八年级初二数学二次根式(讲义及答案)及答案

合集下载

八年级初二数学 二次根式(讲义及答案)含答案

八年级初二数学 二次根式(讲义及答案)含答案

八年级初二数学 二次根式(讲义及答案)含答案一、选择题1.下列计算正确的是( )A =B =C =D =2.下列计算结果正确的是( )A B .3=C =D=3.下列二次根式中,是最简二次根式的是( )ABC .D4.( )A .1B .﹣1C .D -5.下列运算正确的是( )A =B =C .3=D 2= 6.下列计算正确的是( )A =B 3=C =D .21=7.化简 )ABC D8.若a b > )A .-B .-C .D .9.下列运算正确的是( )A =B .(28-=C 12=D 1=10.x ≥3是下列哪个二次根式有意义的条件( )A B C D11.230x -=成立的x 的值为( )A .-2B .3C .-2或3D .以上都不对12.与根式- )A .B .x -C .D二、填空题13.已知x =()21142221x x x x -⎛⎫+⋅= ⎪-+-⎝⎭_________14.若0a >化成最简二次根式为________. 15.能力拓展:1A =2A =;3:A =;4A =________.…n A :________.()1请观察1A ,2A ,3A 的规律,按照规律完成填空.()2比较大小1A 和2A()3-16.2==________. 17.设12211112S =++,22211123S =++,32211134S =++,设...S =S=________________ (用含有n 的代数式表示,其中n 为正整数).18.把_____________. 19.已知整数x ,y 满足y =,则y =__________.20.能合并成一项,则a =______.三、解答题21.计算及解方程组:(1-1-) (2)2+(3)解方程组:251032x y x y x y -=⎧⎪+-⎨=⎪⎩【答案】(1)2)7;(3)102x y =⎧⎨=⎩.【分析】(1)首先化简绝对值,然后根据二次根式乘法、加减法法则运算即可; (2)首先根据完全平方公式化简,然后根据二次根式加减法法则运算即可; (3)首先将第二个方程化简,然后利用加减消元法即可求解. 【详解】(11-1+(11=1 (22+)=34-=7-=7-(3)251032x y x y x y-=⎧⎪⎨+-=⎪⎩①②由②得:50x y -= ③ ②-③得: 10x = 把x=10代入①得:y=2 ∴原方程组的解是:102x y =⎧⎨=⎩【点睛】本题考查了二次根式的混合运算,加减消元法解二元一次方程,熟练掌握二次根式的运算法则是本题的关键.22.先阅读下列解答过程,然后再解答:,a b,使a b m=,使得+=,ab n22m+==a b==>)+=⨯=,==,由于437,4312m n7,12+=,=即:227===+。

二次根式加减运算(讲义及答案).

二次根式加减运算(讲义及答案).

则 a=________.
4. 下列计算正确的是( )
A. 2 3 5
B. 6 6 6
C. 2 2 2 2
D. 2 3 3 3
5. 计算:
(1) 3 3 75 ;
(2) 3 8 5 32 ;
解:原式=
解:原式=
1
(3) 24 9 2 ; 3
解:原式=
(4) 18 8 ; 9
1. ①结构,部分 ②法则 ③每步推进一点点
2. ① (a b)(a b) a 2 b 2 ② (a b)2 a2 2ab b2
3. -1
知识点睛
ቤተ መጻሕፍቲ ባይዱ
1. 化成最简二次根式后,被开方数相同 2. ①化成最简二次根式;②合并同类二次根式. 3. 乘方和开方,乘除,加减
精讲精练
1. D 2. 5 3. 1 4. D
48 3
27)
3;
解:原式=
解:原式=
(8)
7 2
20
45 3
4 5
2
5;
解:原式=
(9) ( 3 1)(2 3) ; 解:原式=
(10)(2 3 3 5)(2 3 3 5) ; 解:原式=
(11) ( 3 2)2 ; 解:原式=
(12) ( 3 2)2 (5 2 6) ; 解:原式=
8. 在如图所示的数轴上,点 B 与点 C 关于点 A 对称,若 A,B 两点对应的实数分别是 2 和-1,则点 C 对应的实数为_____.
9. 如图,数轴上 A,B 两点所对应的实数分别为-2 和 2 2 ,点 A 与点 B 关于点 C 对称,则点 C 所对应的实数为_______.
4
【参考答案】 课前预习

初二数学二次根式的化简求值同步讲义

初二数学二次根式的化简求值同步讲义

八年级数学提高班第二周课程第五节 化整为零,化零为整——二次根式的化简【知识要点】1.二次根式的重要性质()()⎩⎨⎧<-≥==002a a a a a a . 被开方数20a ≥,所以a 可以取任意实数;因为2a0≥0a ≥.2.由上述性质确定被开方数中字母的取值范围若a a =2,则0≥a ;若a a -=2,则0≤a .3.最简二次根式 被开方数的因数是整数,因式是整式即被开方数不含有分母。

被开方数中不含有能开得尽方的因式或因数。

4.同类二次根式 几个二次根式化成最简二次根式以后,如果被开方数相同, 那么这几个二次根式叫做同类二次根式。

判断同类二次根式时,注意以下三点 都是二次根式,即根指数都是2; 必须先化成最简二次根式; 被开方数相同。

5.二次根式的加减 二次根式的加减,与整式的加减相类似,只须对同类二 次根式进行合并.月 日同学们, 加油!!重难点解析1.化简二次根式:尽量把根号里的数写成几个数的平方的形式。

如:===2.根号里的数比较大时,使用短除法把这个数分解成质数的幂的形式。

如=== 253⨯3.根号内有字母或代数式,观察它们所能分解出来的最小偶次数。

如:a a a a a 245==、33b a =ab b a 22=ab ab4.计算:(1)x x 23- (2)2287x x +-【典型例题】例1 化简二次根式 12 48 50 5498 108 4515⨯例2 请问下列两组二次根式是同类二次根式吗?(1)2、 22、 32(2)2、 8、 185例3 若最简二次根式152++a a 与b a 34+是同类二次根式,求a 、b 的值例4、化简下列二次根式: (1)122+-a a (2))(222b a b ab a <+-(3))31(2132<<+-+-x x x x (4))9()9()5(22≥---x x x例5 计算:(1)32+3-22-33 (6)★例6 如果最简根式m n +m ,n 的值。

