七年级代数式的值练习题

合集下载

代数式的值 浙教版七年级上册练习题(含答案)

代数式的值 浙教版七年级上册练习题(含答案)

4.3代数式的值一、选择题1.已知|x|=3,|y|=2,且xy>0,则x−y的值等于()A. 5或−5B. 1或−1C. 5或1D. −5或−12.若|a|=8,|b|=5,且ab<0,那么a−b的值为()A. 3或13B. 13或−13C. 8或−8D. −3或−133.已知m是√15的整数部分,n是√10的小数部分,则m2−n的值是()A. 6−√10B. 6C. 12−√10D. 134.已知|2m+n+1|+(3y+1)2=0,则3y+2m+n的值是()A. 1B. 0C. −2D. 25.已知代数式x−5y的值是100,则代数式−2x+10y+5的值是()A. 205B. −200C. −195D. 2006.已知a+b=12,则代数式2a+2b−3的值是()A. 2B. −2C. −4D. −3127.若a,b互为相反数,c,d互为倒数,则代数式(a+b−1)(cd+1)的值是()A. 1B. 0C. −1D. −28.已知a2+3a=1,则代数式2a2+6a−1的值为()A. 0B. 1C. 2D. 39.已知a+b=4,则代数式1+a2+b2的值为()A. 3B. 1C. 0D. −110.若x2−3x−5=0,则6x−2x2+5的值为()A. 0B. 5C. −5D. −10二、填空题11.如果m−n=3,那么2m−2n−3的值是______.12.在一次智力竞赛中,主持人问了这样的一道题目:“a是最小的正整数,b是最大的负整数的相反数,c是绝对值最小的有理数,请问:a、b、c三数之和为多少?”你能回答主持人的问题吗?其和应为______.13.若|x−5|+(y+1)2=0,则xy的值是_______14.有理数2,+7.5,−0.03,−300%,0,中,非负整数有a个,负数有b个,正分数有c个,则a−b+c=__________.三、解答题15.已知a,b互为相反数,m,n互为倒数,c的绝对值为2,求代数式a+b+mn−c的值.16.某班为了开展乒乓球比赛活动,准备购买一些乒乓球和乒乓球拍,通过去商店了解情况,甲乙两家商店出售同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价48元,乒乓球每盒定价12元,经商谈,甲乙两家商店给出了如下优惠措施:甲店每买一副乒乓球拍赠送一盒乒乓球,乙店全部按定价的9折优惠.现该班急需乒乓球拍5副,乒乓球x盒(不少于5盒).(1)请用含x的代数式分别表示去甲、乙两店购买所需的费用;(2)当需要购买40盒乒乓球时,通过计算,说明此时去哪家商店购买较为合算;(3)当需要购买40盒乒乓球时,你能给出一种更为省钱的方法吗?试写出你的购买方法和所需费用.17.分别用a,b,c,d表示有理数,a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,d是数轴上到原点距离为5的点表示的数,求|3a−b+2c−d|的倒数.答案和解析1.【答案】B【解析】解:∵|x|=3,|y|=2,∴x=±3,y=±2.又xy>0,∴x=3,y=2或x=−3,y=−2.∴x−y=±1.故选:B.绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.有理数的乘法法则:同号得正,异号得负.本题考查了代数式求值、绝对值的性质:互为相反数的绝对值相等.能够根据两个数的乘积的符号判断两个数的符号的关系.2.【答案】B【解析】【分析】本题主要考查的是绝对值,有理数的乘法,有理数的减法,代数式求值的有关知识,先根据ab<0可以得到a,b异号,然后求出a,b,再代入代数式求值即可.【解答】解:∵ab<0,∴a,b异号,∵|a|=8,|b|=5,∴a=8,b=−5或a=−8,b=5,∴a−b=8−(−5)=13或a−b=−8−5=−13.故选B.3.【答案】C【解析】略4.【答案】C【解析】【分析】本题主要考查了绝对值,完全平方的非负性,令2m+n+1=0,3y+1=0,运用整体代入可以求出2m+n=−1,3y=−1的值代入即可求出结果.【解答】解:∵|2m+n+1|+(3y+1)2=0∴2m+n+1=0,3y+1=0∴2m+n=−1,3y=−1∴3y+2m+n=−2.故选C.5.【答案】C【解析】【分析】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.原式前两项提取−2变形后,把已知x−5y=100代入计算即可求出值.