八年级数学下册定义公式汇总

合集下载

2023年部编版八年级下册数学必背公式(完整版)

2023年部编版八年级下册数学必背公式(完整版)

2023年部编版八年级下册数学必背公式(完整版)结论公式1. 相同数的乘积:- 相同数相乘,底数不变,指数相加:a^m * a^n = a^(m+n)- 多个相同数相乘,底数不变,指数相加:a^m * a^n * a^p = a^(m+n+p)2. 幂的乘法:- 幂的乘法,底数不变,指数相乘:(a^m)^n = a^(m * n)3. 幂的除法:- 幂的除法,底数不变,指数相除:(a^m) / (a^n) = a^(m - n)4. 幂的负指数:- 幂的负指数,底数不变,指数变为负数取倒数:a^(-n) = 1 / a^n5. 幂的零次方:- 幂的零次方等于1:a^0 = 16. 乘方的分配律:- 两个数相乘后再取乘方,等于各自取乘方再相乘:(a * b)^n = a^n * b^n几何公式1. 长方形的面积公式:- 长方形的面积等于长乘以宽:面积 = 长 * 宽2. 三角形的面积公式:- 三角形的面积等于底乘以高再除以2:面积 = (底 * 高) / 23. 圆的面积公式:- 圆的面积等于半径的平方乘以π:面积 = π * 半径^24. 梯形的面积公式:- 梯形的面积等于上底加下底的和乘以高再除以2:面积 = (上底 + 下底) * 高 / 2线性方程1. 一元一次方程:- 一元一次方程的一般形式:ax + b = 0- 求解一元一次方程:x = -b / a2. 一次函数:- 一次函数的一般形式:y = kx + b- 斜率:k = (y2 - y1) / (x2 - x1)- 平行直线的斜率相等:k1 = k2- 垂直直线的斜率乘积为-1:k1 * k2 = -1这些是2023年部编版八年级下册数学必背的重要公式,掌握这些公式能够帮助你更好地理解和解决数学问题。

人教版八年级下册数学概念定义公式总结

人教版八年级下册数学概念定义公式总结

人教版八年级下册数学概念定义公式总结Jenny was compiled in January 2021八年级下册数学概念、定义、公式归纳1.2.3.利用分式基本性质,约去分子和分母的公因式,不改变分式的值,这样的变形叫做分式的约分。

分子和分母没有公因式的分式叫做最简分式。

4.利用分式基本性质,使分子和分母同乘适当的整式,不改变分式的值,使分母不同的分式变成分母相同的分式,这样的变形叫做分式的通分。

通分一般要找各分式的最简公分母。

()5.6.7.8.9.10.11.12.勾股定理——如果直角三角形的两直角边长分别为a、b,斜边长为c,那么a2+b2=c2。

勾股定理的逆定理——如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形是直角三角形。

13.题设、结论正好相反的两个命题称为互逆命题。

其中一个叫原命题,另一个叫逆命题。

14.平行四边形的性质:①对边平行且相等②对角相等,邻角互补③对角线互相平分15.平行四边形的判定方法:①两组对边分别平行的四边形是平行四边形。

②两组对边分别相等的四边形是平行四边形。

③两组对角分别相等的四边形是平行四边形。

④一组对边平行且相等的四边形是平行四边形。

⑤对角线互相平分的四边形是平行四边形。

16.矩形的性质:①两组对边平行且相等。

②四个角都是直角。

③对角线互相平分且相等17.矩形的判定方法:①一个角是直角的平行四边形是矩形。

②对角线相等的平行四边形是矩形。

③三个角都是直角的四边形是矩形。

18.菱形的性质:①四条边都相等②对角相等,邻角互补③对角线互相垂直平分,且每一条对角线平分一组对角19.菱形的判定方法:①一组邻边相等的平行四边形是菱形。

②对角线互相垂直的平行四边形是菱形。

③四边相等的四边形是菱形。

20.正方形的性质:①四条边都相等,对边平行②四个角都是直角③对角线相等且互相垂直平分,且每一条对角线平分一组对角21.正方形的判定方法:①一组邻边相等的矩形是正方形。

