胶体与界面化学

合集下载

胶体与界面化学mooc

胶体与界面化学mooc

胶体与界面化学mooc胶体与界面化学MOOC胶体与界面化学是化学科学中的一个重要分支,研究物质的界面现象及其背后的胶体行为。

为了方便学习和研究这一领域的知识,胶体与界面化学MOOC应运而生。

本文将介绍胶体与界面化学MOOC的内容和意义。

一、胶体与界面化学的基本概念1. 胶体:胶体是由粒径在1纳米至1微米之间的分散相颗粒悬浮在另一种物质中形成的系统。

胶体具有特殊的物理和化学性质,广泛应用于生物、医药、材料等领域。

2. 界面:界面是两相系统的分界面,如液体与气体的界面、液体与固体的界面等。

界面上的现象和行为对于理解和控制物质的性质具有重要意义。

二、胶体与界面化学MOOC的内容1. 胶体的基本原理:介绍胶体的定义、性质和分类,以及胶体稳定性的影响因素。

2. 胶体的制备与表征:介绍常用的胶体制备方法,如凝胶法、乳化法等,以及胶体的表征方法,如粒径分析、表面电荷测定等。

3. 胶体的动力学:介绍胶体的运动与聚集行为,以及对胶体稳定性的影响。

4. 界面现象与表面活性剂:介绍界面现象的基本原理和表面活性剂的作用机制,以及表面活性剂在胶体与界面化学中的应用。

5. 胶体与生物界面化学:介绍胶体在生物体系中的应用及其相关的界面化学现象,如生物膜的结构和功能等。

6. 胶体与环境界面化学:介绍胶体在环境领域中的应用及其相关的界面化学现象,如水污染的防治等。

三、胶体与界面化学MOOC的意义1. 提供系统的学习资源:胶体与界面化学MOOC为学习者提供了系统、全面的学习资源,帮助学习者深入理解胶体与界面化学的基本原理和应用。

2. 促进交流与合作:通过MOOC平台,学习者可以与全国乃至全球的学习者进行交流和讨论,促进学科交叉与合作。

3. 推动科学研究与应用:胶体与界面化学MOOC将促进科学研究的发展,推动胶体与界面化学的应用于生物、医药、材料等领域。

胶体与界面化学MOOC是一门重要的学习资源,通过学习这门课程,我们可以深入了解胶体与界面化学的基本概念、原理和应用,促进学科交叉与合作,推动科学研究的发展和应用的推广。

界面化学与胶体科学

界面化学与胶体科学

界面化学与胶体科学界面化学与胶体科学是一门研究物质在界面上行为的学科,它广泛应用于化学、材料科学、生物技术等领域。

本文将介绍界面化学与胶体科学的基本概念、研究内容和应用前景。

一、界面化学的基本概念界面化学是研究物质在两相界面上相互作用和传递的学科。

在界面上,不同相的物质会发生各种各样的相互作用,如分子间的吸附、扩散、电荷转移等,这些过程决定了物质在界面上的性质。

界面化学研究的对象包括气液、液液、固液等各种界面。

二、胶体科学的基本概念胶体科学研究的是胶体系统,即由两种或多种物质组成的具有连续介质性质的复相系统。

胶体系统的一个重要特点是存在着分子大小在1纳米到1微米范围内的颗粒。

胶体科学主要研究胶体颗粒的形成、性质和应用。

三、界面化学与胶体科学的关系界面化学和胶体科学在很大程度上是相互关联的。

在胶体系统中,胶体颗粒会与界面相互作用,界面化学的理论和方法可以解释胶体系统中的界面现象;而界面化学的研究成果也为胶体科学提供了理论基础和实验手段。

可以说,界面化学为胶体科学提供了基本的原理和方法。

四、界面化学与胶体科学的研究内容界面化学与胶体科学的研究内容包括以下几个方面:1. 界面活性剂:界面活性剂是一类能够在两相界面上降低表面张力的物质,常见的有表面活性剂、胶体活性剂等。

