线性规划的方法及应用
高考数学中的线性规划方法与应用

高考数学中的线性规划方法与应用随着社会的发展,人们的生活方式发生了改变,竞争压力也越
来越大。
在这样一个背景下,高考成为了每个学生追求的目标。
高考数学中,线性规划是一个重要的知识点,不仅在考试中会涉
及到,而且在现实生活中也有广泛的应用。
一、线性规划的概念与优化目标
线性规划是在一些约束条件下,寻求最大或最小值的一种优化
方法。
其优化目标是一种线性函数,约束条件可以是等式或不等式,且约束条件和目标函数都具有线性关系。
在高考数学中,线
性规划通常会考察如何列出约束条件和目标函数。
二、线性规划的解法
线性规划的解法有图像法、单纯形法和对偶理论法。
其中,单
纯形法是应用最广泛的一种解法,通过不断寻找相邻基的交点,
找出最优解。
三、线性规划在实际生活中的应用
线性规划在实际生活中有着广泛的应用。
比如,在物流领域中,通过线性规划可以优化物流路线和货物分配,从而降低成本和提
高效率。
在工业生产中,线性规划可以优化设备运行状态和员工
分配,实现生产效益的最大化。
在金融投资方面,线性规划可以
帮助投资者优化组合投资方案,最大化投资回报。
在航空运输方面,线性规划可以优化航线安排和机组人员分配,实现航空运输
的安全和效率。
以上仅是线性规划在实际生活中应用的一部分。
结语
高考数学中的线性规划知识点,虽然看起来有些枯燥,但是它
在实际生活中有着广泛的应用。
掌握线性规划的解法和应用场景,可以为学生的未来发展打下坚实的基础。
希望读者可以通过对线
性规划的学习,更好地了解这个领域的发展和应用。
实际问题中的线性规划方法

实际问题中的线性规划方法线性规划是数学中一种非常重要的优化方法,广泛应用于各个领域。
在实际问题中,线性规划方法可以很好地解决很多优化问题。
本文将会介绍线性规划方法在实际问题中的应用,例如网络流问题、供应链优化问题以及航空公司航班计划问题等。
一、网络流问题网络流问题是指在具有网络形式的问题中,求得网络中一些关键指标的最优解。
这些指标可能是物流方面的,也可能是通信方面的,甚至可能与能源、水资产有关。
这个问题的形式是一组由多个变量组成的线性方程组,并且这些方程组的决策变量通常用来描述网络的流量问题。
这里的问题是要求出网络中流量的最大值图。
在实际应用中,经常使用线性规划的方法来解决这种问题。
例如,在物流配送领域,我们可能需要在多个仓库和客户之间优化货物的运输路线。
当运输网络以“源点”(例如一个集散地或一个公路)开始,并以“汇点”(例如一家客户或一个仓库)结束时,通常需要考虑许多线性限制约束,例如运输成本、运输距离和货物数量等。
使用线性规划的方法,可以快速找到最小的总运输成本以及分配给每个节点的货物数量,从而提高物流的效率并降低成本。
二、供应链优化问题供应链优化问题通常可以看作是网络流问题的一个具体实例,它也可以使用线性规划的方法以最小化成本或最大化利润的方案来求解。
这个问题涉及到优化生产和分销的方案,从而最大限度地降低整个供应链的成本或提高利润。
这种问题通常包括许多限制条件,例如合理的货物存储、库存管理、运输和分销等。
线性规划的方法可以非常有效地解决这些问题,以实现最优化的运营方案。
例如,在某个制造公司中,我们可能需要考虑如何最小化原材料和物流成本,同时最大程度地利用现有的生产能力以及最大程度地满足客户要求。
这个问题涉及到许多因素,例如供应链的表现、货物的需求、生产规模等。
使用线性规划的方法,可以快速找到最佳的物流路线、最佳的生产数量以及最佳的库存管理方案等,从而提高供应链的效率。
三、航空公司航班计划问题航空公司航班计划问题是指在规定时间内,根据市场需要以及规定的飞行路线等因素,为航空公司确定一个最佳的航班计划。
运筹学基础-线性规划(方法)

