苏教版七年级上数学代数式单元测试卷(含答案)

合集下载

【精选】苏科版七年级数学上册 代数式单元测试卷(含答案解析)

【精选】苏科版七年级数学上册 代数式单元测试卷(含答案解析)

一、初一数学代数式解答题压轴题精选(难)1.已知A=2x2+3xy-2x-1,B=x2-xy-1(1)化简:4A-(2B+3A),将结果用含有x、y的式子表示(2)若式子4A-(2B+3A)的值与字母x的取值无关,求的值【答案】(1)解:∵A=2x2+3xy-2x-1,B=x2-xy-1,∴4A-(2B+3A)=A-2B=2x2+3xy-2x-1-2(x2-xy-1)=5xy-2x+1(2)解:根据(1)得4A-(2B+3A)= 5xy-2x+1;∵4A-(2B+3A)的值与字母x的取值无关,∴4A-(2B+3A)=5xy-2x+1=(5y-2)x+1,5y-2=0,则y= .则y3+ A- B= y3+ (A-2B)= y3+ ×1= + = = .【解析】【分析】(1)先将4A-(2B+3A)化简,再将A,B的值分别代入代数式,去括号合并同类项化为最简形式即可;(2)根据(1)化简的结果,由4A-(2B+3A)的值与字母x的取值无关,得出5y-2=0,求解得出y的值,再将代数式中含A,B的项,逆用乘法分配律最后整体代入即可算出代数式的值。

2.解答题:(1)已知a,b互为相反数,c,d互为倒数,x的绝对值为1,求a+b+x2﹣cdx.(2)10箱苹果,如果每箱以30千克为准,超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:+2,+1,0,﹣1,﹣1.5,﹣2,+1,﹣1,﹣1,﹣0.5.这10箱苹果的总质量是多少千克?(3)小亮用50元钱买了10枝钢笔,准备以一定的价格出售,如果每枝钢笔以6元的价格为标准,超过的记作正数,不足的记作负数,记录如下:0.5,0.7,﹣1,﹣1.5,0.8,1,﹣1.5,﹣2.1,9,0.9.①这10枝钢笔的最高的售价和最低的售价各是几元?②当小亮卖完钢笔后是盈还是亏?【答案】(1)解:∵a,b互为相反数,c,d互为倒数,∴a+b=0,cd=1,∴a+b+x2﹣cdx=x2﹣x∵|x|=1,∴x=±1∴当x=1时,x2﹣x=0;当x=﹣1时,x2﹣x=2(2)解:2+1+0﹣1﹣1.5﹣2+1﹣1﹣1﹣0.5=﹣330×10+(﹣3)=897答:这10箱苹果的总质量是897千克.(3)解:①最高售价为6+9=15元最低售价为6﹣2.1=3.9元②6×10+0.5+0.7﹣1﹣1.5+0.8+1﹣1.5﹣2.1+9+0.8﹣50=16.3元答:小亮卖完钢笔后盈利16.3元.【解析】【分析】(1)根据相反数及倒数的性质即可得出a+b=0,cd=1,再根据绝对值的意义,由|x|=1,得x=±1,然后分别将a+b=0,cd=1,x=1与x=-1代入代数式,即可算出答案;(2)首先列出加法算式,算出10箱苹果,超过的千克数或不足的千克数,然后用10乘以标准质量再加上超过或不足的千克数即可算出答案;(3)用6元的基准价加上超过基准价的最大值即可得出这10枝钢笔的最高的售价,用6元的基准价加上超过基准价的最小值即可得出这10枝钢笔的最低的售价,用这十支钢笔的总售价减去进价和为正数则小亮赚钱,和为负数则小亮亏钱。

苏科版七年级数学上册 代数式单元综合测试(Word版 含答案)

苏科版七年级数学上册 代数式单元综合测试(Word版 含答案)