【解答】解:∵x−5y=100,∴原式=−2(x−5y)+5=−200+5=−195故选C.6.【答案】B【解析】【分析】本题主要考查的是代数式求值,运用了整体代入法的有关知识,将给出的代数式进行变形,然后整体代入求值即可.【解答】解:∵a+b=12,∴原式=2(a+b)−3=2×12−3=1−3=−2,故选B.7.【答案】D【解析】【分析】本题主要考查的是代数式求值,相反数,倒数的有关知识,先利用相反数,倒数的定义得到a+b=0,cd=1,然后代入代数式求值即可.解:∵a,b互为相反数,c,d互为倒数,∴a+b=0,cd=1,∴原式=(−1)×(1+1)=−2,故选D.8.【答案】B【解析】【分析】此题主要考查了代数式求值,正确将原式变形是解题关键.直接利用已知将原式变形,然后整体代入计算即可求出答案.【解答】解:∵a2+3a=1,∴2a2+6a=2(a2+3a)=2∴2a2+6a−1=2−1=1.故选B.9.【答案】A【解析】解:当a+b=4时,原式=1+12(a+b)=1+12×4=1+2=3,故选:A.将a+b的值代入原式=1+12(a+b)计算可得.本题主要考查代数式求值,解题的关键是得出待求代数式与已知等式间的特点,利用整体代入的办法进行计算.10.【答案】C【解析】本题考查了代数式求值,整体代入法,关键是由x2−3x−5=0,得x2−3x=5把x2−3x看作一个整体,代入计算的值即可.【解答】解:6x−2x2+5,=−2x2+6x+5=−2(x2−3x)+5=−2×5+5=−5.故选C.11.【答案】3【解析】解:∵m−n=3,∴原式=2(m−n)−3=2×3−3=6−3=3.故答案为:3.原式前两项提取公因式变形后,把已知等式代入计算即可求出值.此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.12.【答案】2【解析】解:∵a是最小的正整数,b是最大的负整数的相反数,c是绝对值最小的有理数,∴a=1,b=1,c=0,∴a+b+c=1+1+0=2.故答案是2.先根据已知条件求出a、b、c的值,再代入代数式求值即可.解题的关键是先求出a、b、c的值,然后再求代数式的值.13.【答案】−514.【答案】2【解析】【分析】本题考查了有理数的分类,解题的关键是分类的标准要不重不漏的找到符合条件的a,b,c的值.根据有理数的分类标准把给出的非负整数有a个,负数有b个,正分数有c 个,,即可求出a−b+c的值.【解答】解:有理数2,+7.5,−0.03,−300%,0中,非负整数有3个,负数有2个,正分数有1个,则a−b+c=3−2+1=2.故答案为2.15.【答案】解:∵a,b互为相反数,m,n互为倒数,c的绝对值为2,∴a+b=0,mn=1,c=±2,当c=2时,a+b+mn−c=0+1−2=−1;当c=−2时,a+b+mn−c=0+1−(−2)=0+1+2=3;由上可得,代数式a+b+mn−c的值是−1或3.【解析】本题考查的是相反数定义,倒数定义和绝对值的性质以及代数式的值,根据a,b互为相反数,m,n互为倒数,c的绝对值为2,可以求得a+b,mn、c的值,从而可以求得所求式子的值.16.【答案】解:(1)甲店购买需付款48×5+(x−5)×12=(12x+180)元;乙店购买需付款48×90%×5+12×90%×x=(10.8x+216)元;(2)当x=40时,甲店需12×40+180=660元;乙店需10.8×40+216=648元;所以乙店购买合算;(3)先甲店购买5副球拍,送5盒乒乓球240元,另外35盒乒乓球再乙店购买需378元,共需618元.【解析】(1)按照对应的方案的计算方法分别列出代数式即可;(2)把x=40代入求得的代数式求得数值,进一步比较得出答案即可;(3)根据两种方案的优惠方式,可得出先甲店购买5副球拍,送5盒乒乓球,另外35盒乒乓球再乙店购买即可.此题考查列代数式,理解两种方案的优惠方案,得出运算的方法是解决问题的关键.17.【答案】解:∵a是最小的正整数,∴a=1,∵b是最大的负整数,∴b=−1,∵c是绝对值最小的有理数,∴c=0,∵d是数轴上到原点距离为5的点表示的数,∴d=±5,∴|3a−b+2c−d|=|3+1+0−5|=1或|3a−b+2c−d|=|3+1+0+5|=9∴|3a−b+2c−d|的倒数为1或19【解析】本题主要考查了有理数的加减混合运算,有理数、绝对值,数轴及倒数,熟练掌握各自的定义是解决本题的关键.根据最小的正整数为1,最大的负整数为−1,绝对值最小的有理数为0,以及数轴上到原点距离的定义,确定出a,b,c,d的值,即可求出|3a−b+2c−d|的值,再求出其倒数即可.。