八年级初二数学二次根式(讲义及答案)含答案

八年级初二数学二次根式(讲义及答案)含答案

一、选择题1.下列计算正确的是( ) A .42=±B .()233-=-C .()255-= D .()233-=-2.已知实数a 在数轴上的位置如图所示,则化简2||(-1)a a +的结果为( )A .1B .﹣1C .1﹣2aD .2a ﹣13.()555=( )A .55+B .55+C .525+D .10542的倒数是( ) A 2B .22C .2-D .22-5.下列式子中,属于最简二次根式的是( ) A 4B 3 C 12D 206.下列各式中,正确的是( )A .23B .a 3 • a 2=a 6C .(b+2a) (2a -b) =b 2 -4a 2D .5m + 2m = 7m 27.下列运算正确的是( )A .52223-=y yB .428x x x ⋅=C .(-a-b )2=a 2-2ab+b 2D 27123=8.若化简1682+-x x -1x -的结果为5-2x ,则x 的取值范围是( ) A .为任意实数 B .1≤x≤4C .x≥1D .x≤49.下列运算正确的是( )A x 2x 3xB .2﹣2=1C .55D .x ﹣x (a ﹣b x10.下面有四个命题:①两条直线被第三条直线所截,同位角相等;②0.1的算术平方根是0.013323)=5;④如果点P (3-2n ,1)到两坐标轴的距离相等,那么n =1,其中假命题的有( ) A .1个B .2个C .3个D .4个二、填空题11.实数a 、b 22a -4a 436-12a a 10-b 4-b-2++=+,则22a b +的最大值为_________. 12.设12211112S =++,22211123S =++,32211134S =++,设12...n S S S S =+++,则S=________________ (用含有n 的代数式表示,其中n 为正整数). 13.已知函数1x f xx,那么21f _____.14.下面是一个按某种规律排列的数阵:11第行325 62第行7223 10 11 233第行 13154 1732 19254第行根据数阵排列的规律,第 5 行从左向右数第 3 个数是 ,第 n (n 3≥ 且 n 是整数)行从左向右数第 n 2- 个数是 (用含 n 的代数式表示). 15.已知|a ﹣2007|+2008a -=a ,则a ﹣20072的值是_____. 16.把1a a-的根号外的因式移到根号内等于? 17.已知m=1+ 2,n=1﹣2,则代数式22m n mn +-的值________. 18.计算:()()200820092+323⋅-=_________.19.实数a 、b 在数轴上的位置如图所示,则化简()222a b a b -+-=_____.20.4x -x 的取值范围是_____.三、解答题21.已知11881,2y x x =--22x y x yy x y x+++-. 【答案】1 【解析】 【分析】根据已知和二次根式的性质求出x 、y 的值,把原式根据二次根式的性质进行化简,把x 、y 的值代入化简后的式子计算即可. 【详解】 1-8x≥0,x≤188x-1≥0,x≥18,∴x=18,y=12,∴原式532-==1222. 【点睛】本题考查的是二次根式的化简求值,把已知条件求出x 、y ,把要求的代数式进行正确变形是解题的关键,注意因式分解在化简中的应用.22.观察下列等式:1==;==== 回答下列问题:(1(2)计算:【答案】(1(2)9 【分析】(1)根据已知的31=-n=22代入即可求解;(2)先利用上题的规律将每一个分数化为两个二次根式的差的形式,再计算即可. 【详解】解:(1=(2+99+=1100++-=1 =10-1=9.23.【分析】先化为最简二次根式,再将被开方数相同的二次根式进行合并.【详解】.【点睛】本题考查了二次根式的加减运算,在进行此类运算时,先把二次根式化为最简二次根式的形式后再运算.24.计算-②)21【答案】①【分析】①根据二次根式的加减法则计算;②利用平方差、完全平方公式进行计算.【详解】解:①原式=5-2-=②原式=(【点睛】本题考查二次根式的运算,熟练掌握完全平方公式、平方差公式是关键.25.在一个边长为(cm的正方形的内部挖去一个长为()cm,cm的矩形,求剩余部分图形的面积.【答案】 【解析】试题分析:用大正方形的面积减去长方形的面积即可求出剩余部分的面积.试题解析:剩余部分的面积为:(2﹣()=()﹣(﹣)=(cm 2). 考点:二次根式的应用26.(1)计算:21)-(2)已知a ,b 是正数,4a b +=,8ab =【答案】(1)5-2 【分析】(1)根据完全平方公式、平方差公式可以解答本题;(2)先将所求式子化简,然后将a+b=4,ab=8代入化简后的式子即可解答本题. 【详解】解:(1)原式21)=-(31)(23)=---5=-;(2)原式=== a ,b 为正数, ∴原式=把4a b +=,8ab =代入,则原式== 【点睛】本题考查二次根式的化简求值,完全平方公式、平方差公式,解答本题的关键是明确二次根式化简求值的方法.27.计算:(1 ;(2)))213【答案】(1)2)1-. 【分析】(1)根据二次根式的混合运算法则可以算得答案. (2)结合整式的乘法公式和二次根式的运算法则计算. 【详解】(1)原式==(2)原式=212---=1-. 【点睛】本题考查二次根式的运算,熟练掌握二次根式的意义、性质和运算法则是解题关键.28.计算:(1 (2)()()2221-【答案】2)1443 【分析】(1)先化成最简二次根式,然后再进行加减运算即可; (2)套用平方差公式和完全平方式进行运算即可. 【详解】解:(1)原式=23223323,(2)原式(34)(12431)1124311443,故答案为:1443. 【点睛】本题考查二次根式的四则运算,熟练掌握二次根式的四则运算是解决本题的关键.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C解析:C 【分析】直接利用二次根式的性质分别求解,即可得出答案. 【详解】解:A ,故A 选项错误;B ,故B 选项错误;C 选项:2=5,故C 选项正确;D 选项:2=3,故D 选项错误, 故选:C . 【点睛】此题主要考查了二次根式的性质,正确求解二次根式是解题的关键.2.A解析:A 【分析】先由点a 在数轴上的位置确定a 的取值范围及a-1的符号,再代入原式进行化简即可 【详解】由数轴可知0<a <1,所以,||1a a a =+-=1,选A . 【点睛】此题考查二次根式的性质与化简,实数与数轴,解题关键在于确定a 的大小3.B解析:B 【分析】根据乘法分配律可以解答本题. 【详解】)5=5+ 故选:B . 【点睛】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.4.B解析:B 【分析】根据倒数的定义,即可得到答案. 【详解】2,2; 故选:B. 【点睛】本题考查了倒数的定义和化为最简二次根式,解题的关键是熟记倒数的定义进行解题.5.B解析:B 【分析】根据最简二次根式的定义(①被开方数不含有能开得尽方的因式或因数,②被开方数不含有分母,满足以上两个条件的二次根式叫最简二次根式)逐个判断即可. 【详解】解:A =2,不是最简二次根式,故本选项错误;BC =D =,不是最简二次根式,故本选项错误; 故选:B . 【点睛】本题考查了最简二次根式的定义的应用,能熟记最简二次根式的定义是解此题的关键,注意:最简二次根式满足以下两个条件:①被开方数不含有能开得尽方的因式或因数,②被开方数不含有分母.6.A解析:A 【分析】比较两个二次根式的大小可判别A ,根据同底数幂的乘法、平方差公式、合并同类项的运算法则分别计算可判断B 、C 、D 的正误. 【详解】A 、=,= ∵1812>,∴>,故该选项正确; B 、3a •25a a =,故该选项错误;C 、()()22224b a a b a b +-=-,故该选项错误;D 、527m m m +=,故该选项错误; 故选:A . 【点睛】本题考查了二次根式大小的比较,同底数幂的乘法、平方差公式、合并同类项的运算,熟练掌握相关运算法则是解题的关键.7.D解析:D 【分析】由合并同类项、同底数幂乘法、完全平方公式、以及二次根式的加减运算,分别进行判断,即可得到答案. 【详解】解:A 、222523y y y -=,故A 错误; B 、426x x x ⋅=,故B 错误;C 、222()2a b a ab b --=++,故C 错误;D ==D 正确; 故选:D . 【点睛】本题考查了合并同类项、同底数幂乘法、完全平方公式、以及二次根式的加减运算,解题的关键是熟练掌握运算法则进行解题.8.B解析:B 【解析】 【分析】先把多项式化简为|x-4|-|1-x|,然后根据x 的取值范围分别讨论,求出符合题意的x 的值即可. 【详解】解:原式1x -=|x-4|-|1-x|, 当x≤1时, 此时1-x≥0,x-4<0,∴(4-x )-(1-x )=3,不符合题意, 当1≤x≤4时, 此时1-x≤0,x-4≤0,∴(4-x )-(x-1)=5-2x ,符合题意, 当x≥4时, 此时x-4≥0,1-x <0,∴(x-4)-(x-1)=-3,不符合题意, ∴x 的取值范围为:1≤x≤4 故选B . 【点睛】本题主要考查绝对值及二次根式的化简,要注意正负号的变化,分类讨论.9.D解析:D【解析】利用二次根式的加减法计算,可知:A、B、﹣C、D、﹣(a﹣b,此选项正确.故选:D.10.D解析:D【分析】利用平行线的性质、算术平方根的定义、实数的运算及点的坐标的性质分别判断后即可确定正确的选项.【详解】解:①两条平行线直线被第三条直线所截,同位角相等,故错误;②0.01的算术平方根是0.1,故错误;)=17322+=,故错误;④如果点P(3-2n,1)到两坐标轴的距离相等,则n=1或n=2,故错误,故选D.【点睛】本题考查了命题与定理的知识,解题的关键是熟悉平行线的性质、算术平方根的定义、实数的运算及点的坐标的性质,难度一般.二、填空题11.【分析】首先化简,可得|a-2|+|a-6|+|b+4|+|b-2|=10,然后根据|a-2|+|a-6|≥4,|b+4|+|b-2|≥6,判断出a,b的取值范围,即可求出的最大值.【详解】解析:【分析】10-b4-b-2=+,可得|a-2|+|a-6|+|b+4|+|b-2|=10,然后根据|a-2|+|a-6|≥4,|b+4|+|b-2|≥6,判断出a,b的取值范围,即可求出22a b+的最大值.【详解】10-b4-b-2=+,1042b b =-+--, ∴261042a a b b -+-=-+--, ∴264210a a b b -+-+++-=,∵264a a -+-≥,426b b ++-≥,∴ 264a a -+-=,42=6b b ++-,∴2≤a≤6,-4≤b≤2,∴22a b +的最大值为()226452+-=,故答案为52.【点睛】本题考查了二次根式的性质与化简,绝对值的意义,算术平方根的性质.解题的关键是要明确化简二次根式的步骤:①把被开方数分解因式;②利用算术平方根的性质,把被开方数中能开得尽方的因数(或因式)都开出来;③化简后的二次根式中的被开方数中每一个因数(或因式)的指数都小于根指数2. 12.【分析】先根据题目中提供的三个式子,分别计算的值,用含n 的式子表示其规律,再计算S 的值即可.【详解】解:∵,∴;∵,∴;∵,∴;……∵,∴;∴.故答案为:【点睛】本题解析:221n n n ++ 【分析】n 的式子表示其规律,再计算S 的值即可.【详解】 解:∵1221191=124S =++311122===+-; ∵222114912336S =++=7111116623===+=+-; ∵32211169134144S =++=1311111121234===+=+-; …… ∵()()()222222111111n n n S n n n n ++=++=++,()()2111111111n n n n n n n n ++===+=+-+++;∴...S =1111111112231n n =+-++-++-+…+ 111n n =+-+. 221n n n +=+ 故答案为:221n n n ++ 【点睛】本题为规律探究问题,难度较大,根据提供的式子发现规律,并表示规律是解题的关键,同时要注意对于式子()11111n n n n =-++的理解. 13.【分析】根据题意可知,代入原函数即可解答.【详解】因为函数,所以当时, .【点睛】本题主要考查了代数式求值问题,熟练掌握相关知识点以及二次根式的运算是解题关键.解析:2+根据题意可知1x=,代入原函数即可解答.【详解】因为函数1xf xx,所以当1x=时,211()2221f x.【点睛】本题主要考查了代数式求值问题,熟练掌握相关知识点以及二次根式的运算是解题关键. 14.;.【分析】根据被开方数是连续的自然数写出即可;根据每一行的最后一个数的被开方数是所在的行数乘比行数大1的数写出第(n-1)行的最后一个数,然后被开方数加上(n-2)即可求解.【详解】观察表【分析】根据被开方数是连续的自然数写出即可;根据每一行的最后一个数的被开方数是所在的行数乘比行数大1的数写出第(n-1)行的最后一个数,然后被开方数加上(n-2)即可求解.【详解】观察表格中的数据可得,第5行从左向右数第3=∵第(n-1,∴第n(n≥3且n是整数)行从左向右数第n-2个数是..【点睛】本题是对数字变化规律的考查,观察出被开方数是连续自然数并且每一行的最后一个数的被开方数是所在的行数乘比行数大1的数是解题的关键.15.2008【解析】分析:本题首先能够根据二次根式的被开方数为非负数的条件,得到a的取值范围;再根据a的取值范围,化简去掉绝对值;最后进行整理变形.详解:∵|a﹣2007|+=a,∴a≥2008,【解析】分析:本题首先能够根据二次根式的被开方数为非负数的条件,得到a的取值范围;再根据a的取值范围,化简去掉绝对值;最后进行整理变形.详解:∵|a﹣2007=a,∴a≥2008,∴a﹣2007=a,=2007,两边同平方,得:a﹣2008=20072,∴a﹣20072=2008.故答案为:2008.点睛:解决此题的关键是能够得到a的取值范围,从而化简绝对值并变形.16.﹣【解析】解:通过有意义可以知道≤0,≤0,所以=﹣=﹣.故答案为:.点睛:此题主要考查了二次根式的性质应用,正确判断二次根式的整体符号是解题关键.解析:【解析】解:通过a≤0,,所以故答案为:点睛:此题主要考查了二次根式的性质应用,正确判断二次根式的整体符号是解题关键.17.【解析】根据题意,把被开方数配方为完全平方,然后代入求解,可得====.故答案是:.【解析】根据题意,把被开方数配方为完全平方,然后代入求解,可得.18.【解析】原式==19.﹣2a【分析】首先根据实数a、b在数轴上的位置确定a、b的正负,然后利用二次根式的性质化简,最后合并同类项即可求解.依题意得:a<0<b,|a|<|b|,∴=-a-b+b-a=-解析:﹣2a【分析】首先根据实数a、b在数轴上的位置确定a、b的正负,然后利用二次根式的性质化简,最后合并同类项即可求解.【详解】依题意得:a<0<b,|a|<|b|,.故答案为-2a.【点睛】此题主要考查了二次根式的性质与化简,其中正确利用数轴的已知条件化简是解题的关键,同时也注意处理符号问题.20.x>4【分析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式得到答案.【详解】解:由题意得,x﹣4>0,解得,x>4,故答案为:x>4.【点睛】本题主要考查的是二次根解析:x>4【分析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式得到答案.【详解】解:由题意得,x﹣4>0,解得,x>4,故答案为:x>4.【点睛】本题主要考查的是二次根式有意义的条件、分式有意义的条件,掌握二次根式的被开方数是非负数、分式分母不为0是解题的关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。

