年春季购买了A ,B 两种树苗在校园四周栽种,已知树苗的单价比B 种树苗的单价多10元,用600元购买A 种树苗的棵数恰好与用 450元购买B 种树苗的棵数相同.若设A 种树苗的单价为x 元,则可列出关于x 的方程为 ______________ 18 .某班学生从学校出发前往科技馆参观,学校距离科技馆15km , 一部分学生骑自行车先走,过了 15min 后,其余学生乘公交车出发,结果同时到达科技馆.已知公交车的速度 是自行车速度的1.5倍,那么学生骑自行车的速度是 __________ km/h.2000 2000 「 — — 5 X 工(1+25 那)— 2000-400 2000-400 口 12.若分式方程:! = a 无解,则a 的值为(C . 0 或- 1D . 1 或-115 .当 x时,分式,无意义,当x =K +2 时,分式 亠的值是0.x+2解答题19. 解分式方程(1)―町7 q —20. 先化简,再求值:-- —*( a - 1),其中a=f^- 2.a+1 a+121. 某工地有72m2的墙面需要粉刷•若安排4名一级技工粉刷一天,结果还剩12m2墙面未能刷完;同样时间内安排6名二级技工去粉刷,则刚好全部刷完•已知每名一级技工比二级技工一天多粉刷3m2墙面.设每一名一级技工一天粉刷墙面xm2.(1)每名二级技工一天粉刷墙面 ________m2(用含x的式子表示);(2 )求每名一级技工、二级技工一天分别能粉刷多少m2墙面?(3)每名一级技工一天的施工费是300元,每名二级技工一天的施工费是200元.若另一工地有540m2的墙面需要粉刷,要求一天完工且施工总费用不超过10600元,则至少______ 名二级技工(直接写出结果)22. 若数a使关于x的分式方程—「一^ = 4的解为正数,且使关于y的不等式组{ 3 2 的解集为y v- 2,求符合条件的所有整数a的和I 2(y-a)<023. 2019年8月,因暴雨某县受灾,某市抗灾基金会组织一批救灾物资用15列车厢组成的一列火车运到该县,两地相距180km,为了更快的到达目的地. 列车以原速的1.5倍行驶, 这样提前了半小时到达.(1 )求提速后列车的速度;(2 )若车厢分A、B两种组成,每个A种车厢能运送5万元的救灾物资,每个B种车厢能运送7万元的救灾物资,总物资不低于是85万,那么最多可安排多少个A种车厢?24•阅读下列资料,解决问题:定义:在分式中,对于只含有一个字母的分式,当分子的次数小于分母的次数时,我们称之为“真分式”,如:,’,这样的分式就是真分式;当分子的次数大于或等于分母的次数时,我们称之为“假分式”,如:'!'X'l 分式也可以化为带分式(即:整式与真分式的和的形式)将假分式一".丁 |分别化为带分式;三一丄这样的分式就是假分式,假2x+l如: (1)工+2 (蓝亠1)+32分式亠是2K ----------(填“真分式”或“假分式”);(3)x-1 x+2如果分式上第亠二一卜’的值为整数,求所有符合条件的整数x的值.K+3(3)•:选择题1解:要使分式有意义, 3x^5贝3x — 5 工 0, 解得:X 「. 故选:A . 6xy s+y故选:B .2 2 23.解:A .根据完全平方公式,(a+b ) = a +2ab+b ,即A 项不合题意,B .若c = 0,则.无意义,即B 项不合题意, ac2 2 2c .根据完全平方公式,a — 2ab+b =( a — b ),即C 项不合题意, 2 1 D .根据负整数指数幕的定义, a—2=一耳(a 工0),即D 项符合题意,茁故选:D .1— 432 q4.解:a = 1, b =( •说)=—10,c =(匸)=—,••• a > c > b , 故选:C .••原式=-2, 故选:D .6.解:去分母得: 3 — x+3 = x — 2,解得:x = 4,经检验x = 4是分式方程的解,参考答案2•解:原式=2x+2y5.解:丄丄bpab•・ x = —7•解:甲单独做需要 m 天完成,则甲的工作效率为乙单独做需要n 天完成,则乙的工作效率为,故选:D .&解」:方程为 a+5 = 1两边同时乘以(x -2),可得1方34x - a - 5= x - 2, • x = 1+ a ,3•••分式方程的解为整数, ••• a 是3的倍数;由不等式组「•有解且最多有 3个整数解,• 3 v 「.a w 6,9v a w 12;• a 的取值为-6,— 3, 0, 3, 6, 9, 12; 当a = 3时,分式方程有增根,•所有符合条件的整数 a 的值之和是18 ; 故选:C .39.解:T a? b =,且(-3) ? x = 2,a -ab••• 2 (9+3x )= 3 •・ 6x =— 15经检验,x =-,是原方程的解.所以甲、乙合作完成工程需要的天数为-= m ninnirrFn由分式方程有增根,得到x - 3 = 0,即x = 3,11. 