线性规划问题通常由三个基本部分组成,即决策变量、约束条件 和目标函数。决策变量是问题中需要求解的未知数,约束条件是 限制决策变量取值的条件,目标函数是要求最大或最小的函数。
线性规划的应用领域
01
02
03
04
生产计划
在制造业中,线性规划可以用 于制定最优的生产计划,以最 大化利润或最小化成本。
02
线性规划的基本概念
线性方程组
线性方程组是由多个线性方程组成的数学模型,描 述了多个变量之间的线性关系。
线性方程组可以用矩阵和向量表示,通过矩阵运算 和代数方法求解。
线性方程组有多种解法,如高斯消元法、LU分解、 迭代法等。
约束条件与目标函数
02
01
03
约束条件是限制变量取值的条件,通常表示为变量的 上界、下界或等式约束。
目标函数是描述问题目标的数学表达式,通常是最小 化或最大化的线性或非线性函数。
约束条件和目标函数共同构成了线性规划问题的数学 模型。
线性规划的解
线性规划的解是指满足 所有约束条件并使目标 函数取得最优值的变量 取值。
线性规划问题可能有多 个解,也可能无解或无 界解。
最优解的性质包括最优 性、可行性和唯一性。
最优解可以通过求解线 性方程组或使用专门的 优化软件获得。
03
线性规划的求解方法
单纯形法
01
基本概念
单纯形法是一种求解线性规划问题的迭代算法,通过 不断迭代寻找最优解。
02 1. 初始化 选择一个初始可行解,并确定初始基可行解。
03
2. 迭代
根据目标函数系数和约束条件系数,计算出单纯形表 格,然后进行迭代更新。
运筹学基础-线性规划(方法)
线性规划的应用与求解方法

线性规划的应用与求解方法线性规划是数学中一种重要的优化方法,被广泛应用于各个领域,如经济学、管理学、工程学等。
它可以帮助我们在给定的约束条件下,找到最优解,使得目标函数取得最大值或最小值。
本文将介绍线性规划的应用领域以及常用的求解方法。
一、线性规划的应用领域1. 生产与资源分配线性规划可以帮助企业合理安排生产资源,优化生产效率。
例如,一个工厂需要决定如何分配有限的人力、物力和财力,以满足最大产出或最小成本的要求。
线性规划可以帮助企业找到最佳的资源分配方案,提高生产效率。
2. 项目排程与调度线性规划可以用于项目排程与调度问题,帮助规划员安排项目的开始时间、结束时间和资源分配。
例如,在建设一个大型工程项目时,需要考虑多个任务的依赖关系、资源限制和时间限制,线性规划可以帮助规划员合理安排项目进度,最大程度地利用资源。
3. 物流与运输线性规划可以用于优化物流与运输问题。
例如,一个配送中心需要决定如何将货物从不同供应商配送到不同的客户,以最小化运输成本。
线性规划可以帮助物流公司找到最佳的配送路线和运输方案,提高运输效率。
4. 投资与资产配置线性规划可以用于优化投资与资产配置问题。
例如,一个投资者希望在多个资产中进行配置,以最大化收益或最小化风险。
线性规划可以帮助投资者找到最佳的资产配置方案,提高投资收益率。
二、线性规划的求解方法1. 图形法图形法是线性规划最直观的求解方法之一。
它通过绘制目标函数和约束条件所对应的直线或曲线,找到使目标函数取得最大(小)值的交点。
但是,图形法只适用于二维线性规划问题,对于多维问题并不适用。
2. 单纯形法单纯形法是线性规划最常用的求解方法之一。
它通过迭代的方式,在可行域内搜索有效解。
单纯形法首先找到一个基础解,并在每一步中通过改进的方式找到更优的基础解,直到找到最优解为止。
单纯形法可以求解多维线性规划问题,并且具有较高的效率。
3. 对偶理论对偶理论是线性规划的重要理论基础。
它将线性规划问题转化为对偶问题,并通过对偶问题的求解来获得原问题的最优解。
线性规划的定义及解题方法

线性规划的定义及解题方法线性规划是一种数学建模技术,旨在解决在约束条件下,寻求最优解的问题。
它的实际应用十分广泛,例如管理学、经济学、物流学等领域。