初二数学二次根式试题答案及解析

初二数学二次根式试题答案及解析

初二数学二次根式试题答案及解析1.计算(1)(2)【答案】(1);(2)2.【解析】(1)根据二次根式的乘除法则运算;(2)根据二次根式有意义的条件得到-(a+2)2≥0,得到a=-2,然后把a=-2代入原式进行计算.试题解析:(1)原式===(2)∵-(a+2)2≥0,∴a=-2,原式==3-5+4=2.【考点】二次根式的混合运算.2.计算:【答案】.【解析】先进行二次根式的乘法运算得到原式=3﹣3+2+2+1,然后合并即可.试题解析:原式=3﹣3+2+2+1=.【考点】二次根式的混合运算.3.化简的结果是()A.-3B.3C.±3D.【答案】B.【解析】.故选B.【考点】二次根式化简.4.下列变形中,正确的是………()A.(2)2=2×3=6B.C.D.【答案】D.【解析】A、(2)2=4×3=12,故本选项错误;B、,故本选项错误;C、,故本选项错误;D、,正确.故选D.【考点】二次根式的化简与计算.5.当1≤x≤5时,【答案】4.【解析】根据x的取值范围,可判断出x-1和x-5的符号,然后再根据二次根式的性质和绝对值的性质进行化简.试题解析:∵1≤x≤5,∴x-1≥0,x-5≤0.故原式=(x-1)-(x-5)=x-1-x+5=4.考点: 二次根式的性质与化简.6.有一个数值转换器,原理如下:当输入的x=64时,输出的y等于()A.2B.8C.D.【答案】D.【解析】由图表得,64的算术平方根是8,8的算术平方根是.故选D.【考点】算术平方根.7.下列计算正确的是()A.B.C.D.【答案】A.【解析】根据根式运算法则.不是同类项不能合并同类项【考点】根式运算.8.=________________.【答案】6【解析】由题, .,由题, .【考点】二次根式的化简.9.函数中自变量x的取值范围是.【答案】x≥4【解析】二次根式有意义的条件:二次根号下的数为非负数,二次根式才有意义.由题意得,.【考点】二次根式有意义的条件点评:本题属于基础应用题,只需学生熟练掌握二次根式有意义的条件,即可完成.10.的平方根是()A.4B.±4C.±2D.2【答案】C【解析】一个正数有两个平方根,且它们互为相反数,其中正的平方根叫它的算术平方根.,平方根是±2,故选C.【考点】平方根点评:本题属于基础应用题,只需学生熟练掌握平方根的定义,即可完成.11.函数y=中,自变量x的取值范围是。

第八讲 二次根式和最简二次根式-【暑假衔接】2021年新八年级数学(北师大版)(解析版)

第八讲 二次根式和最简二次根式-【暑假衔接】2021年新八年级数学(北师大版)(解析版)