八年级数学下册北师大版期中概念、公式、定理归纳

八年级数学下册北师大版期中概念、公式、定理归纳

八年级数学下册北师大版期中概念、公式、定理归纳第一章三角形的证明一、全等三角形判定、性质:1.判定(SSS) (SAS) (ASA) (AAS) (HL直角三角形)2.全等三角形的对应边相等、对应角相等。

二、等腰三角形的性质定理:等腰三角形有两边相等;(定义)定理:等腰三角形的两个底角相等(简写成“等边对等角”)。

推论1:等腰三角形顶角的平分线、底边上的中线及底边上的高线互相重合。

(三线合一)推论2:等边三角形的各角都相等,并且每一个角都等于60°。

等腰三角形是以底边的垂直平分线为对称轴的轴对称图形;三、等腰三角形的判定1. 有关的定理及其推论定理:有两个角相等的三角形是等腰三角形(简写成“等角对等边”。

)推论1:三个角都相等的三角形是等边三角形。

推论2:有一个角等于60°的等腰三角形是等边三角形。

2. 反证法:先假设命题的结论不成立,然后推导出与定义、基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立。

这种证明方法称为反证法四、直角三角形1、直角三角形的性质直角三角形的两锐角互余直角三角形两条直角边的平方和等于斜边的平方;在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;在直角三角形中,斜边上的中线等于斜边的一半。

2、直角三角形判定如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形;3、互逆命题、互逆定理在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题.如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理.五、线段的垂直平分线、角平分线1、线段的垂直平分线。

性质:线段垂直平分线上的点到这条线段两个端点的距离相等;三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。

(完整版)部编版八年级下册数学公式梳理

(完整版)部编版八年级下册数学公式梳理

(完整版)部编版八年级下册数学公式梳理1. 整数整数是由正整数、负整数和0组成的数集。

以下是一些常用的整数公式:- 加法公式:整数加法符合交换律和结合律。

例如:$a + b = b + a$- 减法公式:整数减法可以转化为加法。

例如:$a - b = a + (-b)$- 乘法公式:整数乘法符合交换律和结合律。

例如:$a \times b = b \times a$- 除法公式:整数除法可以转化为乘法和减法。

例如:$\frac{a}{b} = a \div b = a \times \frac{1}{b}$2. 分数分数是整数和整数的比值,通常表示为$\frac{a}{b}$的形式,其中$a$为分子,$b$为分母。

以下是一些常用的分数公式:- 加法公式:分数加法需要分母相同。

例如:$\frac{a}{b} +\frac{c}{b} = \frac{a+c}{b}$- 减法公式:分数减法需要分母相同。

例如:$\frac{a}{b} -\frac{c}{b} = \frac{a-c}{b}$- 乘法公式:分数乘法只需分子相乘,分母相乘。

例如:$\frac{a}{b} \times \frac{c}{d} = \frac{a \times c}{b \times d}$ - 除法公式:分数除法可以转化为乘法。

例如:$\frac{a}{b}\div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c} = \frac{a \times d}{b \times c}$3. 均值均值是一组数据的平均值,计算方法是将所有数据相加后除以数据个数。

以下是一些常用的均值公式:- 算术均值:将所有数据相加后除以数据个数。

例如:$\bar{x} = \frac{a_1 + a_2 + \dots + a_n}{n}$- 加权均值:将每个数据乘以相应的权重后相加,然后除以权重总和。

例如:$\bar{x} = \frac{a_1 \times w_1 + a_2 \times w_2 + \dots + a_n \times w_n}{w_1 + w_2 + \dots + w_n}$以上是部编版八年级下册数学公式的梳理。