七年级上册数学3.3 代数式的值 试卷(含答案)

七年级上册数学3.3  代数式的值   试卷(含答案)

冀教版 七年级上册数学3.3 代数式的值基础闯关全练知识点代数式的值1.当x= -1时,代数式x 2+3x+2的值是 ( )A.-2B.-1C.0D.42.求下列代数式的值时,代入过程正确的是 ( ) A .当a=37时,13217222-⨯=-a B .当a=21时,2a+1=221+1 C .当a=331时,22122131022-⨯=-⎪⎭⎫ ⎝⎛a D .当a=3时,1313233222-+=-+⎪⎭⎫ ⎝⎛⨯a a 3.按图3-3-1所示的运算程序,输入一个数x ,便可输出一个相应的数y .若输入的x 为-3,则输出的y 的值为 ( )A.21B.1C.-9D.-14.若2x -y= -3,则代数式1-4x+2y 的值等于 ( )A.7B.-5C.5D.-45.当a=-23时,代数式3)1(2+a a 的值等于 . 6.小亮按图3-3-2所示的程序输入一个数10.最后输出的结果为 .7.若a 为最小的正整数,b 为a 的相反数的倒数,c 为相反数等于它本身的数,则( a+b) ×5+4c= .8.当a= -2,b=-3时,求下列各代数式的值.(1)b ab 2244a ++; (2))2(2b a +.能力提升全练1.当x=1时,代数式13++qx px 的值为2 018,则当x= -1时,代数式13++qx px 的值为 ( )A.2 017B.-2 016C.2 018D.-2 018 2.形如的式子叫做二阶行列式,它的运算法则用公式表示为=ad -bc ,则依此法则计算的结果为 ( ) A.11B.-11C.5D.-23.有一个数值转换器,原理如图3-3-3所示,若开始输入x 的值是3,可发现第1次输出的结果是10,第2次输出的结果是5,第3次输出的结果是16,第4次输出的结果是8,依次继续下去,……第2 018次输出的结果是 .4.(2017浙江嘉兴桐乡期中)当x=-1,y=21时,求下列代数式的值. ( 1)2y -x; (2) y x 23+;(3))(2y x -.5.(2019吉林延边州期末)如图3-3-4所示,一张边长为20的正方形纸片,剪去两个一样的小直角三角形和一个小长方形得到一个图案.设剪去的小长方形的长和宽分别为x 、y ,剪去的两个小直角三角形的两直角边长也分别为x 、y .(1)用含有x 、y 的代数式表示图中阴影部分的面积;(2)当x=8、y=6时,求该阴影部分的面积.三年模拟全练一、选择题1.(2019江苏苏州常熟期末,5,★☆☆)已知2a -3b=2,则8 - 6a+9b 的值是 ( )A .0B .2C .4D .9二、解答题2.(2019河北唐山路北期末,26,★★☆)某电器商销售一种微波炉和电磁炉,微波炉每台定价800元,电磁炉每台定价200元,“十一”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案. 方案一:买1台微波炉送1台电磁炉:方案二:微波炉和电磁炉都按定价的90%付款.现某客户要到该卖场购买微波炉10台,电磁炉x 台(x>10).(1)该客户按方案一、方案二购买,分别需付款多少元?(用含x 的式子表示)(2)若x= 30,通过计算说明此时按哪种方案购买较为合算;(3)当x= 30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法,并计算需付款多少元, 五年中考全练一、选择题1.(2018贵州贵阳中考.1,★☆☆)当x= -1时,代数式3x+1的值是 ( )A .-1B .-2C .4D .-4二、填空题2.(2018湖北荆州中考,13,★★☆)如图3-3-5所示,是一个运算程序示意图.若第一次输入k 的值为125,则第2 018次输出的结果是 .三、解答题3.(2016浙江湖州中考,18,★☆☆)当a=3,b=-1时,求下列代数式的值.(1)(a+b)(a -b);(2)b ab 222a ++. 核心素养全练问题背景:小红同学在学习过程中遇到这样一道计算题,“计算28.314.32228.314.344+⨯⨯-⨯”,她觉得太麻烦,估计应该有可以简化计算的方法,就去请教崔老师,崔老师说:你完成下面的问题后就可能知道该如何简化计算啦!获取新知:请你和小红一起完成崔老师提供的问题:(1)填写下表:(2)观察表格,你发现A 与B 有什么关系?