一、初一数学代数式解答题压轴题精选(难)1.先阅读下面文字,然后按要求解题.例:1+2+3+…+100=?如果一个一个顺次相加显然太繁,我们仔细分析这100个连续自然数的规律和特点,可以发现运用加法的运算律,是可以大大简化计算,提高计算速度的.因为1+100=2+99=3+98=…=50+51=101,所以将所给算式中各加数经过交换、结合以后,可以很快求出结果.解:1+2+3+…+100=(1+100)+(2+99)+(3+98)+…+(50+51)= =5050.(1)补全例题解题过程;(2)计算a+(a+b)+(a+2b)+(a+3b)+…+(a+99b).【答案】(1)解:101×50(2)解:原式=50×(2a+99b)=100a+4950b.【解析】【分析】(1)根据算式可得共有50个101,据此解答即可.(2)仿照(1)利用加法的交换律和结合律进行计算即可.2.根据数轴和绝对值的知识回答下列问题(1)一般地,数轴上表示数m和数n两点之间的距离我们可用│m-n│表示。

例如,数轴上4和1两点之间的距离是________.数轴上-3和2两点之间的距离是________.(2)数轴上表示数a的点位于-4与2之间,则│a+4│+│a-2│的值为________.(3)当a为何值时,│a+5│+│a-1│+│a-4│有最小值?最小值为多少?【答案】(1)3;5(2)6(3)解:①a≤1时,原式=1-a+2-a+3-a+4-a=10-4a,则a=1时有最小值6;②1≤a≤2时,原式=a-1+2-a+3-a+4-a=8-2a,则a=2时有最小值4③2≤a≤3时,原式=a-1+a-2+3-a+4-a=4④3≤a≤4时,原式=a-1+a-2+a-3+4-a=2a-2;则a=3时有最小值4⑤a≥4时,原式=a-1+a-2+a-3+a-4=4a-10;则a=4时有最小值6综上所述,当a=2或3时,原式有最小值4.故答案为:(1)3;5;(2)6;(3)当a=2或3时,原式有最小值4.【解析】【解答】(1)解:数轴上表示1和4的两点之间的距离是3;表示-3和2的两点之间的距离是5( 2 )解:根据题意得:-4<a<2,即a+4>0,a-2<0则原式=a+4+2-a=6.【分析】(1)根据数轴上任意两点间的距离等于这两点所表示的数的差的绝对值即可直接算出答案;(2)根据数轴上所表示的数的特点得出-4<a<2,进而根据有理数的加减法法则得出a+4>0,a-2<0,然后根据绝对值的意义去绝对值符号,再合并同类项即可;(3)分①a≤1时,②1≤a≤2时,③2≤a≤3时,④3≤a≤4时,⑤a≥4时,五种情况,根据绝对值的意义分别取绝对值符号,再合并同类项得出答案,再比大小即可.3.电话费与通话时间的关系如下表:;(2)计算当a=100时,b的值.【答案】(1)解:依题可得:通话1分钟电话费为:0.2×1+0.8,通话2分钟电话费为:0.2×2+0.8,通话3分钟电话费为:0.2×3+0.8,通话4分钟电话费为:0.2×4+0.8,……∴通话a分钟电话费为:0.2×a+0.8,即b=0.8+0.2a.(2)解:∵a=100,∴b=0.8+0.2×100=20.8.【解析】【分析】(1)观察表格可知通话a分钟电话费为:0.2×a+0.8,即b=0.8+0.2a.(2)将a=100代入(1)中代数式,计算即可得出答案.4.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数形结合思想回答下列问题:(1)数轴上表示2和5的两点之间的距离是________,数轴上表示2和﹣3的两点之间的距离是________(2)数轴上表示x和﹣2的两点之间的距离表示为________.(3)若x表示一个有理数,且﹣4≤x≤﹣2,则|x﹣2|+|x+4|=________(4)若|x+3|+|x﹣5|=8,利用数轴求出x的整数值.【答案】(1)3;5(2)|x+2|(3)6(4)解:∵|x+3|+|x﹣5|=8,∴﹣3≤x≤5,∵x为整数,∴x=﹣3,﹣2,﹣1,0,1,2,3,4,5【解析】【解答】解:(1)数轴上表示2和5两点之间的距离是5﹣2=3,数轴上表示2和﹣3的两点之间的距离是2﹣(﹣3)=5;(2)数轴上表示x和﹣2的两点之间的距离表示为|x+2|;(3)若x表示一个有理数,且﹣4≤x≤﹣2,则|x﹣2|+|x+4|=6;故答案为:3,5;|x+2|;6.