八年级数学复习必背几何定理定义公式

八年级数学复习必背几何定理定义公式

在八年级数学中,几何定理和定义是学习几何学的基础。

掌握这些定理和定义对解决几何问题至关重要。

下面是八年级数学复习必背的几何定理、定义和公式,供你参考。

一、几何定义1.点:表示位置,没有大小和方向。

2.直线:由无数个点连成的路径,有长度但无宽度和厚度。

任意两点确定一条直线,两条直线的交点是一个点。

3.线段:由两个点和它们之间的路径组成,有长度,有起点和终点。

4.射线:有一个起点,由这个起点出发,沿着相同的方向延伸出去。

射线上的点有无数个,其中一个是起点。

5.角:由两条射线共同点和与这两条射线相交但不在同一条线上的两个点组成。

我们用∠ABC表示角ABC,其中A是角的顶点,B、C分别是角的两边。

6.角分类:锐角(小于90°)、直角(等于90°)、钝角(大于90°)。

7.平行线:在同一个平面内,方向相同或者重合的直线。

8.垂直线:互不平行,且相交90°形成的线。

二、几何定理1.垂直线段定理:如果两条线段互相垂直,则它们的乘积等于两条线段的连线上的线段的乘积。

2.垂直线定理:如果两条线段互相垂直,则它们的斜率的乘积等于-13.同位角定理:如果两条平行线被一条截线所交,那么同位角是相等的。

4.内错角定理:如果两条平行线被一条截线所交,那么内错角互为补角。

5.三角形内角和定理:一个三角形的内角的和等于180°。

6.三角形外角定理:三角形的一个外角等于它对应的两个内角的和。

7.等腰三角形定理:等腰三角形的两底角相等,等腰三角形的两腰边相等。

8.相似三角形定理:如果两个三角形的对应角度相等,那么它们是相似的。

9.相似三角形比例定理:两个相似三角形的任意两条对应边的比值相等。

10.直角三角形勾股定理:直角三角形斜边的平方等于两个直角边平方的和。

11.正方形性质:四边相等,对角线相等且垂直,对边平行且垂直,对角线平分角。

12.等边三角形性质:三边相等,三个内角都是60°,三角形的高、中线和垂心重合。

八年级下册数学公式

八年级下册数学公式

八年级下册数学公式一、勾股定理。

1. 在直角三角形里呀,有个超酷的勾股定理。

就是说两条直角边的平方和等于斜边的平方。

如果直角三角形的两条直角边分别是a和b,斜边是c,那公式就是a^2+b^2=c^2。

比如说一个直角三角形的两条直角边分别是3和4,那斜边c呢,就根据这个公式算,3^2+4^2=9 + 16=25,所以斜边c = 5,就像魔法一样,知道两条边就能算出第三条边啦。