解决问题:(3)请结合上述的有关信息,计算28.314.32228.314.344+⨯⨯-⨯.答案基础闯关全练1.C解析:当x=-1时,02312)1(323)1(22=+-=+-⨯+=++-x x .故选C . 2.C 解析:37没有加括号,故A 错;代入数值时一定要注意添上代数式中原来省略的乘号,故B 错;运算顺序不能改变,故D 错.故选C .3.C解析:由题意知,当x=-3时,5(x+2) -4=5×(- 3+2)-4=5×(-1)-4= -5-4=-9,故选C .4.A解析:1-4x+2y=1-2(2x -y).当2x -y= -3时,原式=1-2×(-3)=7.故选A .5.答案21 解析21321331232323)1(2=⎪⎭⎫ ⎝⎛-⨯-=⎪⎭⎫ ⎝⎛+-⨯⎪⎭⎫ ⎝⎛-⨯=+a a 6.答案256解析:当x=10时,5x+1= 51<200,继续运行此程序,当x= 51时,5x+1= 256>200,所以输出的结果为256.7.答案0解析因为a 为最小的正整数,所以a=1,又因为b 为a 的相反数的倒数,所以b=-1,因为c 为相反数等于它本身的数,所以c=0.所以(a+b )×5+4c=(1-1)×5+4×0=0.8解析:(1)当a=-2,b=-3时,64362444)3()2(444)3()2(a2222=++=⨯+-⨯-⨯+=++--b ab . (2)当a= -2,b=-3时, ()[]()()6486232)2()2(2222====----⨯+-+b a . 能力提升全练1. B解析:将x=1代人13++qx px ,可得p+q+1=2018,∴p+q=2017,将x=-1代入13++qx px ,可得-p -q+1= -(p+q )+1= -2 017+1=-2 016.故选B .2. A解析:直接代入公式计算即可,= 2×4-1×(-3)= 11.3.答案4 解析:第3次输出的结果是16.第4次输出的结果是8.第5次输出的结果是21×8=4. 第6次输出的结果是21×4=2,第7次输出的结果是21×2=1,第8次输出的结果是3×1+1 =4, 所以,从第5次开始,每3次输出为一个循环组依次循环, (2 018-4)÷3=671┄┄1.所以,第2 018次输出的结果是4.4.(1)当x=-1,y=21时,原式=2x 21-(-1)=2. (2)当x=-1,y=21时,原式=21213⨯+-⨯)(=13+-=2.(3)当x=-1,y=21时,原式=492112=⎪⎭⎫ ⎝⎛--. 5.(1)阴影部分的面积=20×20-xy - 21xy ×2= 400-2xy . (2)当x=8、y=6时,阴影部分的面积=400-2xy=400-2×8×6= 304.三年模拟全练一、选择题1.B解析:∵2a -3b= 2,∴原式=8-3(2a -3b )=8-3×2=2.故选B .二、解答题2.(1)方案一:800×10+200(x -10)=(200x+6 000)元;方案二:( 800×10+200x) ×90%=(180x+7 200)元.(2)当x=30时,方案一:200×30+6 000= 12 000(元);方案二:180×30+7 200=12 600(元),所以按方案一购买较合算.(3)先按方案一购买10台微波炉送10台电磁炉,再按方案二购买20台电磁炉,共需付款10x800+200x20x90%=11 600(元).五年中考全练一、选择题1.B解析:把x=-1代入3x+1得3×(-1)+1= -3+1= -2,故选B .二、填空题2.答案5解析: ∵第1次输出的结果是25,第2次输出的结果是5,第3次输出的结果是1,第4次输出的结果是5,第5次输出的结果是1,……,∴第2n 次输出的结果是5,第(2n+1)次输出的结果是1(n 为正整数),∴第2 018次输出的结果是5.三、解答题3.(1)当a=3,b=-1时,原式=[3+(-1)]×[3-(-1)]-2×4=8.(2)当a=3,6=-1时,原式=32+2×3×(-1)+()12-=9-6+1=4. 核心素养全练(1)当x=3,y=2时,B=16234442342222=+⨯⨯-⨯=+-y x xy ; 当x=1,y=1时,B=1114441142222=+⨯⨯-⨯=+-y x xy ; 当x=5,y=3时,B=49354443542222=+⨯⨯-⨯=+-y x xy .故答案为16,1,49.(2)B=. (3)()928.314.34428.314.3228.314.3222==+⨯⨯-⨯-⨯.。