界面活性剂的分子结构和特性对其在胶体系统中的应用起着重要的影响。

2. 胶体颗粒的合成和表征:胶体颗粒的形成方法多种多样,包括化学合成、物理法合成等。

同时,通过各种手段对胶体颗粒进行表征,如粒径分布、形态特征等,可以了解其性质和应用潜力。

3. 界面现象的研究:界面现象是界面化学与胶体科学的核心内容之一。

界面上的吸附、扩散、分离等过程都是界面现象,研究这些现象可以揭示胶体系统的宏观性质。

4. 胶体的应用:胶体科学的研究成果在材料科学、化学、生物技术等领域具有广泛的应用前景。

例如,通过调控胶体颗粒的形态和结构,可以制备新型的材料,如纳米颗粒、胶体晶体等。

胶体与界面化学研究及其应用

胶体与界面化学研究及其应用

胶体与界面化学研究及其应用第一章胶体与界面化学的基本概念胶体是一种特殊的物质形态,是指颗粒直径在1nm-1μm之间的非晶态或部分结晶态物质。

其产生和存在于两相界面上,包括固、液、气和液、液、气等多种系统。

界面化学是研究界面现象和过程的一门学科。

它涉及到固液、液液、气液、气固、固固等各种不同相邻的界面。

胶体与界面化学研究的目的在于深入探究胶体与界面现象与过程,以及在不同领域中的应用。

第二章胶体与界面化学的研究方法胶体与界面化学研究的方法主要包括理论计算、实验表征及应用研究三个方面。

理论计算:该方法通过数学建模,模拟不同物质在界面现象过程中的动态过程,并通过理论计算得出不同物质在不同环境下的相关参数;比如浓度,分子量等。

实验表征:该方法主要采用物理化学方法,探索材料的物理化学性质,并进行表征,包括粒径、分子量、表面性质、热力学性质及电化学特性等。

应用研究:该方法将理论模型和实验分析结合起来,研究不同胶体和界面现象的应用性能,如制备高效催化剂、改善溶剂的分离性能、提高涂层的耐腐蚀性能和实现生物相容性等。

第三章胶体与界面化学的应用举例汽车涂料:道路环境中酸雾和紫外线较强,需要涂料有良好的耐腐蚀性能和耐候性能。

胶体与界面化学的研究通过合成自组装的高分子微球涂层材料,提高了涂层的耐腐蚀性能和抗紫外线能力,延长了涂层的使用寿命。

化妆品:胶体在化妆品制造中扮演着重要的角色。

聚集态混悬液体系(如奶液、药浆等)需要胶体高效稳定剂来增加产品的保质期和稳定性。

生物医学:胶体与界面化学在生物医学领域的应用十分广泛。

例如,通过表面修饰的胶体颗粒制备功能性纳米材料,实现更高效的生物分子诊断与治疗;通过自组装胶体模板方法,制备不同形状和大小的胶体粒子,探究其在生物医学中的应用潜力。

能源:胶体和界面化学在生产和使用清洁能源的过程中也具有重要的应用。

例如,通过制备多孔性高分子材料,实现高效的催化能源转换,探索清洁能源的可行性。

第四章结论胶体与界面化学是一门重要的跨学科研究领域,其广泛的应用为我们带来了许多好处。

胶体与界面化学

胶体与界面化学
ห้องสมุดไป่ตู้
34.高分子絮凝剂的特点:1)加入量少时絮凝,量多时保护,与无机絮凝剂相反;2)相 对分子量愈大愈好,但如大到不溶于水,则效果变差;3)水溶性高分子带电,与颗粒静 电相吸,絮凝好;4)受PH值影响大;5)电解质帮助吸附。 35.架桥理论:有利于吸附的因素,有利于絮凝;当高分子浓度高时,高分子将每个颗粒 包住,破坏架桥,使颗粒变得稳定。 36.高分子的空位絮凝理论:高分子不被颗粒吸附时,颗粒之间产生吸引力,使颗粒产生 絮凝,称为高分子的空间絮凝理论。 37.快速凝结:相当于化学上的活化能为零的反应,凝结速度完全由扩散动力学控制。 38.临界凝结浓度ccc:把体系带入快速凝结方式所需的电解质浓度。主要由反粒子的化合 价决定,与化合价的六次方成反比。 39.DLVO理论:溶胶粒子间存在的相互吸引力和相互排斥力是决定胶体溶液稳定性的因素。 40.胶体的稳定性取决于体系相互作用能量曲线的有效形式,即吸引能和排斥能两相之和 与粒子分离距离的函数。 41.表面活性剂的两个特点(性质):①表面活性剂吸附在表面上具有改变表面张力的能 力②当其浓度超过一定值时,表面活性剂在体相溶液中会形成各种有序聚集体,从而使溶 液表现出一系列的功能性质。 42.表面活性剂定义:他们有聚集于界面的特别趋向,或者在非常低的物质的量的浓度下 在溶液中形成胶体凝聚。 43.亲水亲油平衡值(HLB)指表面活性剂分子中亲水基团和亲油基团的大小和长度的平衡。 即表面活性剂分子中一个亲水基团的亲水能力对亲油基团的亲油能力的平衡关系。(低亲 油强) 44.表面活性剂的溶解度性质随憎水尾链长度、端基结构、反粒子价数和溶液环境变化而 变化。 45.Krafft温度:离子型表面活性剂在低温时溶解度较低,随着稳定升高其溶解度缓慢增加。 当达到某一温度后其溶解度迅速增加,在溶解度-温度曲线上出现转折。