二、平行四边形相关公式。

1. 平行四边形的面积公式那可是很实用的哦。

如果平行四边形的底是b,高是h,那它的面积S = bh。

你就想象平行四边形是一个被压扁了的长方形,底就相当于长方形的长,高就相当于宽,这样就好理解多啦。

2. 要是一个平行四边形的相邻两边分别是a和b,它的周长C = 2(a + b)。

因为平行四边形对边相等嘛,所以把相邻两边加起来再乘2就得到周长啦。

三、菱形相关公式。

1. 菱形可是特殊的平行四边形哦。

它的面积有两种算法。

一种呢,和平行四边形一样,如果底是b,高是h,面积S = bh;另一种算法更酷,如果菱形的两条对角线分别是m和n,那面积S=(1)/(2)mn。

你看,菱形的对角线就像两把交叉的宝剑,用它们的长度就能算出面积呢。

2. 菱形的周长如果边长是a,那周长C = 4a,因为菱形四条边都相等呀。

四、矩形相关公式。

1. 矩形的面积公式很简单,如果长是a,宽是b,那面积S=ab,就像长方形的面积计算一样,很直观吧。

2. 矩形的周长C = 2(a + b),长和宽加起来乘2就搞定周长啦。

五、正方形相关公式。

1. 正方形是最特殊的四边形啦,它既是矩形又是菱形。

如果正方形的边长是a,那面积S=a^2,就边长乘边长。

2. 它的周长C = 4a,因为四条边都一样长嘛。

六、分式相关公式。

1. 分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不等于0的整式,分式的值不变。

就好比给分式换了一身同样比例的衣服,它的“价值”不变。

八年级下册数学公式

八年级下册数学公式

八年级下册数学公式1、直角三角形斜边上的中线等于斜边上的一半。

2、定理:四边形的内角和等于360°。

3、四边形的外角和等于360°。

4、多边形内角和定理:n边形的内角的和等于(n-2)×180°。

5、多边形外角和定理:任意多边的外角和等于360°。

6、平行四边形性质定理1:平行四边形的对角相等。

7、平行四边形性质定理2:平行四边形的对边相等。

8、推论:夹在两条平行线间的平行线段相等。

9、平行四边形性质定理3:平行四边形的对角线互相平分。

10、平行四边形判定定理1:两组对角分别相等的四边形是平行四边形。

11、平行四边形判定定理2:两组对边分别相等的四边形是平行四边形。

12、平行四边形判定定理3:对角线互相平分的四边形是平行四边形。

13、平行四边形判定定理4:一组对边平行相等的四边形是平行四边形。

14、矩形性质定理1:矩形的四个角都是直角。

15、矩形性质定理2:矩形的对角线相等。

16、矩形判定定理1:有三个角是直角的四边形是矩形。

17、矩形判定定理2:对角线相等的平行四边形是矩形。

18、菱形性质定理1:菱形的四条边都相等。

19、菱形性质定理2:菱形的对角线互相垂直,并且每一条对角线平分一组对角。

20、菱形面积=对角线乘积的一半,即S=(对角线的乘积)÷2。

21、菱形判定定理1:四边都相等的四边形是菱形。

22、菱形判定定理2:对角线互相垂直的平行四边形是菱形。

23、正方形性质定理1:正方形的四个角都是直角,四条边都相等。

24、正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角。

25、定理1:关于中心对称的两个图形是全等的。

26、定理2:关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

27、逆定理:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。

28、等腰梯形性质定理:等腰梯形在同一底上的两个角相等。

最全面的初中数学概念定义公式大全

最全面的初中数学概念定义公式大全

初中数学定义定理公式总结一、基本知识㈠、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:①画一条水平直线,在直线上取一点表示0〔原点,选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

②任何一个有理数都可以用数轴上的一个点来表示。

③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。

在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

④数轴上两个点表示的数,右边的总比左边的大。

正数大于0,负数小于0,正数大于负数。

绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。

两个负数比较大小,绝对值大的反而小。

有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。

②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与0相乘得0。

③乘积为1的两个有理数互为倒数。

除法:①除以一个数等于乘以一个数的倒数。

②0不能作除数。

乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

2、实数无理数:无限不循环小数叫无理数平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。

③一个正数有2个平方根/0的平方根为0/负数没有平方根。

④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学下册定义公式汇总八年级下册定义公式汇总第十六章 二次根式1、一般地,把形如a ((a ≥0)的式子叫做二次根式,“”称为二次根号。