七年级数学代数式的值 同步练习 试题

七年级数学代数式的值 同步练习 试题

币仍仅州斤爪反市希望学校代数式的值 同步练习【检测1】1.当a=3,b=1时,代数式22b a -的值是〔 〕A .2B .0C .3D .252.当21=x 时,代数式2211x x x x +++-的值是〔 〕A .2B .31C .73D .323.当a=1,b=2,21=c 时,求以下代数式的值: 〔1〕3a+4b+2c=_________________。

〔2〕=-ac b 42________________。

〔3〕=+c a b 323_________________。

〔4〕(a+b)(b+c)(c+a)=____________。

4.M 个球队进行单循环比赛〔所有参赛球队〕,每个队都与其他各队比赛一次〕,总共比赛的场数是用代数式2)1(-m m 计算的,现在有4个球队进行比赛,总共比赛几场?如果5个球队参赛呢?10个球队呢?5.电灯泡的瓦数是a 那么t 小时的用电量就是1000at 度,如果平均每天用电5小时,用三个40瓦的灯泡,每月〔以30天计算〕共用电多少度?6.一切偶数用2n(n=0,1,2,3,4,…)表示,一切奇数用2n+1(n=0,1,2,3,4,…)表示,依次写出前6个偶数和前6个奇数。

【检测2】一、选择题1.以下说法中正确的有〔 〕〔A 〕代数式的值只与代数式本身有关〔B 〕一个只含有一个字母的代数式,只有一个值〔C 〕代数式12-+x x 的值是-1〔D 〕代数式的值是用数值代替供数式里字母,按照代数式指明的运算,计算出的结果2.使代数式312--x x 的值是零的x 的值是〔 〕〔A 〕3 〔B 〕21〔C 〕31〔D 〕2 二、解答以下各题3.当x=,y=0.9时,求以下各式的值:〔1〕))((y x y x -+;〔2〕22y x -。

三、解答以下各题4.当31=a ,71=b 时,求)1())(1(b a b a a ++-++的值。

5.当312=-+a a 时,代数式231312++a a 的值是多少?四、解答以下各题6.2=+y x ,5=xy 时,求y x11+的值。

七年级数学上册代数式的值配套练习及答案

七年级数学上册代数式的值配套练习及答案

3.3代数式的值(一)一、基础训练1.用__________代替代数式中的________,按照代数式中的运算关系计算,所得的结果是代数式的值.2.当x=_______时,代数式53x的值为0.3.当a=4,b=12时,代数式a2-ba的值是___________.4.小张在计算31+a的值时,误将“+”号看成“-”号,结果得12,那么31+a的值应为_____________.5.三角形的底边为a ,底边上的高为h ,则它的面积s=_______,若s=6cm2,h=5cm,则a=_______cm.二、典型例题例1 已知a2+5ab=76,3b2+2ab=51,求代数式a2+11ab+9b2的值.分析首先将原代数式变形成(a2+5ab)+3(3b2+2ab),然后将整体代入.例2当m=2,n=1时,(1)求代数式(m+2)2和m2+2mn+n2的值;(2)写出这两个代数式值的关系.(3)当m=5,n=-2时,上述的结论是否仍成立?(4)根据(1)(2),你能用简便方法算出:当m=0.125,n=0.875时,m2+2mn+n2的值吗?分析通过代入具体数值,得知(m+2)2=m2+2mn+n2,再运用此等式求值.三、拓展提升例小明读一本共m页的书,第一天读了该书的13,第二天读了剩下的15.(1)用代数式表示小明两天共读了多少页;(2)求当m=120时,小明两天读的页数.四、课后作业1.当a =2,b =1,c =-3时,代数式2c b a b-+的值为___________. 2.若x =4时,代数式x 2-2x +a 的值为0,则a 的值为________.3.若5a b +=,6ab =,则ab a b --=________.4.当7x =时,代数式357ax bx +-=.则当7x =时,35ax bx ++=_____.5.如果某船行驶第1千米的运费是25元,以后每增加1千米,运费增加5元.现在某人租船要行驶s 千米(s 为整数,s ≥1),所需运费表示为___________________.当s =6千米时,运费为________元.6.若代数式2a 2+3a +1的值为5,求代数式4a 2+6a +8的值.7.已知2a b a b+=-,求224()a b a b a b a b +---+的值.8.从2开始,连续的偶数相加,和的情况如下表:n .并由此计算下列各题:(1) 2+4+6+8+…+202(2) 126+128+130+…+3003.3代数式的值(一)一、基础训练1.具体数值字母2. 53. 134. 505. 12ah125二、典型例题例1a2+11a+9b2=(a2+5ab)+3(3b2+2ab)=76+3×51=229 例2 (1)99(2)相等(3)成立(4)1三、拓展提升例3(1)715m(2)56四、课后作业1.4 32.-83. 14. 175. 20+5s50元6. 167.7 3 88.S=n(n+1)(1)101×(101+1)=10302;(2)150×(150+1)-62(62+1)=18744.3.3代数式的值(二)一、基础训练1.已知a,b互为相反数,c、d互为倒数,则代数式2(a+b)-3cd的值为______.2.填表:÷2+2x( )+1( )2输出( )输入y 输入x.3.右图是一个数值转换机,写出图中的输出结果:输入2- 0 0.5 输出4.当x .5.当x y x y -+=2时,代数式x y x y -+-22x y x y+-的值是___________. 二、典型例题 例1根据右边的数值转换器,按要求填写下表. x 1- 0 1 2- y 1 12- 0 12 输出 例2 填写下表,并观察下列两个代数式的值的变化情况: n 1 2 3 4 5 6 7 8 …5n +6 …n 2 …(1)(2)估计一下,哪个代数式的值先超过100?三、拓展提升例 已知311=-y x ,求代数式yxy x y xy x ---+2232的值. 分析 变形后运用整体的思想带入,可使分子分母同除以“xy ”.四、课后作业1.当x =1,y =32,z =53时,代数式y (x -y +z )的值为_______. 2.若23250x y -+=,那么23(321)x y -+=______.2x 2 14 2x +1 9 3 12x 1163.定义a*b =ab b a+,则2*(2*2)= . 4.如图所示,某计算装置有一数据入口和计算结果出口,根据图中的程序, 计算函数值,若输入的x 值为75,则输出的结果是________.5.在下列计算程序中填写适当的数或转换步骤:6.若7:4:3::=z y x ,且182=+-z y x ,求代数式z y x -+2的值.3.3代数式的值(二)一、基础训练1.-3 y =x 2 -1≤x y =5x -2≤x ≤-1 y =-x +2 1≤x ≤2输出y 值 输入x 值2.3 1281816 17 2125443.-15 -3 0 4.45.17 5二、典型例题:例1 2 0 1 3例2 (1)6或-1 (2)n2三、拓展提升:例3 3 5四、课后作业:1.4 32.-123.3 24.3 55.略6.8。