第八讲 二次根式和最简二次根式【学习目标】认识二次根式和最简二次根式的概念,探索二次根式的性质;利用二次根式的性质将二次根式化为最简二次根式.【基础知识】1.(0a ≥) 的式子叫做根式;a 根式有意义的条件是:被开方数大于等于0,根式为零被开方数为0;2.二次根式的性质: ① 0a ≥0 (双重非负性)②2= a (0a ≥) 3.最简二次根式: ① 被开方数不含有分母(小数);② 被开方数中不含有可以开方开得出的因数或因式;【考点剖析】考点一:二次根式定义例1有意义,则x 的取值范围为( ) A .x≥12B .x≤-12C .x≥-12D .x≤12【答案】C 【解析】依题意120x +≥,解得x≥-12,故选C. 考点二:二次根式的非负性例2.若y 2,则x y =_____. 【答案】9 【解析】解:y 2有意义, 必须x ﹣3≥0,3﹣x≥0, 解得:x =3,代入得:y =0+0+2=2, ∴x y =32=9. 故答案为:9.考点三:二次根式的性质及应用例3.(1)先化简,再求值:a 1007a =.如图是小亮和小芳的解答过程.(1)________的解法是错误的; (2)化简:2(5)π-=________;(3)先化简,再求值:2269a a a +-+,其中2019a =-. 【答案】(1)小亮;(2) 5π-;(3)-2016 【解析】(1)∵1007a =, ∴1-a=-1006<0,∴212a a a +-+=2(1)|1|121a a a a a a a +-=+-=+-=- =2×1007-1 =2013.∴小亮的解法是错误的;(2)2(5)|5|(5)πππ-=-=--=5π- (3)∵2019a =-, ∴320220a -=-<, 则原式22(3)a a =+-2|3|a a =+- 2(3)a a =--3a =+ 2016=-.考点四:实数的大小比较例4.(1)把|3|,0,2,3--表示在数轴上(无理数近似表示在数轴上),并比较它们的大小,用“<”号连接.【答案】数轴表示见解析,2033-<-解:在数轴上表示为:用“<”连接为:2033-<<<-.(2)在数轴上标出下列各数,然后用“<”连接起来:2,2,0,|3|,( 4.5)----【答案】数轴见解析,()2023 4.5-<<<-<--【详解】 解:如图:用“<”连接为:()2023 4.5-<<-<--.考点五:例5.(1)下列二次根式中属于最简二次根式的是( ) A 24B 36C a bD 24x +【答案】D 【详解】A 2426=B 366=不是最简二次根式,不符合题意;C a ab b b=不是最简二次根式,不符合题意; D 24x + 故选:D .(212的结果是( ) A .43B .32C .23D .26【答案】C 【详解】221243232323⨯=⨯==(3_____.【详解】===.(4_____.【答案】4【详解】24x =⨯==故答案为:4【真题演练】1.下列代数式能作为二次根式被开方数的是( ) A .3﹣π B .a C .a 2+1 D .2x+4 【答案】C【解析】解:A 、3﹣π<0,则3﹣a 不能作为二次根式被开方数,故此选项错误; B 、a 的符号不能确定,则a 不能作为二次根式被开方数,故此选项错误; C 、a 2+1一定大于0,能作为二次根式被开方数,故此选项错正确;D 、2x+4的符号不能确定,则a 不能作为二次根式被开方数,故此选项错误; 故选:C .2.下列根式中,是二次根式的是( ).A .πB .13C D【答案】D 【解析】A. π不符合题意,故此选项不正确;B. 13不符合题意,故此选项不正确;C.D.符合题意,故此选项正确;故选D.3.下列各式:(b ≥2) , , , 其中是二次根式的个数有( ) A .2个 B .3个C .4个.D .5个【答案】B 【解析】(b ≥2),0,当小于0时无意义,不是二次根式;故选:B .4x 的取值范围是( ) A .1x ≤ B .1x <C .1x ≥D .1x >【答案】C 【解析】10x -≥解得:1x ≥ 故选C5x 的取值范围是( ) A .2x > B .2x <C .2x ≥D .2x ≤【答案】C 【解析】解:根据题意,得20x -,解得,2x . 故选C.6.下列式子中,a 不可以取1和2的是( )A B CD 【答案】D 【解析】A .由5a ≥0,所以a ≥0,故选项A 可取1和2;B .由a +3≥0,所以a ≥﹣3,故选项B 可取1和2;C .由a 2≥0,所以a 2+1≥1,故选项C 可取1和2;D .由2a-≥0且a ≠0,所以a <0,故选项D 不可取1和2; 故选:D .7.说明命题是假命题的一个正确的反例是( ) A .a=3 B .a=-3C .a=0.3D .a=0【答案】B 【解析】=a , ∴a≥0,故此命题是假命题的反例就是a 是一个负数, 故答案为:B.8.若代数式3x +有意义,则实数x 的取值范围是______. 【答案】1x - 【解析】解:∵代数式3x +有意义, ∴10x +≥,30x +≠, 解得:1x ≥-,3x ≠-, ∴实数x 的取值范围是:1x ≥-; 故答案为:1x ≥-.9.已知x ,y 是实数,且满足18______. 【答案】12【解析】解:∵由二次根式的定义得202x 0x -≥⎧⎨-≥⎩,解得:x=2,∴1y 008=++,即:18y =,12====.故答案为:1 2 .1012x-12x⎫>⎪⎭哪些是二次根式?哪些不是?为什么?【答案】见解析【解析】2,所以不是二次根式;-12x不含二次根号,不是二次根式;,不能确定被开方数是非负数,当0a<10x+<无意义,不一定是二次根式;40-<12x⎫>⎪⎭,因为120x-<a取何实数,22a--综上所述:12x-12x⎫>⎪⎭不是二次根式.11.当a=2,b=1.5时,求下列代数式的值.(1)a2+2ab+b2(2ab+1.【答案】(1)12.25;(2)7;【解析】解:(1)当a=2,b=1.5时,原式=22+2×2×1.5+1.52=12.25;(2)当a=2,b=1.5 1.5+1=7.12.平面直角坐标系中如果任意两点A、B的坐标分别为(x1,y1)、(x2,y2),,则A、B两点之间的距离可表示为AB;在平面直角坐标系中,(1)若点C的坐标为(3,4),O为坐标原点,则C、O两点之间的距离为______.(2)若点E(-2,3)、F(4,-5),求E、F两点之间的距离.【答案】(1)5;(2)10.(1)因为O点为原点,所以点O为(0,0,),由题意可得CO,故答案为5.(2)根据题意可得EF=10,故答案为10.13.若实数a,b,c满足(1)求a,b,c;(2)若满足上式的a,c为等腰三角形的两边,求这个等腰三角形的周长.【答案】(1)b=2,c=3;(26.【解析】解:(1)由题意可得:c-3≥0,3-c≥0,解得:c=3,∴=0,则b=2;(2)当a是腰长,c3,不能构成三角形,舍去;当c是腰长,a是底边时,任意两边之和大于第三边,能构成三角形,,.【过关检测】1.说明命题是假命题的一个正确的反例是( )A.a=3 B.a=-3 C.a=0.3 D.a=0【答案】B【解析】=a,∴a≥0,故此命题是假命题的反例就是a是一个负数,故答案为:B.2a,b应满足的条件是( )A.a,b均为非负数B.a,b同号C.a≥0,b>0 D.ab≥0【答案】D解:根据二次根式的意义,被开方数ab≥0;又根据分式有意义的条件,b≠0.故选D.3.2的值是()A B.3 C.±3 D.9 【答案】B【解析】解:原式=2=34.下列说法中,正确的是()A.无理数就是开方开不尽的数B0,则a≥0C.如果a=b,那么ac=bcD.若ba=1,则a与b互为相反数【答案】C【解析】解:A.无理数是无限不循环小数,包括开方不尽的数,故A错误;B. a+5>0,∴a>﹣5,故B错误;C. 如果a=b,根据等式的性质可得ac=bc,故C项正确;D. ba=1,则a=b且a≠0,故选D错误;故选:C.5.若代数式1x-在实数范围内有意义,则x的取值范围为()A.x>0 B.x≥0C.x≠0D.x≥0且x≠1【答案】D【解析】根据分式有意义的条件和二次根式有意义的条件,可知x-1≠0,x≥0,解得x≥0且x≠1.故选D.6a的取值为()A.0 B.12-C.﹣1 D.1【答案】B≥,=时为最小值. 即:210a+=,∴12 a=-.故选B.7.在平面直角坐标系中,点M(a,b)的坐标满足(a﹣3)20,则点M在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】解:∵(a﹣3)20,∴a=3,b=2,∴点M(3,2),故点M在第一象限.故选:A.8.已知x、y为实数,4,则y x的值等于()A.8 B.4 C.6 D.16【答案】D【解析】∵x﹣2≥0,即x≥2,①x﹣2≥0,即x≤2,②由①②知,x=2;∴y=4,∴y x=42=16.故选:D.940a-=)A B.C D.±【答案】A【解析】40a-=∴b-3=0,a-4=0∴ab=4223333==故选A.10.已知20n是整数,则正整数n的最小值为___【答案】5【解析】∵20=25n n,且20n是整数,∴25n是整数,即5n是完全平方数;∴n的最小正整数值为5.故答案为:5.11.为了简洁、明确的表示一个正数的算术平方根,许多数学家进行了探索,期间经历了400余年,直至1637年法国数学家笛卡儿在他的《几何学》中开始使用“”表示算数平方根.我国使用根号是由李善兰(1811-1882年)译西方数学书时引用的,她在《代数备旨》中把图1所示题目翻译为:22164?a x a x+=则图2所示题目(字母代表正数)翻译为_____________,计算结果为_______________.【答案】()23a+a+3【解析】解:根据题意可知图中的甲代表a,∴图2所示题目(字母代表正数)翻译为()23a+.∵a>0,∴()23+3.a a+=故答案为:()23a+;a+3.12.实数a、b在数轴上的位置如图所示,请化简:|a|﹣2a﹣2b.【解析】解:∵从数轴可知:a <0<b ,∴|a|=|a|﹣|a|﹣|b|=﹣|b|=﹣b .12.已知2(21)0a b -+=4=【答案】6【解析】因为2(21)0a b -+=,根据二次根式和平方的非负性可得21030a b b -+=⎧⎨-=⎩,计算得到53a b =⎧⎨=⎩;因4=,所以64c =,则将53a b =⎧⎨=⎩和64c =。