【分析】(1)根据数轴上两点间的距离是大数减小数,可得答案;(2)根据数轴上两点间的距离是大数减小数,可得答案;(3)根据线段上的点到线段的两端点的距离的和等于线段的距离,可得答案;(4)根据线段上的点到线段的两端点的距离的和等于线段的距离,可得答案.5.如图是用长度相等的小棒按一定规律摆成的一组图案.(1)第1个图案中有6根小棒;第2个图案中有________根小棒;第3个图案中有________根小棒;(2)第n个图案中有多少根小棒?(3)第25个图案中有多少根小棒?(4)是否存在某个符合上述规律的图案,由2032根小棒摆成?如果有,指出是滴几个图案;如果没有,请说明理由.【答案】(1)11;16(2)解:由图可知:第1个图案中有5+1=6根小棒,第2个图案中有2×5+2-1=11根小棒,第3个图案中有3×5+3-2=16根小棒,…,因此第n个图案中有5n+n-(n-1)=5n+1根(3)解:令n=25,得出,故第25个图案中有126根小棒(4)解:令,得出n=406.2,不是整数,故不存在符合上述规律的图案,由2032根小棒摆成【解析】【解答】(1)第2个图案中有11根小棒;第3个图案中有16根小棒;【分析】(1)(2)由图可知:第1个图案中有5+1=6根小棒,第2个图案中有2×5+2-1=11根小棒,第3个图案中有3×5+3-2=16根小棒,…由此得出第n个图案中有5n+n-(n-1)=5n+1根小棒;(3)把数据代入(2)中的规律求得答案即可;(4)利用(2)中的规律建立方程求得答案即可.6.把四张形状大小完全相同的小长方形卡片(如图①)不重叠的放在一个长为,宽为的长方形内,该长方形内部未被卡片覆盖的部分用阴影表示.(1)能否用只含的式子表示出图②中两块阴影部分的周长和?________(填“能”或“不能”);(2)若能,请你用只含的式子表示出中两块阴影部分的周长和;若不能,请说明理由. 【答案】(1)能(2)解:能,理由如下:设小长方形的长为a,宽为b,上面的长方形周长为:下面的长方形周长为:两式联立,总周长为:(由图可得)阴影部分总周长为【解析】【解答】解:(1)能;故答案为能;【分析】设图①小长方形的长为a,宽为b,由图②表示出上面与下面两个长方形的周长,求出之和,根据题意得到,代入计算即可得到结果.7.观察下列等式:31-30=2×30,32-31=2×31,33-32=2×32,(1)试写出第个等式,并说明第个等式成立的理由;(2)计算30+31+32+…+32018+32019的值.【答案】(1)根据题意得第n个等式为3n-3n-1=2×3n-1,证明如下:3n-3n-1=3×3n-1-3n-1=2×3n-1,所以成立;(2)31-30=2×30,32-31=2×31,33-32=2×32,…32019-32018=2×3201832020-32019=2×32019将这些等式相加得(31-30)+(32-31)+(33-32)+…+(32019-32018)+(32020-32019)=2×(30+31+32+…+32018+32019)故32020-30=2×(30+31+32+…+32018+32019)∴30+31+32+…+32018+32019=【解析】【分析】(1)通过观察即可发现:等式的左边是一个减法算式,被减数的底数是3,指数与等式的序号一致,减数的底数也是3,指数比等式的序号小1;等式的右边是一个乘法算式,一个因数是2 ,另一个因数与左边的减数一致,利用发现的规律即可得出通用公式:第n个等式为3n-3n-1=2×3n-1;(2)利用(1)发现的规律得出 31-30=2×30,32-31=2×31,33-32=2×32,…32019-32018=2×32018,32020-32019=2×32019根据等式的性质,将这些等式直接相加,得出32020-30=2×(30+31+32+…+32018+32019) ,从而根据等式的性质即可得出答案。

苏科版数学七年级上册 代数式同步单元检测(Word版 含答案)

苏科版数学七年级上册 代数式同步单元检测(Word版 含答案)