线性规划可以分为单目标和多目标两种,但其中比较常见的是单目标线性规划。
本文将从线性规划的定义、模型建立、求解方法等方面阐述其原理与应用。
一、线性规划的定义线性规划的定义是:在有限约束条件下,目标函数为线性的最优化问题。
它通过数学模型的建立,将涉及到的变量、约束条件与目标函数转化为线性等式或不等式的形式,从而寻找最优解。
通常,线性规划的目标是最大化或最小化某个变量,可以用以下的形式去表示:$$Z=C_1X_1+C_2X_2+……+C_nX_n $$其中,$Z$为目标函数值,$X_1, X_2,……,X_n$为待求变量,$C_1, C_2,……,C_n$为相应的系数。
在线性规划中,会涉及到许多变量,这些变量需要受到一些限制。
这些限制可以用不等式或等式来表示,这些方程式被称为约束条件。
例如:$$A_1X_1+A_2X_2+……+A_nX_n≤B$$$$X_i≥0, i=1,2,……, n $$这两个方程就代表了一些约束条件,例如目标函数系数的和不能超过某个值,若$X_i$为生产的产品数量,则需保证产量不能小于零等。
这些约束条件用于限制变量的取值范围,而目标函数则用于求解最优解。
二、线性规划的模型建立在建立线性规划模型时,需要考虑几个要素:1. 决策变量:它是模型求解的关键。
决策变量是指在模型中未知的数量,也就是需要我们寻找最优解的那些变量。
2. 目标函数:确定目标函数,既要知道最大化还是最小化,还要知道哪些变量是影响目标函数的。
3. 约束条件:约束条件通常是一组等式或不等式,代表问题的限制。
例如在一个工厂中最大的生产量、原材料的数量限制、人工的数量等等,这些都是约束条件。
4. 模型的参数:模型参数是指约束条件的系数和模型中的常数。
它们是从现实问题中提取出来的,由于模型的解法通常是数学的,因此需要具体的数值。
线性规划知识点

线性规划知识点线性规划是一种数学优化方法,用于解决线性约束条件下的最优化问题。
它在经济学、管理学、工程学等领域有着广泛的应用。
本文将详细介绍线性规划的基本概念、模型建立方法、求解方法以及相关的应用案例。
一、基本概念1. 目标函数:线性规划的目标是最大化或者最小化一个线性函数,称为目标函数。
2. 约束条件:线性规划的解必须满足一组线性等式或者不等式,称为约束条件。
3. 变量:线性规划中的决策变量是用来表示问题中需要决策的量,可以是实数或者非负实数。
4. 可行解:满足所有约束条件的解称为可行解。
5. 最优解:在可行解中,使目标函数取得最大值或者最小值的解称为最优解。
二、模型建立方法1. 建立目标函数:根据问题的要求,确定目标函数的形式和系数。
2. 建立约束条件:根据问题中的限制条件,建立线性等式或者不等式。
3. 确定变量范围:确定变量的取值范围,可以是实数或者非负实数。
4. 建立数学模型:将目标函数和约束条件整合成一个数学模型。
三、求解方法1. 图形法:对于二维线性规划问题,可以使用图形法进行求解。
通过绘制约束条件的直线或者曲线,找到目标函数的最优解。
2. 单纯形法:对于多维线性规划问题,可以使用单纯形法进行求解。
该方法通过逐步迭代,不断改变可行解以找到最优解。
3. 整数规划方法:当变量需要取整数值时,可以使用整数规划方法进行求解。
该方法将线性规划问题扩展为整数规划问题,通过特定的算法求解最优解。
四、应用案例1. 生产计划问题:某工厂需要生产两种产品,每种产品的生产时间、材料消耗和利润都不同。
通过线性规划,可以确定最优的生产计划,以最大化利润或者最小化成本。
2. 运输问题:某物流公司需要将货物从多个仓库运送到多个客户,每一个仓库和客户之间的运输费用和容量都不同。
通过线性规划,可以确定最优的运输方案,以最小化总运输成本。