八年级初二数学 二次根式(讲义及答案)及答案

八年级初二数学 二次根式(讲义及答案)及答案

八年级初二数学 二次根式(讲义及答案)及答案一、选择题1.对于所有实数a ,b ,下列等式总能成立的是( )A .2a b =+ B 22a b =+C a b =+D a b =+2.下列等式正确的是( )A 7=-B 3=C .5D .=3.下列计算正确的是( )A =B 3=C =D .21=4.下列运算中,正确的是( )A =3B .=-1C D .35.下列计算正确的是( )A .+=B .()322326a ba b -=-C .222()a b a b -=-D .2422a ab a a b a -+⋅=-++6.已知12x =⋅,n 是大于1的自然数,那么(n x 的值是( ). A .12007B .12007-C .()112007n- D .()112007n-- 7.若化简1682+-x x -1x -的结果为5-2x ,则x 的取值范围是( ) A .为任意实数B .1≤x≤4C .x≥1D .x≤48.下列计算正确的是( )A =B =C 4=D 3=-9.给出下列化简①()2=2=2=12=,其中正确的是( ) A .①②③④B .①②③C .①②D .③④10.2的结果是( ) A .±3B .﹣3C .3D .911.下列各组二次根式中,能合并的一组是( ) A .1a +和1a - B .3和13C .2a b 和2abD .3和1812.如果实数x ,y 满足23x y xy y =-,那么点(),x y 在( ) A .第一象限 B .第二象限C .第一象限或坐标轴上D .第二象限或坐标轴上二、填空题13.定义:对非负实数x “四舍五入”到个位的值记为()f x z , 即:当n 为非负整数时,如果1122n x n -<+≤,则()f x n =z .如:(0)(0.48)0f f ==z z ,(0.64)(1.49)1f f ==z z ,(4)(3.68)4f f ==z z ,试解决下列问题:①(3)f =z __________;②2(33)f +=z __________; ③222222(11)(22)(22)(33)(33)(44)f f f f f f ++++⋅++⋅++⋅+z z z z z z22(20172017)(20182018)f f +=+⋅+z z __________.14.(1)已知实数a 、b 在数轴上的位置如图所示,化简()222144a a ab b +--+=_____________;(2)已知正整数p ,q 32016p q =()p q ,的个数是_______________;(3)△ABC 中,∠A=50°,高BE 、CF 所在的直线交于点O,∠BOC 的度数__________. 15.()2117932x x x y ---=-,则2x ﹣18y 2=_____.16.)230m m --≤,若整数a 满足52m a +=a =__________.17.若a 、b 、c 均为实数,且a 、b 、c 均不为043252a c b=___________ 181262_____.19.4x -x 的取值范围是_____20.12a 1-能合并成一项,则a =______.三、解答题21.先化简,再求值:212a a -+a =1007. 如图是小亮和小芳的解答过程.(1) 的解法是错误的;(2)错误的原因在于未能正确地运用二次根式的性质: ; (3)先化简,再求值:269a a -+a =﹣2018. 【答案】(1)小亮(22a (a <0)(3)2013. 【解析】试题分析:(12a ,判断出小亮的计算是错误的; (22a 的应用错误;(3)先根据配方法把被开方数配成完全平方,然后根据正确的性质化简,再代入计算即可. 试题解析:(1)小亮 (22a (a <0) (3)原式=()23a -a+2(3-a )=6-a=6-(-2007)=2013.22.计算:(1) 1220555+(2(25326326+-() 【答案】(1) 352) -10 【分析】(1)原式二次根式的乘除法法则进行计算即可得到答案;(1)原式第一项运用二次根式的性质进行化简,第二项运用平方差公式进行化简即可. 【详解】 解:(1) 1220555+=105245555555⨯⨯⨯=45255 =35(2(25326326+-=5+9-24=14-24 =-10.【点睛】此题主要考查了二次根式的化简,熟练掌握二次根式的性质是解答此题的关键.23.先化简再求值:4y x ⎛- ⎝,其中30x -=.【答案】(2x - 【分析】先根据二次根式的混合运算顺序和运算法则化简原式,再利用非负数的性质得出x ,y 的值,继而将x 、y 的值代入计算可得答案. 【详解】解:4y x ⎛- ⎝ ((=-(2x =-∵ 30x - ∴ 3,4x y == 当3,4x y ==时原式(23=-==【点睛】本题主要考查了二次根式的化简求值,解题的关键是掌握非负数的性质和二次根式的混合运算顺序和法则.24.先化简,再求值:a ,其中【答案】2a-1,【分析】先根据二次根式的性质进行化简,再代入求值即可. 【详解】解:1a =-∴原式=1a a --=21a -当1a =-∴原式=(211-=1-【点睛】此题主要考查化简求值,正确理解二次根式的性质是解题关键.25.先化简再求值:(a ﹣22ab b a -)÷22a b a-,其中,b=1.【答案】原式=a ba b-=+【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除法运算,最后将数个代入进行计算即可. 【详解】原式=()()222a ab b aa ab a b -+⨯+-=()()()2·a b a aa b a b -+- =a ba b-+,当,b=1时,原式【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.26.计算(1(2)(()21-【答案】(1)2;(2)24+ 【分析】(1)先将各二次根式化为最简二次根式,再进行合并即可得到答案;(2)原式运用平方差公式和完全平方公式把括号展开后,再合并同类二次根式即可得到答案. 【详解】解:(1=2+=(2-+=2(2)(()21-=22(181)---=452181--+=24+. 【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则和运算顺序是解答此题的关键.27.(1|5-+;(2)已知实数a 、b 、c 满足|3|a +=,求2(b a +的值.【答案】(1)5;(2)4 【分析】(1)先利用二次根式的乘法法则和绝对值的意义计算,再进行回头运算即可; (2)先根据二次根式有意义的条件确定b 的值,再根据非负数的和的意义确定a ,c 的值,然后再计算代数式的值即可. 【详解】解:(15-+5)=+5=+5=(2)由题意可知:5050b b -≥⎧⎨-≥⎩, 解得5b =由此可化简原式得,30a +=30a ∴+=,20c -=3a ∴=-,2c =22((534b a ∴+=--=【点睛】可不是考查了二次根式的混合运算以及二次根式的化简求值,熟练掌握运算法则和运算顺序是解答此题的关键.28.计算:(1 (2)()()2221-【答案】2)1443 【分析】(1)先化成最简二次根式,然后再进行加减运算即可; (2)套用平方差公式和完全平方式进行运算即可. 【详解】解:(1)原式=23223323,(2)原式(34)(12431)1124311443,故答案为:1443. 【点睛】本题考查二次根式的四则运算,熟练掌握二次根式的四则运算是解决本题的关键.29.计算:(1)()22131)()2---+(2【答案】(1)12;(2) 【分析】(1)按照负整数指数幂、0指数幂、乘方的运算法则计算即可; (2)根据二次根式的加减乘除运算法则计算即可. 【详解】(1)解:原式= 9-1+4=12(2) 【点睛】本题考查负整数指数幂、0指数幂、乘方以及二次根式的运算法则,熟练掌握二次根式的化简是关键.30.化简求值:212(1)211x x x x -÷-+++,其中1x =.【解析】分析:先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代入运算即可.详解:原式2112,2111x x x x x x -+⎛⎫=÷- ⎪++++⎝⎭2112,211x x x x x -+-=÷+++()211,11x x x x -+=⋅-+ 1.1x =+当1x =时,113x ==+ 点睛:考查分式的混合运算,掌握运算顺序是解题的关键.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【详解】解:A 、错误,∵2=+a bB 、正确,因为a 2+b 2≥0a 2+b 2;CD =|a +b |,其结果a+b 的符号不能确定. 故选B .2.B解析:B 【分析】根据二次根式的性质求出每个式子的值,再得出选项即可. 【详解】解:AB 3=,故本选项符合题意;C 、5=-,故本选项不符合题意;D 、=-,故本选项不符合题意;故选:B.【点睛】本题考查了二次根式的性质和化简,能熟记二次根式的性质是解此题的关键.3.A解析:A【分析】分别进行二次根式的乘除法、加减法运算,然后选择正确答案.【详解】解:======,原式计算错误;D. 2220=-=,原式计算错误;故应选:A【点睛】本题考查了二次根式的乘除法和加减法,掌握运算法则是解答本题的关键.4.D解析:D【分析】根据二次根式的加减乘除法则逐项判断即可得.【详解】=+=,此项错误A314==-,此项错误B、23===⨯=,此项错误C2428=,此项正确D、3故选:D.【点睛】本题考查了二次根式的加减乘除运算,熟记二次根式的运算法则是解题关键.5.D解析:D【分析】分别运用二次根式、整式的运算、分式的运算法则逐项排除即可.【详解】解:A. =A选项错误;B. ()()()33322363228a ba b a b -=-=-,故B 选项错误;C. 222()2a b a ab b -=-+,故C 选项错误;D. ()()2224222a a a ab a b a a b a a b a +--++⋅=⋅=-++++,故D 选项正确. 故答案为D . 【点睛】本题考查了二次根式、整式的运算、分式的运算,掌握相关运算法则是解答本题的关键.6.C解析:C 【解析】 【分析】令a =112x a a ⎛⎫=- ⎪⎝⎭112a a ⎛⎫=+ ⎪⎝⎭,2007na =,进而得到x【详解】令a =112x a a ⎛⎫=- ⎪⎝⎭112a a ⎛⎫=+ ⎪⎝⎭,2007n a =,∴x 1111122a a a a a ⎛⎫⎛⎫--+=- ⎪ ⎪⎝⎭⎝⎭,∴原式=111()(1)(1)2007n n nn a a -=-=-. 故选C . 【点睛】本题考查了二次根式的混合运算.熟练掌握二次根式混合运算法则是解答本题的关键.7.B解析:B 【解析】 【分析】先把多项式化简为|x-4|-|1-x|,然后根据x 的取值范围分别讨论,求出符合题意的x 的值即可. 【详解】解:原式1x -=|x-4|-|1-x|, 当x≤1时, 此时1-x≥0,x-4<0,∴(4-x )-(1-x )=3,不符合题意, 当1≤x≤4时, 此时1-x≤0,x-4≤0,∴(4-x )-(x-1)=5-2x ,符合题意,此时x-4≥0,1-x<0,∴(x-4)-(x-1)=-3,不符合题意,∴x的取值范围为:1≤x≤4故选B.【点睛】本题主要考查绝对值及二次根式的化简,要注意正负号的变化,分类讨论.8.B解析:B【分析】由二次根式的乘法、除法,二次根式的性质,分别进行判断,即可得到答案.【详解】解:A A错误;B=,故B正确;C==C错误;=,故D错误;D3故选:B.【点睛】本题考查了二次根式的乘法、除法,二次根式的性质,解题的关键是熟练掌握运算法则进行解题.9.C解析:C【分析】根据二次根式的性质逐一进行计算即可求出答案.【详解】①原式=2,故①正确;②原式=2,故②正确;③原式==④原式==,故④错误,故选C.【点睛】本题考查二次根式的性质和化简,熟练掌握二次根式的性质是解题的关键.10.C解析:C【分析】根据二次根式的性质即可求出答案.原式=3,故选C.【点睛】本题考查二次根式的性质,解题的关键是熟练运用二次根式的性质,本题属于基础题型.11.B解析:B【分析】先化简,再根据同类二次根式的定义解答即可.【详解】解:A、是最简二次根式,被开方数不同,不是同类二次根式;B是同类二次根式;3CD故选B.【点睛】本题考查的知识点是同类二次根式的定义,解题关键是熟记同类二次根式的定义.12.D解析:D【分析】先判断出点的横纵坐标的符号,进而判断点所在的象限或坐标轴.【详解】=-∴x、y异号,且y>0,∴x<0,或者x、y中有一个为0或均为0.∴那么点(),x y在第二象限或坐标轴上.故选:D.【点睛】根据二次根式的意义,确定被开方数的取值范围,进而确定a、b的取值范围,从而确定点的坐标位置.二、填空题13.3【解析】1、;2、根据题意,先推导出等于什么,(1)∵,∴,(2)再比较与的大小关系,①当n=0时,;②当为正整数时,∵,∴,∴,综合(1)、(2)可得:,解析:320172018【解析】1、(1.732)2z z f f ==;2、根据题意,先推导出f 等于什么,(1)∵2221142n n n n n ⎛⎫+<++=+ ⎪⎝⎭,12n <+, (2)12n -的大小关系,①当n=012n >-; ②当n 为正整数时,∵2212n n n ⎛⎫+-- ⎪⎝⎭1204n =->, ∴2212n n n ⎛⎫+>- ⎪⎝⎭,12n >-,综合(1)、(2)可得:1122n n -<+,∴f n =z ,∴3f =z .3、∵f n =z ,∴(2017z f +111112233420172018=++++⨯⨯-⨯ 111111112233420172018=-+-+-++- 112018=- 20172018=. 故答案为(1)2;(2)3;(3)20172018. 点睛:(1)解第②小题的关键是应用“完全平方公式”和“作差的方法”分别证明到当n 为非负整数时,1122n n -<+,从而得到f n =z ;(2)解题③的要点是:当n 为正整数时,111(1)1n n n n =-++. 14.(1)2a -2b +1;(2)3;(3)130°或50°.【解析】(1)∵-1<a<0,b>1,∴=|a+1|-|a-2b|=1+a-2b+a=2a-2b+1.(2)∵,∴,p=20解析:(1)2a -2b +1;(2)3;(3)130°或50°.【解析】(1)∵-1<a<0,b>1,=|a+1|-|a-2b|=1+a-2b+a=2a-2b+1.(2)==∴p=14x 3(其中x 为正整数),同理可得:q=14y 2(其中y 为正整数),则x+3y=12(x 、y 为正整数)∴963,,123x x x y y y ===⎧⎧⎧⎨⎨⎨===⎩⎩⎩,∴整数对有(p,q )=(14⨯81,141⨯),或(1436,144)⨯⨯ ,或(149,149⨯⨯)。