解:由题意可得,Ndix= 5,x ~x (l+25%)J 故选:D . 12.解:去分母得: x -a = ax+a ,即(a -1) x =- 2a ,显然a = 1时,方程无解;由分式方程无解,得到 x+1 = 0,即x =- 1, 把x =- 1代入整式方程得:- a+1 =- 2a ,解得:a =- 1, 综上,a 的值为1或-1, 故选:D .二.填空题(共6小题) 13. 解:••• x = 2y = 3z ,11…y = x , z = x ,y 2 3故答案为:9.故对答案为:—5故答案为:=-2, 2.16. 解:去分母得: m = 2 +x - 3,15.解:当x+2 = 0时,解得:x =- 当4 - x 2= 0且x+2工0时, 解得: 22时,分式.:无意义;x = 2时,分式二2—的值是0.x+210.解:原式= 故选:C .1 2 2—)+2 = 2 +2= 6,14. 解:已知等式整理得:■^―L = 2, 即卩 a - b =- 2ab ,ab 则原式=-5甜 ab-5,3把x = 3代入整式方程得: m = 2, 故答案为:x = 3, 217. 解:设A 种树苗的单价为x 元,贝U B 种树苗的单价为(X - 10)元,所以用600元购"买由题意,得二=丄丄x x-10 故答案是:一=:'.x x~1018. 解:设骑车学生每小时走 x 千米,解得:x _ 20,经检验x _ 20是原方程的解, 答:骑车学生每小时行 20千米. 故答案是:20. 三.解答题(共6小题)19. 解:(1)去分母得:2x+4_ 3x , 解得:x _ 4,经检验x _ 4是分式方程的解; (2)去分母得:x 2+2x - 1 _x 2- 4, 解得:x _- 1.5,经检验x _- 1.5是分式方程的解. 20•解:原式_a+1 a+11 a+2当a _ 一- 2时,原式_V3-2+2 V3A 种树苗的棵数是 —,用450元购买B 种树苗的棵数是450 x-10据题意得:1515 _ 15x 1.5K 60221 •解:(1)由题意得,每名二级技工一天粉刷墙面( x - 3) m ;故答案为:(x - 3)(2 )依题意列方程:「=—;解得x = 15经检验x = 15是原万程的解,99即每名一级技工和二级技“工一天分别能粉刷15m 、12m 墙面; (3)设需要m 名一级技工,需要 n 名二级技工,故答案为:5. + =4的解为 xT 1-y•••关于x 的分式方程 ——= 4的解为正数,X-1 1~聲[2(y-a)<0解不等式①得:y v- 2; 解不等式②得:y w a .•••关于y 的不等式组-「「的解集为y v- 2,\ 2(y-a)<0a 》一2.•/ a 为整数,•・ a = - 2、- 1、0、1、3、4、5, (—2) + (- 1) +0+1+3+4+5 = 10. 故符合条件的所有整数 a 的和是10. 23.解:(1)设提速前列车的速度为 xkm/h ,则提速后列车的速度为 1.5xkm/h ,依题意,得: -"=0.5 ,解得:x = 120,1 Bird-12n= 540 300m+200n=1060C , 一 i 一 - n=5答:至少需要 根据题意得, 解得:5名二级技工,22 •解:分式方程经检验,x= 120是所列分式方程的解,且符合题意,••• 1.5x= 180 •答:提速后列车的速度为180km/h •(2)设安排m个A种车厢,则安排(15 - m)个B种车厢,依题意,得:5m+7 (15 - m)> 85,解得:m w 10.答:最多可安排10个A种车厢.24•解:(1)v分子的次数大于分母的次数,2•分式兰—是假分式2x故答案为:假分式3+—=x - 2+——x+2(3)zF+弘声=(加—3)(x+3)+3 x+3K+33=2x- 3+ —x+3当x =- 6、- 4、- 2、0时,分式的值为整数.x+3。

人教版八年级数学上册 第15章 分式单元测试试卷(B卷)(含答案)

人教版八年级数学上册 第15章  分式单元测试试卷(B卷)(含答案)

班级 学号 姓名 得分一、填空题(共14小题,每题2分,共28分)1.当x = 时,分式127x -无意义;当x = 时,分式242x x -+的值为零. 2.公式21P U R -=可以改写成P= 的形式. 3.226()(1)x x A y =+,那么A =_____ ____. 4.计算232()()y x y x y-÷-= . 5.某农场原计划用m 天完成A 公顷的播种任务,如果要提前a 天结束,那么平均每天比原计划要多播种_________公顷.6.函数y2(3)x --中,自变量x 的取值范围是___________. 7.计算1201(1)5(2004)2π-⎛⎫-+-÷- ⎪⎝⎭的结果是_________. 8.已知u =121s s t -- (u≠0),则t =___________. 9.