一、初一数学代数式解答题压轴题精选(难)1.双11购物节期间,某运动户外专营店推出满500送50元券,满800送100元券活动,先领券,再购物。

某校准备到此专营店购买羽毛球拍和羽毛球若干.已知羽毛球拍60元1个,羽毛球3元一个,买一个羽毛球拍送3个羽毛球.(1)如果要购买羽毛球拍8个,羽毛球50个,要付多少钱?(2)如果购买羽毛球拍x个(不超过16个),羽毛球50个,要付多少钱?用含x的代数式表示.(3)该校买了羽毛球50个若干个羽毛球拍,共花费712元,请问他们买了几个羽毛球拍.【答案】(1)解:60×8+(50-8×3)×3-50=508(元)(2)解:x≤6时,60x+(50-3x)×3=150+51x; 7≤x≤12时,60x+(50-3x)×3-50=100+51x; 13≤x≤16时,60x+(50-3x)×3-100=50+51x(3)解:设共买了x个羽毛球拍,根据题意得,60x+(50-3x)×3-50=712,解得,x=12. 答:共买了12个羽毛球拍.【解析】【分析】(1)根据题意直接列式计算。

(2)根据满500送50元券,满800送100元券活动,分三种情况讨论:x≤6时;7≤x≤12时;13≤x≤16时,分别用含x的代数式表示出要付的费用。

(3)根据一共花费712元,列方程求解即可。

2.某校要将一块长为a米,宽为b米的长方形空地设计成花园,现有如下两种方案供选择. 方案一:如图1,在空地上横、竖各铺一条宽为4米的石子路,其余空地种植花草.方案二:如图2,在长方形空地中留一个四分之一圆和一个半圆区域种植花草,其余空地铺筑成石子路.(1)分别表示这两种方案中石子路(图中阴影部分)的面积(若结果中含有π,则保留)(2)若a=30,b=20,该校希望多种植物美化校园,请通过计算选择其中一种方案(π取3.14).【答案】(1)解:方案一:∵石子路宽为4,∴S石子路面积=4a+4b-16,方案二:设根据图象可知S石子路面积=S长方形-S四分之一圆-S半圆=ab- πb2- π( b)2=ab- πb2(2)解:已知a=30,b=20,故方案一:S石子路面积=184m2, S植物=600-184=416m2;方案二:S石子路面积=129m2,则S植物=600-129=471m2.故答案为:择方案二,植物面积最大为471m2。

苏教版七年级上数学代数式单元测试卷(含答案)

苏教版七年级上数学代数式单元测试卷(含答案)

苏教版七年级上数学代数式单元测试卷(含答案)七年级上数学代数式单元测试班级:______________ 姓名:______________一、选择题1.计算-2x2+3x2的结果是()A。

x2B。

5x2C。

-5x2D。

-x22.足球每个m元,篮球每个n元,XXX为学校买了4个足球,7个篮球共需要()A。

(7m+4n)元B。

28mn元C。

(4m+7n)元D。

11mn元3.已知代数式-3xy与yx是同类项,那么m,n的值分别是()A。

n=-3,m=-1B。

n=-3,m=-3C。

n=3,m=5D。

n=2,m=34.下列各组代数式中,是同类项的是()A。

11xy,2B。

-5xy,yxC。

5ax,yxD。

8,x5.下列式子合并同类项正确的是()A。

3x+5y=8xyB。

3y-y=3C。

15ab-15ba=D。

7x-6x=x6.同时含有字母a、b、c且系数为1的五次单项式有() A。

1个B。

3个C。

6个D。

9个7.右图中表示阴影部分面积的代数式是()A。

ab+bcB。

c(b-d)+d(a-c)C。

ad+c(b-d)D。

ab-cd8.圆柱底面半径为3cm,高为2cm,则它的体积为() A。

97πcm3B。

18πcm3C。

3πcm3D。

18πcm39.下面选项中符合代数式书写要求的是()A。

5xy与2½B。

ay×3a2bC。

4a÷bD。

a×b+c10.已知a,b两数在数轴上的位置如图所示,则化简代数式a+b-a-1+b+2的结果是()A。

1B。

2b+3C。

2a-3D。

-111.在排成每行七天的月历表中取下一个3×3方块(图所示)。

若所有日期数之和为189,则n的值为()A。

21B。

11C。

15D。

912.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为()A。

最新苏科版数学七年级上册 代数式同步单元检测(Word版 含答案)

最新苏科版数学七年级上册 代数式同步单元检测(Word版 含答案)