八年级初二数学二次根式(讲义及答案)含答案

八年级初二数学二次根式(讲义及答案)含答案

八年级初二数学二次根式(讲义及答案)含答案一、选择题1.,a ==b a 、b 可以表示为( ) A .10a b+ B .10-b aC .10ab D .b a2.下列运算中,正确的是 ( )A . 3B .×=6C . 3D .3.下列各式中,无意义的是( )A B C D .310-4.下列二次根式是最简二次根式的是( )A BCD 5.下列各式是二次根式的是( )A B C D6.m 能取的最小整数值是( ) A .m = 0B .m = 1C .m = 2D .m = 3 7.下列式子一定是二次根式的是 ( )A B C D 8.下列二次根式是最简二次根式的是( )AB C D9.下列各式中,正确的是( )A B .C =D =- 410.当12x +=时,多项式()20193419971994x x --的值为( ).A .1B .1-C .20022D .20012-11.下列运算正确的是( )A =B .(28-=C 12=D 1=12.下列计算正确的是( ) A .235+=B .2332-= C .()222= D .393=二、填空题13.把1m m-根号外的因式移到根号内,得_____________. 14.方程14(1)(1)(2)(8)(9)x x x x x x ++⋅⋅⋅+=+++++的解是______.15.若a 、b 、c 均为实数,且a 、b 、c 均不为0化简43252a cb=___________ 16.将1、2、3、6按右侧方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,则(5,4)与(9,4)表示的两数之积是______.17.已知整数x ,y 满足20172019y x x =+--,则y =__________.18.已知实数m 、n 、p 满足等式33352m n m n m n p m n p -+--+----,则p =__________.19.若0xy >,则二次根式2yx -________. 20.已知23x =243x x --的值为_______.三、解答题21.计算:(18322(2))((25225382+-+. 【答案】(1)52 【分析】(1)先化简二次根式,再合并同类二次根式即可; (2)根据平方差公式化简,再化简、合并同类二次根式即可. 【详解】(1==(2))((222+-+=2223--+ =5-4-3+2 =022.先观察下列等式,再回答问题:=1+1=2;12=2 12;=3+13=313;… (1)根据上面三个等式提供的信息,请猜想第四个等式;(2)请按照上面各等式规律,试写出用 n (n 为正整数)表示的等式,并用所学知识证明.【答案】(1=144+=144;(2=211n n n n++=,证明见解析. 【分析】(1)根据“第一个等式内数字为1,第二个等式内数字为2,第三个等式内数字为3”,=414+=414;(2=n 211n n n++=”,再利用222112n n n n++=+()()开方即可证出结论成立.【详解】(1=1+1=2=212+=212;=313+=313;里面的数字分别为1、2、3,= 144+= 144.(2=1+1=2,=212+=212=313+=313=414+=414= 211n n n n++=.证明:等式左边==n 211n n n++==右边.=n 211n n n++=成立. 【点睛】本题考查了二次根式的性质与化简以及规律型中数的变化类,解题的关键是:(1)猜测出第四个等式中变化的数字为4;(2)找出变化规律=n 211n n n++=”.解决该题型题目时,根据数值的变化找出变化规律是关键.23.阅读下面的解答过程,然后作答:m 和n ,使m 2+n 2=a 且,则a 可变为m 2+n 2+2mn ,即变成(m +n )2例如:∵=)2+)2=)2∴请你仿照上例将下列各式化简(12【答案】(1)2-【分析】参照范例中的方法进行解答即可. 【详解】解:(1)∵22241(1+=+=,1=(2)∵2227-=-=,∴==24.先化简再求值:4y x ⎛- ⎝,其中30x -=.【答案】(2x - 【分析】先根据二次根式的混合运算顺序和运算法则化简原式,再利用非负数的性质得出x ,y 的值,继而将x 、y 的值代入计算可得答案. 【详解】解:4y x ⎛- ⎝ ((=-(2x =-∵ 30x - ∴ 3,4x y == 当3,4x y ==时原式(23=-==【点睛】本题主要考查了二次根式的化简求值,解题的关键是掌握非负数的性质和二次根式的混合运算顺序和法则.25.(1)计算:(2)先化简,再求值:(()8a a a a +--,其中14a =.【答案】(1)2)82-a ,【分析】(1)分别根据二次根式的除法法则、二次根式的性质、二次根式的乘法法则计算和化简各项,再合并同类二次根式即可;(2)分别根据平方差公式和单项式乘以多项式的法则计算各项,再把a 的值代入化简后的式子计算即可. 【详解】(1)==;(2)(()8a a a a +--2228a a a =--+82a =-,当14a =时,原式1824⎫=⨯-=⎪⎭.【点睛】本题考查了整式的乘法和二次根式的混合运算,属于常考题型,熟练掌握基本知识是解题的关键.26.先观察下列等式,再回答下列问题:111111112=+-=+;111112216=+-=+1111133112=+-=+(1) (2)请你按照上面各等式反映的规律,用含n 的等式表示(n 为正整数).【答案】(1)1120(2)()111n n ++(n 为正整数) 【解析】试题分析:(1)从三个式子中可以发现,第一个加数都是1,第二个加数是个分数,设分母为n ,第三个分数的分母就是n+1,结果是一个带分数,整数部分是1,分数部分的分子也是1,分母是前项分数的分母的积.所以由此可计算给的式子;(2)根据(1)找的规律写出表示这个规律的式子.试题解析:(1)=1+14−141+=1120,1120(2)1 n −1 n 1+=1+()1n n 1+ (n 为正整数).a =,也考查了二次根式的运算.此题是一道阅读题目,通过阅读找出题目隐含的条件.总结:找规律的题目,都要通过仔细观察找出和数之间的关系,并用关系式表示出来.27.先化简,再求值:2222212⎛⎫----÷ ⎪-+⎝⎭x y x y x x x xy y,其中x y ==. 【答案】原式x yx-=-,把x y ==代入得,原式1=-. 【详解】试题分析:先将括号里面进行通分,再将能分解因式的分解因式,约分化简即可. 试题解析:2222212⎛⎫----÷ ⎪-+⎝⎭x y x y x x x xy y ()()()222=x y x y x x xx x x y x y -⎛⎫---⋅ ⎪+-⎝⎭=y x x y x x y ---⋅+ x yx-=-把x y ==代入得:原式1==-+考点:分式的化简求值.28.观察下列各式.====…… 根据上述规律回答下列问题. (1)接着完成第⑤个等式: _____;(2)请用含(1)n n ≥的式子写出你发现的规律; (3)证明(2)中的结论. 【答案】(1=2(n =+3)见解析 【分析】(1)当n=5= (2(n =+ (3)直接根据二次根式的化简即可证明.【详解】解:(1=(2(n =+(3=(n ==+【点睛】此题主要考查探索数与式的规律,熟练发现规律是解题关键.29.已知x²+2xy+y²的值. 【答案】16 【解析】分析:(1)根据已知条件先计算出x+y=4,再利用完全平方公式得到x²+2xy+y²=(x+y )²,然后利用整体代入的方法计算. 本题解析: ∵x² +2xy+y² =(x+y)²,∴当∴x²+2xy+y²=(x+y)²=(2−=16.30.(1)计算)(2201113-⎛⎫--•- ⎪⎝⎭(2)已知,,a b c 为实数且2c =2c ab-的值【答案】(1)13;(2)12-【分析】(1)利用完全平方公式、负整数指数幂、零指数幂分别计算再合并即可; (2)先依据二次根式有意义的条件,求得a 、b 、c 的值,然后再代入计算即可. 【详解】(1))(2201113-⎛⎫--•- ⎪⎝⎭31=+⨯=4+9=13;(2)根据二次根式有意义的条件可得:∵()2303010a a b ⎧-≥⎪⎪-≥⎨⎪-+≥⎪⎩, ∴3a =,1b =-,∴2c =∴(()2223112c ab -=-⨯-=-【点睛】本题主要考查了二次根式的混合运算,二次根式有意义的条件以及二次根式的化简求值,熟练掌握二次根式有意义的条件是解题的关键.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】化简即可. 【详解】10ab. 故选C . 【点睛】的形式. 2.C解析:C 【分析】根据二次根式的加减法对A 、D 进行判断;根据二次根式的乘法法则对B 进行判断;根据二次根式的除法法则对C 进行判断. 【详解】A 、A 选项错误;B 、×=12,所以B 选项错误;C 、3,所以C 选项正确;D 、,不能合并,所以D 选项错误; 故选:C . 【点睛】本题考查了二次根式的混合运算,正确掌握运算法则是解题关键.3.A解析:A 【分析】直接利用二次根式有意义的条件、负整数指数幂的性质分析得出答案. 【详解】AB ,有意义,不合题意;CD 、33110=10-,有意义,不合题意; 故选A. 【点睛】此题主要考查了二次根式有意义的条件、负整数指数幂的性质,正确把握二次根式的定义是解题关键.4.B解析:B 【分析】直接利用最简二次根式的定义分析得出答案. 