当m =______时,方程233x m x x =---会产生增根. 10.用换元法解方程222026133x x x x +-=+ ,若设x 2+3x =y ,,则原方程可化为关于y 的整式方程为____________.11.计算(x +y )·2222x y x y y x+-- =____________. 第十五章 分式单元测试(B )答题时间:90分钟 满分:100分12.一个工人生产零件,计划30天完成,若每天多生产5个,则在26 天完成且多生产15个.求这个工人原计划每天生产多少个零件?若设原计划每天生产x 个,由题意可列方程为____________.13.小聪的妈妈每个月给她m 元零花钱,她计划每天用a 元(用于吃早点、乘车)刚好用完,而实际她每天节约b 元钱,则她实际可以比原计划多用 天才全部消费完.14.如果记22()1x y f x x ==+,并且f (1)表示当1x =时y 的值,即f (1)=2211112=+;f (12)表示当12x =时y 的值,即f (12)=221()12151()2=+.那么11(1)(2)()(3)()23f f f f f ++++ 1()()f n f n+++=___ ____(结果用含n 的代数式表示,n 为正整数).二、选择题(共4小题,每题3分,共12分)15.小明通常上学时从家到学校要走一段上坡路,途中平均速度为m 千米/时,放学回家时,沿原路返回,通常的速度为n 千米/时,则小明上学和放学路上的平均速度为( )千米/时.A .2n m + B .2mn m n + C .mn m n + D .mnn m + 16.已知1ab =,1111M a b =+++,11a b N a b =+++,则M 与N 的大小关系为 ( ) A .M =N B .M >N C .M <N D .不确定17.在正数范围内定义一种运算“※”,其规则为a ※b =11a b +,如2※4113244=+=.根据这个规则,则方程x ※(2x -)=1的解为 ( )A .-1B .1C .16-D .1618.寒假到了,为了让同学们过一个充实而有意义的假期,老师推荐给大家一本好书.已知小芳每天比小荣多看5页书,并且小芳看80页书所用的天数与小荣看70页书所用的天数相等,若设小芳每天看书x页,则根据题意可列出方程为()A.80705x x=-B.80705x x=+C.80705x x=+D.80705x x=-三、解答题(共60分)19.(4分)当x的取值范围是多少时,(1)分式213xx+-有意义?(2)分式2361xx-+值为负数?20.(4分)计算:(1)2222()()64x xy y÷-;(2)21322()(2)a b ab----;21.(4分)化简:(1)2221()111m m m m m m m -+÷---; (2)22224421yxy x y x y x y x ++-÷+--.22.(6分)先将分式121312-+÷⎪⎭⎫ ⎝⎛-+x x x 进行化简,然后请你给x 选择一个你认为合适的数值代入,求原式的值.23.(6分)分式)3)(1()2)(1(a a a a -+++的值可能等于41吗?为什么?24.(6分)解方程:(1)214111x x x +--=--; (2)0)1(213=-+--x x x x .25.(6分)为了更好适应和服务新农村下经济的快速发展,某乡镇决定对一段公路进行改造.已知这项工程由甲工程队单独做需要40天完成;如果由乙工程队先单独做10天,那么剩下的工程还需要两队合做20天才能完成.(1)求乙工程队单独完成这项工程所需的天数;(2)求两队合做完成这项工程所需的天数.26.(8分)某校统考后,需将成绩录入电脑,为防止出现差错,全校2640名学生成绩数据安排甲、乙两位教务员分别录入计算机一遍,然后经过电脑比对输入成绩数据是否一致.已知甲的输入速度是乙的速度的2倍,结果甲比乙少用2小时输完.求这两位教务员每分钟各能录入多少名学生的考试成绩数据?27.(8分)请阅读某同学解下面分式方程的具体过程. 解方程1423.4132x x x x +=+---- 解:13244231x x x x -=-----, ① 222102106843x x x x x x -+-+=-+-+, ② 22116843x x x x =-+-+, ③ ∴22684 3.x x x x -+=-+ ④ ∴52x =. 把52x =代入原方程检验知52x =是原方程的解. 请你回答:(1)得到①式的做法是 ;得到②式的具体做法是 ;得到③式的具体做法是 ;得到④式的根据是 .(2)上述解答正确吗?如果不正确,从哪一步开始出现错误?答: .错误的原因是 (若第一格回答“正确”的,此空不填).(3)给出正确答案(不要求重新解答,只需把你认为应改正的进行修改或加上即可).28.(8分)如图,小刚家、王老师家,学校在同一条路上,小刚家到王老师家的路程为3千米,王老师家到学校的路程为0.5千米.