3. 资源分配问题:某公司有限的资源需要分配给多个项目,每一个项目的收益和资源需求都不同。
线性规划方法及其应用

05
线性规划方法优缺点分析
优点分析
有效处理多变量问题
线性规划能够同时处理多个决策变量,通过 优化算法寻找最优解。
直观易懂的数学模型
线性规划在各个领域都有广泛的应用,如生 产计划、资源分配、运输问题等。
广泛应用
线性规划的数学模型相对简单,易于理解和 应用。
可求解大规模问题
随着计算机技术的发展,线性规划可以求解 大规模的问题,满足实际应用的需求。
复杂约束处理
研究如何处理包含复杂约束条件的线性规划问题,提高求解效率和 准确性。
不确定性问题建模
针对包含不确定性因素的线性规划问题,发展有效的建模和求解方 法。
应用领域拓展
探索线性规划方法在更多领域(如机器学习、大数据分析等)的应用 潜力,推动相关领域的理论和技术创新。
感谢您的观看
THANKS
3
考虑不确定性
将不确定性因素引入资源分配问题中,通过线性 规划求解鲁棒性强的资源分配策略,以应对潜在 的风险和变化。
04
线性规划软件介绍
MATLAB软件介绍
1
MATLAB是一款由MathWorks公司开发的数学 计算软件,广泛应用于算法开发、数据可视化、 数据分析以及数值计算等领域。
2
MATLAB提供了丰富的工具箱,其中包括优化工 具箱(Optimization Toolbox),可用于解决线 性规划问题。
线性规划方法及其应用
目录
• 线性规划基本概念 • 线性规划方法 • 线性规划应用举例 • 线性规划软件介绍 • 线性规划方法优缺点分析 • 线性规划方法发展趋势与展望
01
线性规划基本概念
定义与特点
定义:线性规划是一种数学方法,用于 优化一组线性不等式约束下的线性目标 函数。
线性规划知识点

线性规划知识点一、概述线性规划是一种数学优化方法,用于求解线性约束条件下的最优解。
它广泛应用于经济、工程、运输、资源分配等领域。
本文将介绍线性规划的基本概念、模型建立、求解方法以及应用案例。
二、基本概念1. 变量:线性规划中的决策变量表示问题中需要优化的量,可以是实数、整数或布尔值。
2. 目标函数:线性规划的目标函数是需要最小化或最大化的线性表达式,通常表示为求解最小值或最大值。
3. 约束条件:线性规划的约束条件是限制变量取值范围的线性等式或不等式。
4. 可行解:满足所有约束条件的变量取值组合称为可行解。
5. 最优解:在所有可行解中,使目标函数取得最小值或最大值的解称为最优解。
三、模型建立线性规划的建模过程包括确定决策变量、建立目标函数和约束条件。
1. 决策变量的确定:根据问题的实际情况,确定需要优化的变量及其取值范围。
2. 目标函数的建立:根据问题的要求,将需要最小化或最大化的目标转化为线性表达式。
3. 约束条件的建立:根据问题的限制条件,将约束条件转化为线性等式或不等式。
四、求解方法线性规划可以使用多种方法求解,常见的有单纯形法和内点法。
1. 单纯形法:单纯形法是一种迭代求解方法,通过不断移动顶点来逼近最优解。
它从一个可行解开始,通过交换变量的值来改进目标函数的值,直到找到最优解。
2. 内点法:内点法是一种基于迭代的方法,通过在可行域内寻找最优解。
它通过将可行域内的点逐渐移向最优解,直到找到最优解。
五、应用案例线性规划在实际应用中具有广泛的应用场景,以下是一个简单的应用案例:假设某公司生产两种产品A和B,每单位产品A的利润为10元,每单位产品B的利润为8元。
公司有两个车间可供生产,每个车间每天的工作时间为8小时。
产品A每单位需要1小时的生产时间,产品B每单位需要2小时的生产时间。
车间1每天最多可生产100单位产品A或80单位产品B,车间2每天最多可生产80单位产品A或60单位产品B。