【详解】解:ABC 0.1,故此选项错误;D 故选:A . 【点睛】此题主要考查了最简二次根式的定义,正确把握定义是解题关键.5.A解析:A 【分析】根据二次根式定义和有意义的条件:被开方数是非负数,即可判断.【详解】解:A、符合二次根式有意义条件,符合题意;B、-1<0B选项不符合题意;C、是三次根式,所以C选项不符合题意;D、π-4<0D选项不符合题意.故选:A.【点睛】a≥0.6.B解析:B【分析】根据被开方数大于等于0列式计算即可得解.【详解】310m-≥,解得13 m≥,所以,m能取的最小整数值是1.故选:B.【点睛】本题考查了二次根式的意义和性质,性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.7.A解析:A【分析】根据二次根式的定义,直接判断得结论.【详解】A A正确;B、0a<B错误;C是三次根式,故C错误;D、0a<D错误;故选:A.【点睛】a≥)是二次根式,注意二次根式的被开方数是非负数.8.A解析:A【分析】根据最简二次根式的定义即可得.【详解】A 是最简二次根式,此项符合题意B =C 、当0x <D =不是最简二次根式,此项不符题意故选:A .【点睛】本题考查了最简二次根式的定义,熟记定义是解题关键.9.C解析:C【分析】根据算术平方根与平方根的定义、二次根式的加法与乘除法逐项判断即可.【详解】A 4=,此项错误B 、4=±,此项错误C2==,此项正确D == 故选:C .【点睛】本题考查了算术平方根与平方根的定义、二次根式的加法与乘除法,掌握二次根式的运算法则是解题关键.10.B解析:B【解析】【分析】由原式得()2211994x -=,得244+11994x x -=,原式变形后再将244+11994x x -=代和可得出答案.【详解】∵x =, ()2211994x ∴-=,即24419930x x --=,()() 322 41997199444199344199311 x x x x x x x∴--=--+---=-.∴原式()201911=-=-.【点睛】本题难度较大,需要对要求的式子进行变形,学会转化.11.B解析:B【分析】根据二次根式的性质及运算法则依次计算各项后即可解答.【详解】选项A A错误;选项B,(2428-=⨯=,选项B正确;选项C14==,选项C错误;选项D1,选项D错误.综上,符合题意的只有选项B.故选B.【点睛】本题考查了二次根式的性质及运算法则,熟练运用二次根式的性质及运算法则是解决问题的关键.12.C解析:C【分析】根据立方根、二次根式的加减乘除运算法则计算.【详解】A、非同类二次根式,不能合并,故错误;B、=C、22=,正确;D故选C.【点睛】本题考查二次根式、立方根的运算法则,熟练掌握基本法则是关键.二、填空题13.-【分析】根据二次根式的性质,可得答案【详解】由题意可得:,即∴故答案为【点睛】本题考查了二次根式的性质与化简,利用了二次根式的性质.解答关键在于根据二次根式的性质确定解析:【解析】【分析】根据二次根式的性质,可得答案【详解】由题意可得:1m,即0m∴11mm m mm mm故答案为【点睛】本题考查了二次根式的性质与化简,利用了二次根式的性质.解答关键在于根据二次根式的性质确定m的取值范围.14.9【解析】【分析】设y=,由可将原方程进行化简,解化简后的方程即可求得答案.【详解】设y=,则原方程变形为,∴,即,∴4y+36-4y=y(y+9),即y2+9y-36=0,∴解析:9【分析】设()11111y y y y =-++可将原方程进行化简,解化简后的方程即可求得答案. 【详解】设则原方程变形为()()()()()1111112894y y y y y y ++=+++++, ∴1111111112894y y y y y y -+-++-=+++++, 即11194y y -=+, ∴4y+36-4y=y(y+9),即y 2+9y-36=0,∴y=-12或y=3, ∵, ∴,∴x=9,故答案为:9.【点睛】本题考查了解无理方程,解题的关键是利用换元法,还要注意()11111y y y y =-++的应用. 15.【解析】根据题意,由二次根式的性质,可知a 的值与计算没影响,c≥0,b≠0,因此可分为:当b >0时,=;当b <0时,=.故答案为:.解析:00b b 当时当时>⎨⎪<⎪⎩【解析】根据题意,由二次根式的性质,可知a 的值与计算没影响,c≥0,b≠0,因此可分为:当b >0=当b<0=故答案为:22abbb⎧>⎪⎪⎨⎪<⎪⎩当时当时.16.【解析】试题解析:(5,4)表示第5排从左向右第4个数是:,(9,4)表示第9排从左向右第4个数,可以看出奇数排最中间的一个数都是1,第9排是奇数排,最中间的也就是这排的第5个数是1,那么第解析:【解析】试题解析:(5,4)表示第5排从左向右第4,(9,4)表示第9排从左向右第4个数,可以看出奇数排最中间的一个数都是1,第9排是奇数排,最中间的也就是这排的第5个数是1,那么第4,∴(5,4)与(9,4)故答案为17.2018【解析】试题解析:,令,,显然,∴,∴,∵与奇偶数相同,∴,∴,∴.故答案为:2018. 解析:2018【解析】试题解析:y===令a =b =显然0a b >≥,∴224036a b -=,∴()()4036a b a b +-=,∵()a b +与()-a b 奇偶数相同,∴20182a b a b +=⎧⎨-=⎩, ∴10101008a b =⎧⎨=⎩, ∴2018y a b =+=.故答案为:2018.18.5【解析】试题解析:由题可知,∴,∴,∴,①②得,,解方程组得,∴.故答案为:5.解析:5【解析】试题解析:由题可知3030m n m n -+≥⎧⎨--≥⎩, ∴3m n +=,0=,∴35200m n p m n p +--=⎧⎨--=⎩①②, ①-②得2620m n +-=,31m n +=,解方程组331m n m n +=⎧⎨+=⎩得41m n =⎧⎨=-⎩, ∴4(1)5p m n =-=--=.故答案为:5.19.-【分析】首先判断出x ,y 的符号,再利用二次根式的性质化简求出答案.【详解】解:∵,且有意义,∴,∴.故答案为.【点睛】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是 解析:【分析】首先判断出x ,y 的符号,再利用二次根式的性质化简求出答案.【详解】解:∵0xy > ∴00x y <,<,∴x ==.故答案为.【点睛】 此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.即(0)(0)a a a a a ≥⎧==⎨-<⎩=(a ≥0,b >0). 20.-4【分析】把代入计算即可求解.【详解】解:当时,=-4故答案为:-4【点睛】本题考查了求代数式的值,二次根式混合运算,本题直接代入求值即可,能正确进行二次根式的混合运算是解题解析:-4【分析】把2x =243x x --计算即可求解.【详解】解:当2x =243x x --((22423=---4383=--+=-4故答案为:-4【点睛】本题考查了求代数式的值,二次根式混合运算,本题直接代入求值即可,能正确进行二次根式的混合运算是解题关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题1.下列式子为最简二次根式的是( )A B C D 2.下列运算中,正确的是 ( )A . 3B .×=6C . 3D .3.已知2a =,2b =的值为( )A .4B .5C .6D .74. )A .-3B .3或-3C .9D .35.在函数y=3x -中,自变量x 的取值范围是( ) A .x≥-2且x≠3B .x≤2且x≠3C .x≠3D .x≤-2 6.下列二次根式中,是最简二次根式的是( ).A .BCD 7.下列各式计算正确的是( )A +=B .26=(C 4=D =8.下列二次根式中是最简二次根式的是( )A B CD 9.下列运算中正确的是( )A .= B===C 3=== D 1==10.已知,5x y +=-,3xy =则的结果是( )A .B .-C .D .-二、填空题11.3=,且01x <<=______.12.实数a ,b +|a +b |的结果是_____.13.已知()230m m --≤,若整数a 满足52m a +=,则a =__________.14.已知72x =-,a 是x 的整数部分,b 是x 的小数部分,则a-b=_______ 15.已知m=1+ 2,n=1﹣2,则代数式22m n mn +-的值________.16.若3的整数部分是a ,小数部分是b ,则3a b -=______.17.实数a 、b 在数轴上的位置如图所示,则化简()222a b a b -+-=_____.18.4x -x 的取值范围是_____19.已知23x =243x x --的值为_______.20.12a 1-能合并成一项,则a =______.三、解答题21.计算:22322343341009999100+++++【答案】910【解析】 【分析】 先对代数式的每一部分分母有理化,然后再进行运算【详解】 22322343341009999100++++++ =2232234334100999910026129900-++++ =223349910012233499100-+-+-++- =1001100-=1110-=910【点睛】本题看似计算繁杂,但只要找到分母有理化这个突破口,就会化难为易。