由于小刚的父母战斗在抗震救灾第一线,为了使他能按时到校,王老师每天骑自行车接小刚上学.已知王老师骑自行车的速度是步行的3倍,每天比平时步行上班多用了20分钟,问王老师的步行速度及骑自行车的速度各是多少?学校参考答案:一、填空题1. 3.5,2 2.2U R 3.3(1)y + 4.2xy 5.()aA m m a - 6.x≥-12且x≠12,x≠3 7.-2 8.12u s s u +- 9.-3 10.2y 2-13y-20=0 11.x+y 12. 3015265x x +=+ 或26(x+5)-30x=15 13.()m m a b a -- 14.12n - 二、选择题15.B 16.A 17.D 18.D三、解答题19.(1)x ≠3±;(2)x <2 20.(1)2249x y ;(2)44a b 21.(1)11m m+-;(2)y x y -+ 22.1x +,(x ≠1,2±-) 23. 不可能,原式等于14时,1x =-,此时分式无意义 24.(1)3x =-;(2)无解 25.(1)60天;(2)24天 26. 甲每分钟输入22名,乙每分钟输入11名 27.(1)移项,方程两边分别通分,方程两边同除以210x -+,分式值相等,分子相等,则分母相等;(2)有错误.从第③步出现错误,原因:210x -+可能为零;(3)55,2x x == 28.王老师步行的速度是5千米/时,骑自行车的速度是15千米/时。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

班级 学号 姓名 得分
一、填空题(共14小题,每题2分,共28分)
1.当x = 时,分式127
x -无意义;当x = 时,分式242x x -+的值为零. 2.公式21
P U R -=可以改写成P= 的形式. 3.2
26()(1)
x x A y =+,那么A =_____ ____. 4.计算2
32()()y x y x y
-÷-= . 5.某农场原计划用m 天完成A 公顷的播种任务,如果要提前a 天结束,那么平均每天比原计划要多播种_________公顷.
6.函数y
2(3)x --中,自变量x 的取值范围是___________. 7.计算1201(1)5(2004)2π-⎛⎫-+-÷- ⎪⎝⎭
的结果是_________. 8.已知u =
121
s s t -- (u≠0),则t =___________. 9.当m =______时,方程233
x m x x =---会产生增根. 10.用换元法解方程222026133x x x x +-=+ ,若设x 2+3x =y ,,则原方程可化为关于y 的整式方程为____________.
11.计算(x +y )·22
22x y x y y x
+-- =____________. 第十五章 分式单元测试(B )
答题时间:90分钟 满分:100分
12.一个工人生产零件,计划30天完成,若每天多生产5个,则在26 天完成且多生产15
个.求这个工人原计划每天生产多少个零件?若设原计划每天生产x 个,由题意可列方程为____________.
13.小聪的妈妈每个月给她m 元零花钱,她计划每天用a 元(用于吃早点、乘车)刚好用完,
而实际她每天节约b 元钱,则她实际可以比原计划多用 天才全部消费完.
14.如果记22()1x y f x x ==+,并且f (1)表示当1x =时y 的值,即f (1)=2211112
=+;f (12)表示当12x =时y 的值,即f (12)=221()1215
1()2
=+.那么11(1)(2)()(3)()23f f f f f ++++ 1()()f n f n
+++=___ ____(结果用含n 的代数式表示,n 为正整数).
二、选择题(共4小题,每题3分,共12分)
15.小明通常上学时从家到学校要走一段上坡路,途中平均速度为m 千米/时,放学回家时,
沿原路返回,通常的速度为n 千米/时,则小明上学和放学路上的平均速度为( )千米/时.
A .
2n m + B .2mn m n + C .mn m n + D .mn
n m + 16.已知1ab =,1111M a b =+++,11a b N a b =+++,则M 与N 的大小关系为 ( ) A .M =N B .M >N C .M <N D .不确定
17.在正数范围内定义一种运算“※”,其规则为a ※b =11a b +,如2※4113244
=+=.根据这个规则,则方程x ※(2x -)=1的解为 ( )
A .-1
B .1
C .16-
D .16
18.寒假到了,为了让同学们过一个充实而有意义的假期,老师推荐给大家一本好书.已知
小芳每天比小荣多看5页书,并且小芳看80页书所用的天数与小荣看70页书所用的天数相等,若设小芳每天看书x 页,则根据题意可列出方程为 ( )
A.