(一个正数有两个平方根;在实数范围内,负数没有平方根。

) 2、二次根式的性质:(a )2=a (a ≥0),==a a 23、因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术平方根代替而移到根号外面;如果被开方数是代数和的形式,那么先分解因式,变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.4、二次根式的乘法法则:a ×b =ab (a ≥0,b ≥0)二次根式的乘法法则逆用:ab =a ×b (a ≥0,b ≥0) 5、二次根式的除法法则:ba =ba(a ≥0,b >0) 二次根式的除法法规逆用:b a =ba(a ≥0,b >0) 6、最简二次根式:必须同时满足下列条件 ①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式; ③分母中不含根式。

a(a >a -(a <7、二次根式加减法法则:二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并。

10、同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。

11、有理数的加法交换律、结合律,乘法交换律及结合律,乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.第十七章 勾股定理1、勾股定理 (命题1)如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2要点诠释:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:(1)已知直角三角形的两边求第三边 在⊿ABC 中,∠C=90 º,则c=22b a ,a=22b -c ,b=22a -c )(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边(3)利用勾股定理可以证明线段平方关系的问题2、勾股定理的逆定理 (直角三角形的判定) (命题2)如果三角形的三边长a 、b 、c ,满足a 2+b 2=c 2那么这个三角形是直角三角形要点诠释:勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时应注意:(1)首先确定最大边,不妨设最长边长为:c ;(2)验证c2与a2+b2是否具有相等关系,若a2+b2=c2,则△ABC是以∠C为直角的直角三角形(若c2> a2+b2,则△ABC是以∠C为钝角的钝角三角形;若c2﹤a2+b2,则△ABC为锐角三角形)。

(定理中a2+b2=c2只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c满足a2+ c2= b 2,那么以a,b,c为三边的三角形也是直角三角形,但是b为斜边)3、命题2与命题1的题设、结论正好相反,这两个命题叫做互为逆命题,如果把其中一个叫做原命题,那么另一个叫做它的逆命题。

4、勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。

5、常见的勾股定理三边的组合:3 4 5 5 12 13 6 8 107 24 25 8 15 17 9 12 159 40 41 10 24 26 11 60 61第十八章平行四边形四边形知识点:一、关系结构图:二、知识点讲解:1、平行四边形的性质(重点):ABCD是平行四边形⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧.54321)邻角互补()对角线互相平分;()两组对角分别相等;()两组对边分别相等;()两组对边分别平行;(2、平行四边形的判定(难点):.3、 矩形的性质:ABDOCABDOC因为ABCD 是矩形⇒⎪⎩⎪⎨⎧.3;2;1)对角线相等()四个角都是直角(有通性)具有平行四边形的所((4)是轴对称图形,它有两条对称轴.4、矩形的判定:(1)有一个角是直角的平行四边形;(2)有三个角是直角的四边形;(3)对角线相等的平行四边形;(4)对角线相等且互相平分的四边形.5、菱形的性质:因为ABCD 是菱形⇒⎪⎩⎪⎨⎧.321角)对角线垂直且平分对()四个边都相等;(有通性;)具有平行四边形的所(6. 菱形的判定:⎪⎭⎪⎬⎫+边形)对角线垂直的平行四()四条边都相等(一组邻边等)平行四边形(321⇒ 四边形ABCD 是菱形.ADBCA DBCO CDBAOCDBA OCDA BA BCD O7、正方形的性质:ABCD 是正方形⇒⎪⎩⎪⎨⎧.321分对角)对角线相等垂直且平(角都是直角;)四个边都相等,四个(有通性;)具有平行四边形的所(8. 正方形的判定:⎪⎭⎪⎬⎫++++一组邻边等矩形)(一个直角)菱形(一个直角一组邻边等)平行四边形(321⇒四边形ABCD 是正方形.9、两条平行线之间的距离:两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的距离。

10、三角形的中位线:连接三角形两边中点的线段叫做三角形的中位线。

11、三角形的中线: 三角形的一边中点与这边所对顶点的连线叫做三角形的中线。

12、三角形的中位线定理:三角形的中位线平行行三角形的第三边,并且等于第三边的一半。

名称定义性质判定面积平行四边两组对边分别平行①对边平行;②对边相等;③对角相等;④邻角互补;①定义;②两组对边分别相等的四边形;S=ah(a为一边长,h为这条边上形的四边形叫做平行四边形。