胶体与界面化学

胶体与界面化学

第一章 胶体和界面简介
❖因而许多人把这一年视为胶体化学正式成为一门 独立学科的一年。接着Freundlich(弗罗因德利希) 和Zsigmondy(席格蒙迪)先后出版了他们的名著 《毛细管化学》(1909)和《胶体化学》(1902)。
1915年Wolfgang Ostwald称胶体和界面科学内容
为 “被忽视尺寸的世界”。是一种边缘科学的领域
第一章 胶界普遍存在的现象。二者密不可分。 因此对胶体和界面现象的研究是物理化学基本原 理的拓展和应用。从历史角度看,界面化学是胶 体化学的一个最重要的分支,随着科学的发展, 现今界面化学已独立成一门科学,有关“界面现 象”或“胶体与界面现象”的专著在国内外已有 多种版本。本课程主要介绍与界面现象和胶体有 关的物理化学原理及应用。它包括各种相界面和 表面活性剂胶体的相关特性和理论。
这些成品及其制作过程都与胶体化学密切相关。 1809年,俄国化学家Scheele(舍勒)发现了土粒的 电泳现象;1829年英国植物学家Brown(布朗)观 察到花粉的布朗运动。此后,许多人相继制备了各 种溶胶,并研究了它们的性质。
胶体化学作为一门学科来说,它的历史比较一致的 看法是从1861年开始的,创始人是英国科学家
胶体与界面化学
第一章 胶体和界面简介
一、胶体和界面化学的发展简史 胶体化学是物理化学的一部分,和物理化学又紧 密相关,近年来发展成为一门专门的学科,与生 产和生活实际联系之紧密和应用之广泛是化学学 科中任一分支不能比拟的。北京大学的戴乐荣专 门写文章论述了胶体化学的重要性。物理化学和 胶体化学式属于同一范畴。二者的区分在于研究 的对象不同,物理化学主要研究大块相和分子、 离子分散体系,而胶体化学研究的对象,其质点 大小在10-6-10-7cm范围内的高度分散的体系,因 此将物理化学和胶体化学联系起来,对物质全部 分散态的研究才能完成。

胶体与界面化学的基本原理

胶体与界面化学的基本原理

胶体与界面化学的基本原理胶体与界面化学是研究物质界面的重要学科,其中胶体学研究的是微米级别上液体分散系统的稳定性、形态、动力学,界面化学研究的是物质界面上的化学过程。

本文将探讨胶体的定义、性质、分类以及界面化学原理等方面。

一、胶体的定义与性质胶体是指两相(即固体、液体或气体)间的一种形态,其中一种相通过分散成微小粒子的形式均匀分散在另一种相中。

胶体的一般特性如下:1、粒子尺寸:胶体的尺寸范围一般为1-1000纳米。

2、稳定性:胶体的物理性质(如电荷、表面性质等)使其形成稳定的系统,避免粒子凝聚沉降。

3、光学性质:胶体可以表现出折射、透明度等光学性质,如煤油是胶体,因为它可以产生烟雾。

4、电性质:胶体中的粒子带有电荷,可以表现出与电场相关的性质。

5、化学性质:由于其表面性质的存在,胶体可以表现出与环境中其他分子的化学反应,如催化反应等。

二、胶体的分类根据胶体中分散相的物质性质和分散介质的性质,胶体可以分为以下几类:1、溶胶:溶胶是指分散相为分子(亦称为分子溶液),分散介质为液体,如酒精和水的混合物。