公司希望确定每天的生产计划,以最大化利润。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性规划的方法及应用1 引言运筹学最初是由于第二次世界大战的军事需要而发展起来的,它是一种科学方法,是一种以定量的研究优化问题并寻求其确定解答的方法体系.线性规划(Linear Progromming ,简称LP )是运筹学的一个重要分支,其研究始于20世纪30年代末,许多人把线性规划的发展列为20世纪中期最重要的科学进步之一.1947年美国的数学家丹泽格提出了一般的线性规划数学模型和求解线性规划问题的通用方法――单纯形法,从而使线性规划在理论上趋于成熟.此后随着电子计算机的出现,计算技术发展到一个高阶段,单纯形法步骤可以编成计算机程序,从而使线性规划在实际中的应用日益广泛和深入.目前,从解决工程问题的最优化问题到工业、农业、交通运输、军事国防等部门的计划管理与决策分析,乃至整个国民经济的综合平衡,线性规划都有用武之地,它已成为现代管理科学的重要基础之一.2 线性规划的提出经营管理中如何有效地利用现有人力物力完成更多的任务,或在预定的任务目标下,如何耗用最少的人力物力去实现.这类问题可以用数学语言表达,即先根据问题要达到的目标选取适当的变量,问题的目标通常用变量的函数形式(称为目标函数),对问题的限制条件用有关变量的等式或不等式表达(称为约束条件).当变量连续取值,且目标函数和约束条件为线性时,称这类模型为线性规划的模型.有关对线性规划问题建模、求解和应用的研究构成了运筹学中的线性规划分支.线性规划实际上是:求一组变量的值,在满足一组约束条件下,求得目标函数的最优解.从而线性规划模型的基本结构为: ①变量:变量又叫未知数,它是实际系统的位置因素,也是决策系统中的可控因素,一般称为决策变量,常引用英文字母加下标来表示,如n x x x ,,,21 等.②目标函数:将实际系统的目标用数学形式表示出来,就称为目标函数,线性规划的目标函数是求系统目标的数值,即极大值(如产值极大值,利润极大值)或极小值(如成本极小值,费用极小值等等). ③约束条件:约束条件是指实现系统目标的限制因素.它涉及到企业内部条件和外部环境的各个方面,如原材料供应设备能力、计划指标.产品质量要求和市场销售状态等等,这些因素都对模型的变量起约束作用,故称其为约束条件.约束条件的数学表示有三种,即≤=≥,,,线性规划的变量应为非负值,因为变量在实际问题中所代表的均为实物,所以不能为负.线性规划问题有多种形式,函数有的要求实现最大化,有的要求最小化;约束条件可以是“≤”,也可以是“≥”,还可以是“=”,这种多样性给讨论带来不便. 为了便于讨论其一般解法,我们通常将线性规划问题的约束条件归结为线性方程和一组非负性限制条件,并且对目标函数统一成求最大值,也就是说,将线性规划问题的数学模型化成如下形式,并称它为线性规划问题的标准形式:),,2,1(..max11m i b x at s x c f ij nj ijjnj j ===∑∑==),,2,1(0n j x j =≥任何非标准形式的线性规划问题都能化成上述标准形式,这是由于不等式约束k j nj ijb x a≤∑=1等价于约束条件0,1≥=+++=∑k n k k n nj j ijx b x x a;不等式约束l j nj ijb x a≥∑=1等价于约束条件;0,1≥=-++=∑l n l l n nj j ijx b x x a这里增添的变量k n x +和l n x +称为松弛变量.还有,求函数f 的最小值解可转化为求函数f -的最 大值解.以下讨论线性规划问题时以标准型为主.3 线性规划的解法3.1 图解法满足约束条件的决策变量的一组值叫做这个线性规划的一个可行解;把所有可行解构成的集合叫做这个线性规划的可行域.因此,求解一个线性规划的问题,使目标函数取得最大值或最小值的可行解称为线性规划的最优解.