⑤对角线互相平分;⑥是中心对称图形③一组对边平行且相等的四边形;④两组对角分别相等的四边形;⑤对角线互相平分的四边形。

的高)矩形有一个角是直角的平行四边形叫做矩形除具有平行四边形的性质外,还有:①四个角都是直角;②对角线相等;③既是中心对称图形又是轴对称图形。

①有三个角是直角的四边形是矩形;②对角线相等的平行四边形是矩形;③有一个角是直角的平行四边形。

S=ab(a为一边长,b为另一边长)菱形有一组邻边相等的除具有平行四边形的性质外,还有①四边形相等;②对角线互相垂直,且①四条边相等的四边形是菱形;②对角线垂直的平行四边①S=ah(a为一边长,h为这条边上平行四边形叫做菱形。

每一条对角线平分一组对角;③既是中心对称图形又是轴对称图形。

形是菱形;③有一组邻边相等的平行四边形。

的高);②(b、c为两条对角线的长)正方形有一组邻边相等且有一个角是直角的平行四边形叫做正方形具有平行四边形、矩形、菱形的性质:①四个角是直角,四条边相等;②对角线相等,互相垂直平分,每一条对角线平分一组对角;③既是中心对称图形又是轴对称图形。

①有一组邻边相等的矩形是正方形;②有一个角是直角的菱形是正方形;③有一个角是直角的平行四边形且邻边相等。

①(a为边长);②(b为对角线长)第十九章一次函数函数1、变量:在一个变化过程中可以取不同数值的量。

常量:在一个变化过程中只能取同一数值的量。

2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,y是因变量,y是x的函数。

一个X对应两个*判断Y是否为X的函数,只要看X取值确定的时候,Y是否有唯一确定的值与之对应3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。

4、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。

5、函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式6、函数的图像(函数图像上的点一定符合函数表达式,符合函数表达式的点一定在函数图像上)一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.运用:求解析式中的参数、求函数解释式7、描点法画函数图形的一般步骤第一步:列表(表中给出一些自变量的值及其对应的函数值);-2 -1 -2 0 1 2-6 -3 -6 0 3 6第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。

8、函数的表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。

解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。

图象法:形象直观,但只能近似地表达两个变量之间的函数关系。

(一)一次函数1、一次函数的定义一般地,形如y kx b=+(k,b是常数(其中k与b的形式较为灵活,但只要抓住函数基本形式,准确找到k与b,根据题意求的常数的取值范围),且0b= k≠)的函数,叫做一次函数,其中x是自变量。

当0时,一次函数y kx=,又叫做正比例函数。

⑴一次函数的解析式的形式是y kx b=+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.⑵当0k≠时,y kx=仍是一次函数.b=,0⑶当0k=时,它不是一次函数.b=,0⑷正比例函数是一次函数的特例,一次函数包括正比例函数. 2、正比例函数及性质一般地,形如y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数.注:正比例函数一般形式 y=kx (k 不为零) ① k 不为零 ② x 指数为1 ③ b 取零当k>0时,直线y=kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k<0时,直线y=kx 经过二、四象限,从左向右下降,即随x 增大y 反而减小. (1) 解析式:y=kx (k 是常数,k ≠0) (2) 必过点:(0,0)、(1,k )(3)走向:k>0时,图像经过一、三象限;k<0时,•图像经过二、四象限 (4) 增减性:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小 (5)倾斜度:|k|越大,越接近y 轴;|k|越小,越接近x 轴3、一次函数及性质一般地,形如y=kx +b(k,b 是常数,k≠0),那么y 叫做x 的一次函数.当b=0时,y=kx +b 即y=kx ,所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式 y=kx+b (k 不为零) ① k 不为零 ②x 指数为1 ③ b 取任意实数一次函数y=kx+b 的图象是经过(0,b )和(-kb ,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx 平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移)Y=kx +b 其中 b 实际就是函数图象与坐标轴Y 轴的交点即当x=0时。

相关文档
最新文档