一、初一数学代数式解答题压轴题精选(难)1.已知整式P=x2+x﹣1,Q=x2﹣x+1,R=﹣x2+x+1,若一个次数不高于二次的整式可以表示为aP+bQ+cR(其中a,b,c为常数).则可以进行如下分类①若a≠0,b=c=0,则称该整式为P类整式;②若a≠0,b≠0,c=0,则称该整式为PQ类整式;③若a≠0,b≠0,c≠0.则称该整式为PQR类整式;(1)模仿上面的分类方式,请给出R类整式和QR类整式的定义,若,则称该整式为“R类整式”,若,则称该整式为“QR类整式”;(2)说明整式x2﹣5x+5为“PQ类整式;(3)x2+x+1是哪一类整式?说明理由.【答案】(1)解:若a=b=0,c≠0,则称该整式为“R类整式”.若a=0,b≠0,c≠0,则称该整式为“QR类整式”.故答案是:a=b=0,c≠0;a=0,b≠0,c≠0(2)解:因为﹣2P+3Q=﹣2(x2+x﹣1)+3(x2﹣x+1)=﹣2x2﹣2x+2+3x2﹣3x+3=x2﹣5x+5.即x2﹣5x+5=﹣2P+3Q,所以x2﹣5x+5是“PQ类整式”(3)解:∵x2+x+1=(x2+x﹣1)+(x2﹣x+1)+(﹣x2+x+1),∴该整式为PQR类整式.【解析】【分析】(1)根据题干条件,可得若a=b=0,c≠0,则称该整式为“R类整式”;若a=0,b≠0,c≠0,则称该整式为“QR类整式”.(2)根据"PQ类整式"定义,由x2﹣5x+5=﹣2(x2+x﹣1)+3(x2﹣x+1) = ﹣2P+3Q,据此求出结论.(3)由x2+x+1=(x2+x﹣1)+(x2﹣x+1)+(﹣x2+x+1)= PQR,据此判断即可.2.从2开始,连续的偶数相加时,它们的和的情况如下表:S和n之间有什么关系?用公式表示出来,并计算以下两题:(1)2a+4a+6a+…+100a;(2)126a+128a+130a+…+300a.【答案】(1)解:依题可得:S=n(n+1).2a+4a+6a+…+100a,=a×(2+4+6+…+100),=a×50×51,=2550a.(2)解:∵2a+4a+6a+…+126a+128a+130a+…+300a,=a×(2+4+6+…+300),=a×150×151,=22650a.又∵2a+4a+6a+…+124a,=a×(2+4+6+…+124),=a×62×63,=3906a,∴126a+128a+130a+…+300a,=22650a-3906a,=18744a.【解析】【分析】(1)根据表中规律可得出当n个连续偶数相加时,它们的和S=n(n+1);由此计算即可得出答案.(2)根据(1)中公式分别计算出2a+4a+……+300a和2a+4a+……+124a的值,再用前面代数式的值减去后面代数式的值即可得出答案.,3.如图,在数轴上有两点A、B,点A表示的数是8,点B在点A的左侧,且AB=14,动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数:________ ;点P表示的数用含t的代数式表示为________ .(2)动点Q从点B出发沿数轴向左匀速运动,速度是点P速度的一半,动点P、Q同时出发,问点P运动多少秒后与点Q的距离为2个单位?(3)若点M为线段AP的中点,点N为线段BP的中点,在点P的运动过程中,线段MN 的长度是否会发生变化?若变化,请说明理由;若不变,求出线段MN的长.