一般求解线性规划问题是讨论它的最优解.下面介绍只有两个决策变量的线性规划问题的图解法.例1 用图解法求解21m axx x f +-=22..21-≥-x x t s2221≤-x x 521≤+x x12,0x x ≥解 第一步 先画出可行域 以21,x x 为坐标轴作直角坐标系,因为0,021≥≥x x ,所以问题的可行解必在第一象限(含坐标轴);约束条件222-≥-x x 要求问题的可行解必在直线222-=-x x 的右下方的半平面上;约束条件2221≤-x x ,要求问题的可行解必在直线2221=-x x 的左上方的半平面上;约束条件521≤+x x ,要求问题的可行解必在直线521=+x x 的左下方的半平面上.因为所有的约束条件都必须同时满足,所以问题的可行解域必为闭区域4321Q Q Q OQ ,如图3.1.1中的阴影部分. 第二步 从可行域中找出最优解现在分析目标函数21x x f +-=,在坐标平面上,它可以看作是以f 为参数的一族平行线:f x x +=12位于同一条直线上的点,都有相同的目标函数值,因而称它为等值线.当f 由小变大时,直线f x x +=12沿其法线方向向左上方移动.当移动到2Q 点时,f 的取值最大,这就得出了本题的最优解,如图3.1.2 ,此时f 最大,得 3411max =+⨯-=f .显然用图解法求解线性规划问题时,简单直观;但是当决策变量多于两个的时候,用图解法就失效了.3.2 单纯形法这一方法是丹泽格在1947年提出的,它以成熟的算法理论和完善的算法及软件统治线性规划近30年.单纯形法是求解线性规划问题的最重要、最基本的方法,它的解题思路[7](p27)是:将线性规划问题化为标准型后,先找出一个单位可行基,对这个可行基给出可行解,然后用判定定理——称为检验数,判定其是否为最优解.若是,求解过程结束;若不是,在单位可行基的基础上,进行换基迭代,该过程叫做迭代,直到得出最优解或证明无最优解为止.它有很强的程序性,它的具体操作是从一张叫做初始表的表格开始的.初始表由四部分构成[7](p27-28):第一部分A A B =-1(B 是单位可行基) 即约束方程组的系数矩阵.第二部分b b B =-1(B 是单位可行基) 即约束方程组的常数项构成的列向量.第三部分是检验数C A CB --1 (B C 为单位可行基变量所对应的目标函数中的系数列向量;C 是目标函数的系数行向量).第四部分b C B 该数为目标函数值.它的表格形式为:例2 用单纯形法求解 2136m axx x f +=40x 23..21≤+x t s 21421≤+x x12,0x x ≥ .解 第一步 将原问题化为标准型 43210036m ax x x x x f +++=40x 23..321=++x x t s214421=++x x x )4,3,2,1(0=≥j x j .第二步 观察原问题是否存在现成的单位可行基 因为约束方程组的系数矩阵为),,,(101401234321p p p p A =⎪⎪⎭⎫⎝⎛= ,所以原问题存在现成的单位可行基()1341001B p p ⎛⎫== ⎪⎝⎭,第三步 列出初始表,计算⎪⎪⎭⎫⎝⎛==-10140123)111A A B ,⎪⎪⎭⎫⎝⎛==-2140)211b b B , 3)1B C 是目标函数中基变量43,x x 的系数构成的列向量⎪⎪⎭⎫⎝⎛00,)0,0,3,6()4111--=-=--C C A B C B ,15)0B C b = ,1346)B x X x ⎛⎫= ⎪⎝⎭ .由上面计算结果,列出初始表(如下表)表3.2.1第四步 判定由初始表知,检验数中含有负数,故可行解Tx )21,40,0,0(=不是最优解,还需 要进行迭代运算(若检验数均为非负数,则可行解即为最优解) 第五步 迭代运算迭代一:①确定主元在检验数中,找出最小负数。