(完整版)代数式求值(精选初一七年级上代数式求值32道题)

(完整版)代数式求值(精选初一七年级上代数式求值32道题)

代数式求值专题1:已知:m=51,n=-1,求代数式3(m 2n+mn)-2(m 2n-mn)-m 2n 的值2:已知:x+x 1=3,求代数式(x+x 1)2+x+6+x1的值3:已知当x=7时,代数式ax 5+bx-8=8,求x=7时,8225++x bx a 的值.4:已知2x =3y =4z,则代数式yz yz xy z y x 3232+++-5:已知a=3b,c=4a 求代数式cb a cb a -++-65292的值6:已知a,b 互为相反数,c,d 互为倒数,x 的绝对值等于1,求代数式a+b+x 2-cdx 的值7:设a+b+c=0,abc >0,求ac b ++b a c ++c ba +的值9:5a 2-4a 2+a -9a -3a 2-4+4a ,其中a=-12;10:5ab -92a 2b+12a 2b -114ab -a 2b -5,其中a=1,b=-2;11:(3a 2-ab+7)-(5ab -4a 2+7),其中a=2,b=13;12:12x -2(x -13y 2)+3(-12x+19y 2),其中x=-2,y=-23;13:-5abc -{2a 2b -[3abc -2(2ab 2-12a 2b )]},其中a=-2,b=-1,c=314:证明多项式16+a -{8a -[a -9-3(1-2a )]}的值与字母a 的取值无关.15:由于看错了符号,某学生把一个代数式减去x 2+6x -6误当成了加法计算,结果得到2x 2-2x+3,正确的结果应该是多少?16:当12,2x y ==时,求代数式22112x xy y +++的值。