【答案】(1)解:8-14=-6;因此B点为-6;故答案为:-6;解:因为时间为t,则点P所移动距离为4t,因此点P为8-4t ;故答案为:8-4t(2)解:由题意得,Q 的速度为4÷2=2(秒)则点Q为-6-2t,又点P为8-4t;所以①P在Q的右侧时8-4t-(-2t-6)=2解得x=6②P在Q左侧时-2t-6-(8-4t)=2解得x=8答:动点P、Q同时出发,问点P运动6或8秒后与点Q的距离为2个单位.故答案为:6或8秒(3)解:①当P在A,B之间时,线段AP=8-(8-4t)=4t;线段BP=8-4t-(-6)=14-4t因点M为线段AP的中点,点N为线段BP的中点所以MP=AP=2t;NP=BP=7-2tMN=MP+NP=2t+7-2t=7②当P在P的左边时线段AP=8-(8-4t)=4t;线段BP=(-6)-(8-4t)=4t-14因点M为线段AP的中点,点N为线段BP的中点所以MP=AP=2t;NP=BP=2t-7MN=MP-NP=2t-(2t-7)=7因此在点P的运动过程中,线段MN的长度不变, MN=7【解析】【分析】(1)①由数轴上两点之间距离的规律易得B的值为8-14=16;②因为时间为t,则点P所移动距离为4t,因此易得P为8-4t(2)由题易得:Q 的速度为4÷2=2(秒)则点Q为-6-2t,又点P为8-4t;分别讨论P在Q 左侧或右侧的情况,由此列方程,易得结果为6或8秒;(3)结合(1)(2)易得当P在AB间以及P在B左边时的两种情况;当P在A,B之间时,线段AP=8-(8-4t)=4t;线段BP=8-4t-(-6)=14-4t;当P在P的左边时线段AP=8-(8-4t)=4t;线段BP=(-6)-(8-4t)=4t-14;利用中点性质,易得结果不变,为7.4.某服装厂生产一种夹克和T恤,夹克每件定价100元,T恤每件定价60元.厂方在开展促销活动期间,向客户提供两种优惠方案:① 买一件夹克送一件T恤;② 夹克和T恤都按定价的80%付款.现某客户要到该服装厂购买夹克30件,T恤x件(x >30).(1)若该客户按方案①购买,夹克需付款________元,T恤需付款________元(用含x的式子表示);若该客户按方案②购买,夹克需付款________元,T恤需付款________元(用含x的式子表示);(2)若x=40,通过计算说明按方案①、方案②哪种方案购买较为合算?(3)若两种优惠方案可同时使用,当x=40时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并说明理由.【答案】(1)3000;;2400;(2)解:当x=40时,方案①3000+60(40-30)=3600元方案②2400+48×40=4320元因为3600<4320,所以按方案①合算(3)解:先买30套夹克,此时T恤共有30件,剩下的10件的T恤用方案②购买,此时10件的T恤费用为:10×60×0.8=480,∴此时共花费了:3000+480=3480<3600 所以按方案①买30套夹克和T恤,再按方案②买10件夹克和T恤更省钱【解析】【解答】解:(1)方案①:夹克的费用:30×100=3000元,T恤的费用为:60(x-30)元;方案②:夹克的费用:30×100×0.8=2400元,T恤的费用为:60×0.8x=48x元;故答案为:(1)3000,60(x-30),2400,48x;【分析】(1)夹克每件定价100元,T恤每件定价60元根据向客户提供两种优惠方案,分别列式计算可求解。