该题最小负数是6-,将6-所在列中各个正数元素与相应的常数列各元素相比,求出421}421,140min{=——称为最小比原则,选4(21a )为主元,并加方括号. ②换基主元4所在行对应的基变量(初始表左端4x 为出基变量;主元4所在列对应的非基变量(初始表最上端)1x 为进基变量.这样将基1B 换为基),(132p p B =.③迭代运算将主元化为1,即将主元所在行(包括约束常数)各元素乘以41,得42141,0,41,1(*);将主元所在列——称为主元列,其他元素(包括检验数及目标函数值)化为0.即把(*) 乘以3-,加到第一行,得49743,1,45,0-(**); 把(*)乘以6加到检验数所在行,得 26323,0,23,0-(***); 将以上三次迭代运算(与矩阵的初等行变换相同)的结果,列表如下 表3.2.2完成第一次迭代后,必须注意仍需01≥-b B ,再观察检验数中是否有负数,若均为负数,则迭代停止,该问题已取得最优解和最优值;若仍有负数,则进行第二次迭代.显然在迭代一中,检验数中有负数,且23-为最小负数,故进行第二次迭代,第二次迭代方法与第一次迭代完全相同.迭代后运算的结果,列表如下 表3.2.3显然在迭代二中,检验数均为非负,故停止迭代,得最优解T x )0,0,5,5(=,最优值10=f . 3.3 对偶单纯形法在上述线性规划问题中,有现成的单位可行基,但在实际求解过程中,经常会遇到没有现成的单位可行基,这就需要对约束方程组经过同解变形,那么变形后,得到的新问题与原问题等价,所以我们通过同解变形,若变出了一个单位可行基,就不必添加人工变量,直接用单纯形求解;若变不出单位可行基,也一定能够变出一个单位基,这就引出了对偶单纯形法的求解问题.下面以具体模型展示对偶单纯形法的基本计算步骤及其理论.例3[7](p65-69)212m inx x f +=,6354..2121121≥≥+≤≥+x x x x x x x t s .解 (1) 化为标准型 543210002'm axx x x x x f +++--=,6354..2152141321≥=-+=+=-+x x x x x x x x x x t s ,显然不存在现成的单位可行基.(2) 确定对偶单位可行基B . 写出它的增广矩阵,并进行初等行变换(同解变形).⎪⎪⎪⎭⎫ ⎝⎛--=610013501001400121A ⎪⎪⎪⎭⎫⎝⎛------−→−610013501001400121,变换出了一个单位基),,(543p p p B =,但B 并不是单位可行基(因为常数列各分量不满足非负数的要求),我们把这样的基B 叫做对偶单位可行基(其中i b 不全为非负数)(3) 计算1) A A B =-1=⎪⎪⎪⎭⎫ ⎝⎛----100130100100121,2)()Tb b B 6,5,41--==-,3)0=B C , 4) 0=b C B ,5)()0,0,0,2,11=-=--C C A B C B ,6)()TB x x x X 543,,=.(4) 列出初始表并进行迭代运算.在该迭代过程中,确定主元时要运用最大比原则(因为该方法是在检验数非负的条件下进行的)逐次迭代,使0≥i b ,当每一个i b 都大于或等于0时,得问题的最优解,见下表表3.3.1显然在上表中常数列存在非负数,所以进行第一次迭代,通过确定主元、换基、迭代运算,得下表: 表3.3.2进行一次迭代后,常数列仍有负值存在,所以进行第二次迭代.同样通过确定主元、换基、迭代运算,得下表:表3.3.3在迭代二中,所有的0≥i b ,则停止迭代,得最优解Tx )0,5,0,5,5(=,最优值 4=f . 3.4 软件法解线性规划问题还可以用软件来做,下面介绍用MATLAB 软件求解线性规划问题。