2、胶体溶液:胶体溶液是指分散相为聚合物,分散介质为液体,如天然胶或橡胶溶液。

3、乳液:乳液是指分散相为液体,分散介质为液体,如牛奶、酸奶等。

4、凝胶:凝胶是指不易流动的胶体,其中分散相一般是聚合物,分散介质为液体,如煤油。

5、气溶胶:气溶胶是指分散相为固体或液体,分散介质为气体,如雾、烟雾、霉菌等。

三、界面化学的基本原理界面化学是研究物质界面的化学过程,主要是两相(如油水分界面)之间物理和化学反应的研究。

界面活性剂是使界面分子在界面上形成一层膜较集的化合物,使界面能量降低而使得体系稳定的物质。

界面化学的原理主要有以下几点:1、界面能:界面能是指分界面两侧之间的能量差,即表面张力。

界面分子本身存在形成一层膜的趋势,因此其能量会比波动的分子间间隔大。

这一差异形成了表面张力,是使体系向能量最小化方向发展的主要因素。

胶体与界面化学的应用研究

胶体与界面化学的应用研究

胶体与界面化学的应用研究一、胶体化学的基本概念和意义胶体(colloid)是一种介于分子和粗大颗粒之间的物质状态,其粒径一般在1~1000纳米之间。

胶体具有许多独特的物理化学性质,如稳定性、表面活性、光学性质、电学性质等。

胶体的研究是物理化学和材料科学的重要领域之一,其在生物学、医药学、环境科学、地球化学等众多学科中都有着广泛的应用。

界面化学是研究物理化学系统中两个相界面(或相互作用)上的化学现象的学科。

任何物理化学体系都有界面,因此界面化学涉及的领域非常广泛,如表面张力、界面吸附、润湿、界面反应、薄膜等。

界面化学的基础研究以及技术应用在化学、物理、材料、生物、药物等领域具有重要的地位。

二、胶体化学和界面化学的联系从定义上看,胶体是一种在两个不同相之间存在的介于小分子和大分子之间的物质状态,而界面就是两个相的交界面。

因此,胶体和界面的研究有着很强的联系。

从实践应用上看,大部分的胶体都是由表面活性剂、胶体颗粒、高分子等形成的。

这些物质在溶液中的行为和性质涉及到了表面活性、胶体稳定、胶体分散性、胶体粘度等一系列与界面化学相关的现象。

因此,胶体化学和界面化学通常是作为一个整体来研究的。

研究胶体与界面化学有助于理解生物大分子的组装、微纳米材料的制备和表征等等问题,同时也为应用研究提供了很多新的思路和方法。

三、胶体和界面化学的应用1、药物传递系统由于胶体颗粒本身的小尺寸和高比表面积,导致许多药物可以吸附在胶体颗粒表面或者被包含在胶体颗粒之中,从而形成药物传递系统。

这种系统具有以下优点:增强药物的生物利用度、延长药物的半衰期、减少副作用、控制药物溶解度和生物相容性等。

界面化学的应用在制备药物传递系统方面尤为明显。

如通过改变表面活性剂分子的结构、改变颗粒或胶的形状和尺寸等方法,可以控制药物传递系统的粒径、稳定性和药物释放速率等参数。

2、生物医用材料生物医用材料的界面活性质对于其应用效果至关重要。

例如,人工关节、金属支架等生物医用材料的表面需要具有很好的生物相容性和组织相容性。

界面化学与胶体科学

界面化学与胶体科学

界面化学与胶体科学界面化学与胶体科学涉及研究物质在界面和胶体状态下的性质和现象。

这两个研究领域在化学、物理、材料等多个学科领域中具有重要地位,对于探索物质的微观世界、开发新型材料、改善生产技术等具有重要的理论和应用意义。

一、界面化学界面化学是研究各种相之间分界面的性质和变化规律的学科。

在物质的固态、液态和气态之间,常常存在着一些相互分隔的表面,这些表面即为界面。

例如,液体和固体之间的表面称为固液界面,液体和气体之间的表面称为液气界面。

界面化学主要研究这些表面的结构、性质和相互作用,探讨分子在表面上的吸附、聚集和反应等过程,为理解物质的性质和相互作用提供了重要的理论支持。

二、胶体科学胶体科学是研究胶体和胶体溶液的物理化学性质及其应用的学科。

胶体是一种介于溶液和悬浮液之间的物质状态,其特点是颗粒粒径在1-1000纳米之间。

在胶体状态下,颗粒与溶液之间的相互作用起着至关重要的作用,这些相互作用通常由电荷、疏水性等因素所决定。

胶体科学研究胶体颗粒的形态、结构、稳定性,控制颗粒间相互作用的方法,从而开发出具有特殊性能的新型材料,如纳米颗粒、胶体纳米晶体等。

三、界面化学与胶体科学的应用界面化学和胶体科学在生物医药、材料科学、环境保护、食品工业等领域有着广泛的应用。

例如,通过界面化学的研究,可以改善药物的输送方式,提高药物的生物利用度和疗效;胶体科学的研究有助于开发具有特殊功能的纳米颗粒,用于医学诊断、疗法和组织工程;此外,在油田开发、纳米材料合成、废水处理等方面,界面化学和胶体科学也发挥着重要作用。