苏教版七年级数学上册 第三单元代数式测试卷(含答案)

苏教版七年级数学上册 第三单元代数式测试卷(含答案)

苏教版七年级数学上册 第三单元代数式测试卷一、选择题(本大题共12小题,每小题3分,共36分) 1.下列说法正确的是:( ). A .单项式m 的次数是0B .单项式5×105t 的系数是5C .单项式223x π-的系数是23-D .-2 010是单项式2.在下列各式:12ab ,2a b+,ab 2+b +1,﹣9,x 3+x 2﹣3中,多项式有( )A .2个B .3个C .4个D .5个3.下列合并同类项正确的是( )①325a b ab += ;②33a b ab += ;③33a a -= ;④235325a a a +=;⑤330ab ab -=; ⑥23232332a b a b a b -= ;⑦235--=-A .①②③④B .④⑤⑥C .⑥⑦D .⑤⑥⑦4.下列各式中去括号正确的是( )A .a 2﹣(2a ﹣b 2﹣b )=a 2﹣2a ﹣b 2+bB .﹣(2x +y )﹣(﹣x 2+y 2)=﹣2x +y +x 2﹣y 2C .2x 2﹣3(x ﹣5)=2x 2﹣3x +5D .﹣a 3﹣[﹣4a 2+(1﹣3a )]=﹣a 3+4a 2﹣1+3a 5.已知mx 2y n ﹣1+4x 2y 9=0,(其中x ≠0,y ≠0)则m +n =( ) A .﹣6B .6C .5D .146.已知,2a b +=,3b c -=-,则代数式()ac b c a b +--的值是( ) A .5B .-5C .6D .-67.萱萱的妈妈下岗了,在国家政策的扶持下开了一家商店,全家每个人都要出一份力,妈妈告诉萱萱说,她第一次进货时以每件a 元的价格购进了35件牛奶;每件b 元的价格购进了50件洗发水,萱萱建议将这两种商品都以2a b+元的价格出售,则按萱萱的建议商品卖出后,商店( )A .赚钱B .赔钱C .不嫌不赔D .无法确定赚与赔 8.如果一个多项式的各项的次数都相同,那么这个多项式叫做齐次多项式.如:x 3+3xy 2+4xz 2+2y 3 是 3 次齐次多项式,若 a x+3b 2﹣6ab 3c 2 是齐次多项式,则 x 的值为( ) A .-1B .0C .1D .29.若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =( ) A .17B .67C .-67D .010.某天数学课上老师讲了整式的加减运算,小颖回到家后拿出自己的课堂笔记,认真地复习老师在课堂上所讲的内容,她突然发现一道题目:()()2222223355aab b a ab b a +---++=26b -,空格的地方被墨水弄脏了,请问空格中的一项是( ) A .+2abB .+3abC .+4abD .-ab11.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为mcm ,宽为ncm )的盒子底部(如图②)盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是( )A .4m cmB .4n cmC .2(m +n) cmD .4(m -n) cm12.定义一种对正整数n 的“F ”运算:①当n 为奇数时()31F n n =+;②当n 为偶数时,()2knF n =(其中k 是使()F n 为奇数的正整数)……,两种运算交替重复进行,例如,取24n =时,其计算过程如上图所示,若13n =,则第2020次“F ”运算的结果是( )A .1B .4C .2020D .20202二、填空题(本大题共6小题,每小题3分,共18分.) 13.111113345222n n n n n n xx x x x x +-+--+++-=________.14.三个连续整数中,n 是最小的一个,这三个数的和为________.15.若代数式mx 2+y 2﹣5x 2+5的值与字母x 的取值无关,则m 的值为_____. 16.若关于a ,b 单项式()233n m ab --的系数是4-,次数是5,则m =_____,n =_____.17.已知p=(m+2)2m x ﹣(n ﹣3)xy |n|﹣1﹣y ,若P 是关于x 的四次三项式,又是关于y 的二次三项式,则32m n+的值为_____. 18.观察下列单项式:0,23x -,38x ,415x -,524x ⋯按规律写出第n 个单项式是________. 三、解答题(本大题共6小题,共46分.) 19.先化简,再求值:(1)22225(3)4(3)a b ab ab a b ---+ , 其中2a =-,3b =-.(2) 3()2()2x y x y --++,其中1x =-,3.4y =(3)2211312()()2323x x y x y -+---+,其中x =2,y =23-20.在边长为a 的正方形的一角减去一个边长为的小正方形(a >b ),如图①① ②(1)由图①得阴影部分的面积为 .(2)沿图①中的虚线剪开拼成图②,则图②中阴影部分的面积为 . (3)由(1)(2)的结果得出结论: = .(4)利用(3)中得出的结论计算:20172-2016221.有这样一道题:“先化简,再求值:3323323()7633631)02(a a b a b a a b a b a -+---+-+,其中133a =-,0.39b =-13小宝说:本题中“133a =-,0.39b =-”是多余的条件;小玉马上反对说:这个多项式中每一项都含有a 和b,不给出a,b 的值怎么能求出多项式的值呢?