22.先化简,再求值:a+212a a -+,其中a =1007.如图是小亮和小芳的解答过程.(1) 的解法是错误的;(2)错误的原因在于未能正确地运用二次根式的性质: ;(3)先化简,再求值:269a a -+a =﹣2018.【答案】(1)小亮(22a (a <0)(3)2013.【解析】试题分析:(12a ,判断出小亮的计算是错误的;(22a 的应用错误; (3)先根据配方法把被开方数配成完全平方,然后根据正确的性质化简,再代入计算即可. 试题解析:(1)小亮(22a (a <0)(3)原式=()23a -a+2(3-a )=6-a=6-(-2007)=2013.23.(1)计算:1153208105 (2)先化简,再求值:(()228a a a a +--,其中134a =. 【答案】(1)5-2)82-a ,3【分析】(1)分别根据二次根式的除法法则、二次根式的性质、二次根式的乘法法则计算和化简各项,再合并同类二次根式即可; (2)分别根据平方差公式和单项式乘以多项式的法则计算各项,再把a 的值代入化简后的式子计算即可.【详解】(1)1415320581054525545=5=-;(2)(()8a a a a +--2228a a a =--+82a =-,当14a =时,原式1824⎫=⨯-=⎪⎭. 【点睛】本题考查了整式的乘法和二次根式的混合运算,属于常考题型,熟练掌握基本知识是解题的关键.24.计算:(1)012⎛⎫ ⎪⎝⎭(2)(4【答案】(1)-5;(2)9【分析】(1)第一项利用算术平方根的定义计算,后一项利用零指数幂法则计算,即可得到结果; (2)利用平方差公式计算即可.【详解】(1)012⎛⎫ ⎪⎝⎭41=--,5=-;(2)(4167=-9=.【点睛】本题考查了二次根式的混合运算以及零指数幂,熟练掌握平方差公式是解题的关键.25.计算下列各题(1)⎛÷ ⎝(2)2-【答案】(1)1;(2).【分析】(1)先把二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算即可;(2)利用完全平方公式和平方差公式展开,然后再进行合并即可.【详解】(1)原式=1;(2)原式+2).【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式混合运算的运算顺序以及运算法则是解题的关键.26.先化简,再求值:2222212⎛⎫----÷ ⎪-+⎝⎭x y x y x x x xy y,其中x y ==. 【答案】原式x y x-=-,把x y ==代入得,原式1=-. 【详解】试题分析:先将括号里面进行通分,再将能分解因式的分解因式,约分化简即可. 试题解析: 2222212⎛⎫----÷ ⎪-+⎝⎭x y x y x x x xy y ()()()222=x y x y x x x x x x y x y -⎛⎫---⋅ ⎪+-⎝⎭ =y x x y x x y---⋅+ x y x-=-把x y ==代入得:原式1==-+考点:分式的化简求值.27.(1)已知a 2+b 2=6,ab =1,求a ﹣b 的值;(2)已知b =,求a 2+b 2的值. 【答案】(1)±2;(2)2. 【分析】(1)先根据完全平方公式进行变形,再代入求出即可;(2)先分母有理化,再根据完全平方公式和平方差公式即可求解.【详解】(1)由a 2+b 2=6,ab=1,得a 2+b 2-2ab=4,(a-b )2=4,a-b=±2.(2)a ===12b ===, 2222()22312a b a b ab +=+-=-=-=⎝⎭ 【点睛】本题考查了分母有理化、完全平方公式的应用,能灵活运用公式进行变形是解此题的关键.28.计算:0(3)|1|π-+.【答案】【分析】根据二次根式的意义和性质以及零次幂的定义可以得到解答.【详解】解:原式11=+=【点睛】本题考查实数的运算,熟练掌握二次根式的运算和零次幂的意义是解题关键.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.【详解】AB |a |,可以化简,故不是最简二次根式;C =D =,可以化简,故不是最简二次根式; 故选:A .【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.2.C解析:C【分析】根据二次根式的加减法对A 、D 进行判断;根据二次根式的乘法法则对B 进行判断;根据二次根式的除法法则对C 进行判断.【详解】A 、A 选项错误;B 、×=12,所以B 选项错误;C 、3,所以C 选项正确;D 、,不能合并,所以D 选项错误;故选:C .【点睛】本题考查了二次根式的混合运算,正确掌握运算法则是解题关键.3.B解析:B【分析】根据二次根式的混合运算和完全平方公式进行计算,即可得到结果.【详解】解:∵2a =,2b =,∴227a b ++2252527 554547454 25= ∴255【点睛】本题主要考查了二次根式的混合运算和完全平方公式,熟悉相关运算法则是解题的关键4.D解析:D【分析】根据二次根式的性质进行计算即可.【详解】|3|3=.故选:D.【点睛】(0)0(0)(0)a aa aa a><⎧⎪===⎨⎪-⎩.5.A解析:A【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,列不等式组求解.【详解】解:根据题意,有2030xx+≥⎧⎨-≠⎩,解得:x≥-2且x≠3;故选:A.【点睛】当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数为非负数.6.A解析:A【详解】根据最简二次根式的意义,可知=22=.故选A.7.D解析:D根据二次根式的运算法则一一判断即可.【详解】AB 、错误,212=(;C ==D ==故选:D .【点睛】本题考查二次根式的运算,解题的关键是熟练掌握二次根式的加减乘除运算法则,属于中考常考题型. 8.A解析:A【分析】根据最简二次根式的定义判断即可.【详解】A 是最简二次公式,故本选项正确;BCD =故选A .【点睛】本题考查了最简二次根式,掌握最简二次根式的定义是解题的关键.9.B解析:B【分析】根据二次根式的乘除法则求出每个式子的值,再判断即可.【详解】解: A. 67=⨯==42,故本选项不符合题意;===,故本选项,符合题意;===3,故本选项不符合题意;D. ==3,故本选项不符合题意;故选B .本题考查二次根式的性质和二次根式的乘除法则,能灵活运用二次根式的乘除法则进行计算是解题关键.10.B解析:B【分析】由x+y=-5,xy=3可得到x<0,y<0,再利用二次根式的性质化简得到原式==-,然后把xy=3代入计算即可.【详解】∵x+y=−5,xy=3,∴x<0,y<0,∴原式===-(x<0,y<0),当xy=3时,原式=-故选B.【点睛】此题考查二次根式的化简求值,解题关键在于先化简.二、填空题11..【分析】利用题目给的求出,再把它们相乘得到,再对原式进行变形凑出的形式进行计算.【详解】∵,∴,∴,∴,∵,∴,∴,∴原式.故答案是:.【点睛】本题考查二次根式的运.【分析】,再把它们相乘得到1xx-,再对原式进行变形凑出1xx-的形式进行计算.【详解】3=,∴221239xx=++==,∴17xx+=,∴212725xx=-+=-=,∵01x<<,=,∴1xx=-=-∴原式====.故答案是:12.【点睛】本题考查二次根式的运算和乘法公式的应用,解题的关键是熟练运用乘法公式对式子进行巧妙运算.12.3b【分析】先判断a,b的取值范围,并分别判断a-b,a+b的符号,再根据二次根式的性质和绝对值的性质化简,计算即可求解.解:由数轴可知:b >0,a ﹣b <0,a+b <0,∴原式=|解析:3b【分析】先判断a ,b 的取值范围,并分别判断a-b ,a+b 的符号,再根据二次根式的性质和绝对值的性质化简,计算即可求解.【详解】解:由数轴可知:b >0,a ﹣b <0,a +b <0,∴原式=|b |+|a ﹣b |﹣|a +b |=b ﹣(a ﹣b )+(a +b )=b ﹣a +b +a +b=3b ,故答案为:3b【点睛】a =和绝对值的性质是解题的关键.13.【分析】先根据确定m 的取值范围,再根据,推出,最后利用来确定a 的取值范围.【详解】解:为整数为故答案为:5.【点睛】本题考查的知识点是二次根式以及估算无理数的大小,利用解析:5【分析】)30m -≤确定m 的取值范围,再根据m a +=32a ≤≤,最后利用78<<来确定a 的取值范围.解:()230m m --≤23m ∴≤≤m a +=a m ∴=32a ∴≤≤7528<<46a ∴<<a 为整数a ∴为5故答案为:5.【点睛】本题考查的知识点是二次根式以及估算无理数的大小,利用“逼近法”得出围是解此题的关键.14.【分析】先把x 分母有理化求出x= ,求出a 、b 的值,再代入求出结果即可.【详解】∵∴∴∴【点睛】本题考查了分母有理化和估算无理数的大小的应用,解此题的关键是求a 、b 的值.解析:6【分析】先把x 分母有理化求出2 ,求出a 、b 的值,再代入求出结果即可.【详解】2x === ∵23<<∴425<<∴4,242a b ==-=∴42)6a b -=-=【点睛】本题考查了分母有理化和估算无理数的大小的应用,解此题的关键是求a 、b 的值.15.【解析】根据题意,把被开方数配方为完全平方,然后代入求解,可得====. 故答案是:.【解析】根据题意,把被开方数配方为完全平方,然后代入求解,可得.16.【详解】若的整数部分为a ,小数部分为b ,∴a=1,b=,∴a-b==1.故答案为1.解析:【详解】a ,小数部分为b ,∴a =1,b1,∴-b 1)=1.故答案为1.17.﹣2a【分析】首先根据实数a 、b 在数轴上的位置确定a 、b 的正负,然后利用二次根式的性质化简,最后合并同类项即可求解.【详解】依题意得:a <0<b ,|a|<|b|,∴=-a-b+b-a=-解析:﹣2a【分析】首先根据实数a 、b 在数轴上的位置确定a 、b 的正负,然后利用二次根式的性质化简,最后合并同类项即可求解.【详解】依题意得:a <0<b ,|a|<|b|,.故答案为-2a .【点睛】 此题主要考查了二次根式的性质与化简,其中正确利用数轴的已知条件化简是解题的关键,同时也注意处理符号问题.18.x≥4【解析】试题分析:根据算术平方根的意义,可知其被开方数为非负数,因此可得x-4≥0,解得x≥4.故答案为x≥4.点睛:此题主要考查了平方根的意义,解题时要注意被开方数为非负数的条件,然解析:x≥4【解析】试题分析:根据算术平方根的意义,可知其被开方数为非负数,因此可得x-4≥0,解得x≥4. 故答案为x≥4.点睛:此题主要考查了平方根的意义,解题时要注意被开方数为非负数的条件,然后列不等式求解即可,是一个中考常考的简单题.19.-4【分析】把代入计算即可求解.【详解】解:当时,=-4故答案为:-4【点睛】本题考查了求代数式的值,二次根式混合运算,本题直接代入求值即可,能正确进行二次根式的混合运算是解题解析:-4【分析】把2x =243x x --计算即可求解.【详解】解:当2x =243--x x((2=---2423=--+4383=-4故答案为:-4【点睛】本题考查了求代数式的值,二次根式混合运算,本题直接代入求值即可,能正确进行二次根式的混合运算是解题关键.20.4【分析】根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a的方程,根据解方程,可得答案.【详解】解:=2,由最简二次根式与能合并成一项,得a-1=3.解解析:4【分析】根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a的方程,根据解方程,可得答案.【详解】能合并成一项,得a-1=3.解得a=4.故答案为:4.【点睛】本题考查同类二次根式和最简二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。

相关文档
最新文档