17:已知x 是最大的负整数,y 是绝对值最小的有理数,求代数式322325315x x y xy y +--的值。

18:已知3613211⎪⎭⎫ ⎝⎛⨯⨯÷-=x ,求代数式1199719981999+++++x x x x Λ的值。

3.2代数式的值+同步巩固练习2024-2025学年人教版数学七年级上册

3.2代数式的值+同步巩固练习2024-2025学年人教版数学七年级上册

第三章代数式3.2代数式的值同步巩固练习 一、选择题 1.若x =21,y =-4,则代数式y x -2的值是( ) A .-3 B .3 C .5 D .-22.若6-=x ,则代数式362-+x x 的值是( )A .-51B .-75C .-27D .-33.若21=a ,则代数式a a a 1432-+的值是( ) A .23 B .25 C .27 D .3 4.当 a =-2,b =4 时,下列各组代数式的值相等是( ) A .22b a +和2)(b a + B .22b a -和2)(b a - C .222b ab a ++和2)(b a + D .22b a -和2b a - 6.若43=-y x ,则10)3(2)3(2--+-y x y x 的值为( )A .14B .2C .18-D .2-二、填空题7.已知a =-3,则代数式a 2-1的值为 .8.若a ,b 分别表示平行四边形的底和高,则面积S =_____;当a =5cm ,b =4cm 时,S =_____cm 2.9.如图,用代数式表示圆环的面积.当R =20 cm ,r =15 cm 时,则圆环的面积(π取3.14)是 cm 2.10.如图,若开始输入的x 的值为43,按此程序运算,最后输出的结果为 .三、解答题 11.根据下列a ,b 的值,分别求代数式ab a +-2的值: (1) a =-4,b =12 (2) a =3,b =-2第9题图 第10题图12.A,B两地相距skm,甲、乙两人驾车分别以a km/h,b kmh的速度从A地到B地,且甲用的时间较少.(1)用代数式表示甲比乙少用的时间;(2)当s=360,a=108,b=72时,求(1)中代数式的值,并说明这个值表示的实际意义.13.某书店新进了一批图书,甲、乙两种书的进价分别为4元/本、10元/本. 现购进m本甲种书和n本乙种书.(1)用含m,n的代数式表示总费用;(2)若共购进1000本甲种书及2000本乙种书,求总费用.14.如图,正方形ABCD和正方形ECGF的边长分别为a和4,点D在边CE上,点B 在边GC的延长线上,连接BD、BF.图中阴影部分的面积记为S阴影.(1)请用含a的式子表示S阴影;(2)求当a=2时,S阴影的值.15.某中学准备向某体育用品公司采购一批足球和跳绳,已知足球每个定价140元,跳绳每根定价20元.该体育用品公司给该中学提供以下两种优惠方案:方案A:足球和跳绳都按定价的9折付款;方案B:买一个足球送一根跳绳.该中学计划购买足球60个,跳绳x(x≥60)根.(1)用含x的代数式将该中学分别按方案A,B购买需付款的钱数表示出来;(2)当x=90时,试通过计算说明按哪种方案购买较划算;(3)若两种优惠方案可同时使用,当x=90时,请你设计出一种最省钱的购买方案,并计算需付款多少元.。

七年级代数式练习题

七年级代数式练习题

七年级代数式练习题解决七年级代数式练习题在七年级学习代数时,练习题是提高自己掌握代数知识的重要途径。

本篇文章将提供一些七年级代数式的练习题,以帮助同学们更好地理解和掌握代数式的相关概念和运算方法。

一、基础代数式练习题1. 计算下列代数式的值:a = 4, b = 2a + ba - b2a + bab2. 计算下列代数式的值:x = 3, y = 53x + 2yx^2 + 2xy + y^2(x + y)(x - y)3. 给定代数式:5x + 2y,当 x = 2, y = 3时,求其值。

4. 将下列代数式展开:(a + b)^2(x - y)^25. 将下列代数式因式分解:x^2 + 5x + 6y^2 - 4y + 4二、复杂代数式练习题1. 将下列代数式化简:2a + 3a - 5a + a2(x + y) - 3(x - y) + 4(x + y)2. 求解方程:2x + 3 = 93(x + 4) = 2x - 53. 根据给定的条件,列方程并求解:a) 一个数的三倍减去5等于20,求这个数。

b) 两个数之和等于15,且其中一个数是另一个数的3倍,求这两个数。

4. 根据给定的图形,列方程并求解:a) 一个正方形的边长加上5等于这个正方形的对角线长。

b) 一个长方形的长是宽的3倍,且长和宽的和等于24,求长方形的周长。

5. 求解方程组:a) 3x + 2y = 102x - y = 3b) 2(a + b) = 10a -b = 4三、代数式的应用练习题1. 一个矩形的周长是16cm,宽是x cm,根据周长和宽度列方程,求出矩形的长。