四、结语界面化学与胶体科学对于理解物质的微观结构和相互作用、开发新型材料、解决环境和能源问题具有重要的科学意义和应用价值。

随着科学技术的不断发展,界面化学与胶体科学必将继续推动材料科学、生物医药、能源环境等领域的发展,并为人类社会的可持续发展作出更大的贡献。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对于立方体而言,S0=S/V=6l2/l3=6/l,l越小, S0越大。以1cm3的水分割为例:由表(1)可以看出,
分割的越细,则总表面程度越大,表面能越高,如边
长为0.01μ m时,总表面达6000m2,表面能为460J。 由此可知,分散度的大小是表征分散体系特性的重
要依据,通常按分散程度不同可将分散体系分为三类:
分散范围内存在的物质,而不是某类物质固有的特性,所以“胶体”
这一名词的含意从一开始就很不确切。 现在“胶体”定义:指具有高度分散的分散体系(亦是研究对 象),分散相可以是一相和多相,粒子大小通常为10-7~10-9m之间。 上世纪初,人们把胶体分为两类: 亲液胶体(溶胶):如蛋白质、明胶,是热力学稳定体系 憎液胶体(溶胶):如金溶胶、硫化砷溶胶,是热力学不稳定体系
l
s
§0-3 多分散性和平均相对 分(粒)子质量(自学)
胶体是多分散体系,分散相由大小不同的粒子组成, 胶体化学中常用粒子直径的平均值或相对分子质量平均 值来描述粒子和分子的平均大小。 由于实验方法不同,进行统计平均加权因子性质不 同,平均值的含义也不同。
6cm2 60cm2 600 cm2 6000 cm2 6 m2 60 m2 600 m2 6000 m2
6cm-1 6×10cm-1 6×102cm-1 6×103cm-1 6×104cm-1 6×105cm-1 6×106cm-1 6×107cm-1
4.6×10-5 4.6×10-4 4.6×10-3 4.6×10-2 4.6×10-1 4.6 46 460
序号 1 2 3 4 5 分散相 表3 分散体系的分类 分散介质 体 系 名 称 g g 气溶胶(如雾) 气溶胶,如烟、尘 泡沫,如灭火泡沫 乳状液,如牛奶、原油 溶胶,悬浮液,如油漆、钻井液 和 实 例
l
s g
l
s
l l l
s
s s
6
7 8
g
凝胶(固态泡沫),如面包、泡沫塑料
凝胶(固态乳状液),如珍珠、某些宝石 凝胶(固态悬浮体),如合金、有色玻璃
§0-2 分散体Βιβλιοθήκη 及其分类最简单的分散体系由两相组成,其中形成粒子的相称为 分散相,是不连续相,分散粒子所处介质称为分散介质, 是连续相。 分散相粒子愈小,则分散程度越高,体系内的界面面积 越大,从热力学观点看,体系越不稳定,这表明粒子的大 小直接影响到体系的物理化学性质。 通常以比表面积(或比面积)来表示物质的分散程度, 定义为:单位体积(或重量)物质的表面积,如以S代表物 质的表面和,V代表体积或W代表总重量。S0代表比表面积, 则 S0=S/V 或 S0=S/W
及生产生活的关系
§0-1 胶体化学的发展
1861年英国化学家Grahaw提出了“胶体(colloid)”这个名词。 为研究溶液中溶质分子的扩散速度,Graham做了这样一个实验, 将一张羊皮纸束在玻璃筒下端,筒内装上待研究的溶液,经过一段 时间以后,测定水中溶质的浓度,求的溶质透过半透膜的扩散速度。 实验发现一些物质如无机盐、白糖可以透过羊皮纸,并且扩散速度