8070
5
x x
=
-
B.
8070
5
x x
=
+
C.
8070
5
x x
=
+
D.
8070
5
x x
=
-
三、解答题(共60分)
19.(4分)当x的取值范围是多少时,
(1)分式21
3
x
x
+
-
有意义?(2)分式
2
36
1
x
x
-
+
值为负数?
20.(4分)计算:
(1)
2
22
2
()()
64
x x
y y
÷-;(2)21322
()(2)
a b ab
----;
21.(4分)化简:(1)2221()111m m m m m m m -+÷---; (2)2
22
24421y xy x y x y x y x ++-÷+--.
22.(6分)先将分式1
21312-+÷⎪⎭⎫ ⎝⎛
-+x x x 进行化简,然后请你给x 选择一个你认为合适的数值代入,求原式的值.
23.(6分)分式
)3)(1()2)(1(a a a a -+++的值可能等于4
1吗?为什么?
24.(6分)解方程:
(1)
214111
x x x +--=--; (2)0)1(213=-+--x x x x .
25.(6分)为了更好适应和服务新农村下经济的快速发展,某乡镇决定对一段公路进行改
造.已知这项工程由甲工程队单独做需要40天完成;如果由乙工程队先单独做10天,那么剩下的工程还需要两队合做20天才能完成.
(1)求乙工程队单独完成这项工程所需的天数;
(2)求两队合做完成这项工程所需的天数.
26.(8分)某校统考后,需将成绩录入电脑,为防止出现差错,全校2640名学生成绩数据安排甲、乙两位教务员分别录入计算机一遍,然后经过电脑比对输入成绩数据是否一致.已知甲的输入速度是乙的速度的2倍,结果甲比乙少用2小时输完.求这两位教务员每分钟各能录入多少名学生的考试成绩数据?
27.(8分)请阅读某同学解下面分式方程的具体过程. 解方程
1423.4132
x x x x +=+---- 解:13244231
x x x x -=-----, ① 222102106843
x x x x x x -+-+=-+-+, ② 22116843x x x x =-+-+, ③ ∴22
684 3.x x x x -+=-+ ④ ∴52
x =
. 把52x =代入原方程检验知52x =是原方程的解. 请你回答:
(1)得到①式的做法是 ;得到②式的具体做法是 ;得到③式的具体做法是 ;得到④式的根据是 .
(2)上述解答正确吗?如果不正确,从哪一步开始出现错误?答: .错误的原因是 (若第一格回答“正确”的,此空不填).
(3)给出正确答案(不要求重新解答,只需把你认为应改正的进行修改或加上即可).
28.(8分)如图,小刚家、王老师家,学校在同一条路上,小刚家到王老师家的路程为3千米,王老师家到学校的路程为0.5千米.由于小刚的父母战斗在抗震救灾第一线,为了使他能按时到校,王老师每天骑自行车接小刚上学.已知王老师骑自行车的速度是步行的3倍,每天比平时步行上班多用了20分钟,问王老师的步行速度及骑自行车的速度各是多少?
学校
参考答案:
一、填空题
1. 3.5,2 2.2U R 3.3(1)y + 4.2xy 5.()aA m m a - 6.x≥-12且x≠12
,x≠3 7.-2 8.
12u s s u +- 9.-3 10.2y 2-13y-20=0 11.x+y 12. 3015265
x x +=+ 或26(x+5)-30x=15 13.()m m a b a -- 14.12n - 二、选择题
15.B 16.A 17.D 18.D
三、解答题
19.(1)x ≠3±;(2)x <2 20.(1)2249x y ;(2)44a b 21.(1)11m m
+-;(2)y x y -+ 22.1x +,(x ≠1,2±-) 23. 不可能,原式等于14
时,1x =-,此时分式无意义 24.(1)3x =-;
(2)无解 25.(1)60天;(2)24天 26. 甲每分钟输入22名,乙每分钟输入11名 27.(1)移项,方程两边分别通分,方程两边同除以210x -+,分式值相等,分子相等,则分母相等;(2)有错误.从第③步出现错误,原因:210x -+可能为零;(3)
55,2
x x == 28.王老师步行的速度是5千米/时,骑自行车的速度是15千米/时。

相关文档
最新文档