2. 手机充电器收取固定费用5元,及每分钟通话费用0.2元。

根据通话时间列代数式,计算通话10分钟的费用。

3. 一个正方形和一个长方形的面积加起来是42平方米。

已知正方形的边长是x米,长方形的长是2x米,求长方形的宽度。

4. 汽车以恒定的速度行驶,行驶时间和行驶的距离之间的关系可以用代数式d = 60t来表示,其中d为距离,t为时间(单位:分钟)。

初中数学代数式化简求值练习题(含答案)

初中数学代数式化简求值练习题(含答案)

初中数学代数式化简求值练习题(含答案)1、已知x=1,求代数式x²+x(x-2)+(x+1)(x-1)的值。

2、已知x= -2,求代数式3(x-1)²+4x(x+2)-10的值。

3、先化简,再求值:2(x-3)(x+2)-(3+x)(3-x)-3(x-1)2,其中x=-2。

4、先化简再求值∶(2x³-2y²)-3(x³y²+x³)+2(y²+y²x³),其中x=-1,y=2。

5、先化简,再求值:(3x²y-2xy²)-2(xy²-2x²y),其中x=2,y=-1。

6、先化简,再求值:5y(2x²y+3xy²)-3x(4xy²+3x²y),其中x=1,y=-1。

7、先化简,再求值:(3x²y-xy²)-2(xy²-3x²y),其中x=-2,y=3。

8、先化简,再求值:(3x²y-2xy²)-2(xy²-2x²y),其中x=2,y=-1。

9、若x²+2y²=5,求多项式(3x²-2xy+y²)-(x²-2xy-3y²)的值。

10、先化简,再求值:5x²+4-3x²-5x-2x²-5+6x,其中x=-3。

11、先化简,再求值:2(x+x²y)-2/3(3x²y+3/2x)-y²,其中x=1,y=-3。

12、先化简,再求值:(4x²y-3xy)+(-5x²y+2xy)-(2yx²-1),其中x=2,y=1/2。

13、先化简,再求值:2x²y-[2xy²-2(-x²y+4xy²)],其中x=1/2,y=-2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级代数式的值练习题
1、单独一个数如-不是代数式()
2、s=πr2是一个代数式()
3、当a是一个整数时,总有意义()
4、代数式的值不能大于1
5、x与y的平方和与x、y的和的平方的差为(x+y)2-(x2+y2)
6、某工厂第一个月生产a件产品,第二个月增产x%,两个月共生产a+ax%
二、填空:’
1、设甲数为x,乙数比甲数的3倍多2,则乙数为
2、设甲数为a,乙数为b,则它们的倒数和为
3、能被3和4整除的自然数可表示为
4、a是一个两位数,b是一位数,如果把a放在b的左边,
则所在的三位数是
5、一项工程甲独做需x天完成,乙独做需y天完成,甲先做2天,乙再加入做a天,这时完成的工程为
6、一辆汽车从甲地出发,先以a千米/时速度走了m小时,
又以b千米/时的速度走了n小时到达乙地,则汽车由甲地到乙地的平均速度为千米/时
7、一件商品,每件成本a元,将成本增加25%定出价格,后因仓库积压调作,按价格的92%出售,每件还能盈利
8、有一列数:1,2,3,4,5,6,…,当按顺序从第2个数数到第6个数时共数了个数;当按顺序从第m个数数到第n个数(n>m)时共数了个数。

9、某项工程,甲单独做需a天完成,乙单独做需b天完成,则 (1)甲每天完成工程的 (2)乙每天完成工程的 (3)甲、乙合做4天完成工程的 (4)甲做3天,乙做5天完成工程的 (5)甲、乙合做天,才能完成全部工程。

三、选择题:
1、下列代数式中符号代数式书写要求的有()
①②abc2③④⑤2(a+b)⑥ah2
A、1个
B、2个
C、3个
D、4个
2、a、b两数的平方差除以a与b的差的平方的商用代数式表示为()
A、
B、
C、
D、
3、矩形的周长为s,若它的长为a,则宽为()
A、s-a
B、s-2a
C、
D、
4、当a=8,b=4,代数式的值是()
A、62
B、63
C、126
D、1022
5、若代数式2y+3y+7的值为8,则代数式4y2+6y-9的值是()
A、13
B、-2
C、17
D、-7
6、若a、b互为相反数,p、q互为倒数,m的绝对值为5,则代数式的值是()
A、-6
B、-5
C、-4
D、0
四、求代数式的值
1、当a=7,b=9求值①4a+b②③④
2、当时求代数式(ab+c)(2ac-b)的值。

3、当时,求代数式的值。

4、已知a=3b,c=,求的值。

5、已知a+19=b+9=c+8求代数式(a-b)2+(b-c)2+(c-a)2的值。

相关文档
最新文档