胶体与界面化学
1 2 3 4 5 绪论 6 液体的界面性质 7 固体界面性质 表面活性物质 胶体的稳定性
8 乳状液与泡沫 胶体的制备与纯化 9 流变性
分散体系的物理化学性质
绪 论
一、胶体化学的发展
二、分散体系及其分类
三、多分散性和平均相对分(粒)子质量(自学)
四、胶体化学的研究内容、发展前景及与油田开发
>0.1μ m
颗粒
0.1μ m-1nm 0.1μ m-1nm <1nm
胶粒 分子 分子、 离子
Fe(OH)3 溶胶
以上这类分类方法分类比较方便,但对实际状态的描 述较含糊,同时将真溶液作为分子分散体系分类不是很 合理,因为它不存在界面与胶体体系有着本质的区别。 分散体系按分散相和分散介质的聚集状态不同进行分类。
憎液胶体是本质上不溶于介质的物质,必须经过适当处理,才可能
将它分散到某种介质中。
五十年代起:开始将亲液溶胶改称大分子溶液,将憎
液溶胶(胶体)称为胶体分散体系或溶胶。近年来人们对 胶体有了更深刻的认识,比较确切的将胶分为以下三类: 1、分散体系:包括粗分散体系和胶体分散体系,特点: 很高的表面自由能,热力学不稳定体系。 2、大分子物质的真溶液:无相界面,热力学稳定体系。 3、缔合胶体:胶体电解质、表面活性剂、热力学稳定 体系。
胶体与界面化学
参考书目
1、教材:胶体与界面化学,院宗淇、王光信、徐桂英,高等教育出 版社,2001。
2、胶体化学基础,周祖康、顾惕人,北大出版社,1987.5。
3、应用胶体化学,侯万国、孙清军、张春光,科学出版社,1998.11。
4、表面活性剂物理化学,赵国玺,北大出版社,1984.1。
5、油田开发胶体化学基础,谢和溢、张斌,石油工业出版社,1998.7。
表2 分散体系按分散相粒子大小分类
类 型 粒子大小 分散相 特 征 实 例 泥 浆 多相不稳定,粒子不能通 过滤纸,不扩散,不参析 显微镜下可见 多相不稳定,粒子能通过 滤纸,扩散速度极慢, 超显微镜下可见 均相稳定,粒子能渗过滤 纸,扩散极慢 均相,稳定,能渗析, 超显微镜下也不可见
粗分散体系
胶体分散体 系(溶胶) 高分子溶液 低分子 分散体系
很快,另一类物质如明胶、单宁、蛋白质、氢氧化铝等,扩散速度
很慢,而且极难甚至不能透过羊皮纸。当溶剂蒸发时,前一类物质 能成晶体析出,后一类不成晶体而成粘稠的胶状物,Graham根据这
一现象将前一类物质称作“凝晶质”(Crystalloid),在一类称作
“胶体”(Colloid)。
这样的分类方法并不合适,实验发现,许多晶体物质适当的介质 中也能制成具有胶体特征的体系。例如把NaCl分工用在酒精中就具有 扩散速度慢、透不过半透膜的性质,因此,应当把胶体看成是在一定
粗分散、胶体分散、分子分散。
表1
立方体边长
1cm3水分割为立方体时表面积变化
总表面积 比面积(分散度) 0℃时单位体积水 的表面能(J)
分割后数目
1cm 1×10-1 1×10-2 1×10-3 1×10-4 1×10-5 1×10-6
1×10-7(1nm)
1(个) 103 106 109 1012 1015 1018 1021
相关文档
最新文档