你同意哪名同学的观点?请说明理由.22.按如下规律摆放五角星:(1)填写下表:(2)若按上面的规律继续摆放,是否存在某个图案,其中恰好含有2017个五角星?23.已知222322A x xy y x y =-+++,224623B x xy y x y =-+--()1当2x=,15y=-时,求2B A-的值.()2若22(3)0x a y-+-=,且2B A a-=,求a的值.24.某商场销售一种西装和领带,西装每套定价800元,领带每条定价200元.国庆节期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该商场购买西装2套,领带x条(x>2).(1)若该客户按方式一购买,需付款元(用含x的式子表示);若该客户按方式二购买,需付款元.(用含x的式子表示)(2)若x=5,通过计算说明此时按哪种方案购买较为合算?(3)当x=5时,你能给出一种更为省钱的购买方案吗?请直接写出你的购买方案,并算出所需费用.25.今年,号称“千湖之省”的湖北正遭受大旱,为提高学生环保意识,节约用水,某校数学教师编制了一道应用题:为保护水资源,某市制定一套节水的管理措施,其中对居民生活用水收费作如下规定:()1若某用户六月份用水量为18吨,求其应缴纳的水费;()2记该用户六月份用水量为x吨,试用含x的代数式表示其所需缴纳水费y(单位:元).26.用如图所示的甲,乙,丙三块木板做一个长,宽,高分别为3a(cm),2a(cm)和20cm的长方体木箱,其中甲块木板锯成两块刚好能做箱底和一个长侧面,乙块木板锯成两块刚好能做一个长侧面和一个短侧面,丙块木板锯成两块刚好能做箱盖和剩下的一个短侧面(厚度忽略不计).(1)用含a的代数式分别表示甲,乙,丙三块木板的面积(代数式要求化简);(2)如果购买一块长12a(cm),宽120cm的长方形木板做这个箱子,那么只需用去这块木板的几分之几(用含a的代数式表示)?如果a=20呢?答案 一、选择题1.D 2.B 3.D 4.D 5.B 6.C 7.D 8.C 9.B 10.A 11.B 12.A 二、填空题13.1175322n nn x x x +-+-14.33n + 15.5.16.1- 417.56-18.()()1(1)11n n n n x ---+三、解答题19.(1)5(3a 2b-ab 2)-4(-ab 2+3a 2b)=15 a 2b-5 ab 2+4ab 2-12 a 2b=3 a 2b- ab 2 代入数值原式得-18;(2)3(x −y)−2(x+y)+2=3x −3y −2x −2y+2=x −5y+2,∵x=−1,y=34.,∴x −5y+2=−1−5×34.+2=−114.(3)22113122323x x y x y ⎛⎫⎛⎫-+---+ ⎪ ⎪⎝⎭⎝⎭=3x-y 2 代入数值得559.20.解:(1)图①阴影部分的面积为a 2-b 2.(2)图②阴影部分的面积为(2a +2b )(a -b )÷2=(a+b )(a -b ). (3)由(1)(2)可得出结论:a 2-b 2=(a+b )(a -b ). (4)20172-20162=(2017+2016)(2017-2016)=4033. 21.同意小宝的观点,理由如下:因为3323323()7633631)02(a a b a b a a b a b a -+---+-+= 3323323763363102a a b a b a a b a b a -+++--+=2,所以本题中133a =-,0.39b =-是多余的条件.22.解:(1)观察发现,第1个图形五角星的个数是,1+3=4, 第2个图形五角星的个数是,1+3×2=7,第3个图形五角星的个数是,1+3×3=10, 第4个图形五角星的个数是,1+3×4=13, … 依此类推,第n 个图形五角星的个数是,1+3×n =3n +1;(2)令3n +1=2017, 解得:n =672 故第672个图案恰好含有2017个五角星. 点睛:找规律题需要记忆常见数列 1,2,3,4……n 1,3,5,7……2n -1 2,4,6,8……2n 2,4,8,16,32……2n 1,4,9,16,25……2n 2,6,12,20……n (n +1)23.解:()1∵222322A x xy y x y =-+++,224623B x xy y x y =-+--,∴2B A -,()2222462322322x xy y x y x xy y x y =-+----+++,2222462346244x xy y x y x xy y x y =-+---+---75x y =--,当2x =,15y =-时,2B A -17255⎛⎫=-⨯-⨯- ⎪⎝⎭141=-+13=-,()2∵22(3)0x a y -+-=,∴20x a -=,30y -=,∴2x a =,3y =,∵2B A a -=,∴7572531415x y a a --=-⨯-⨯=--, ∴1415a a --=,解得1a =-.24.解:(1)客户要到该商场购买西装2套,领带x 条(x >2). 方案一费用:200(x-2)+1600=200x+1200; 方案二费用:(200x+1600)×90%=180x+1440; (2)当x=5时,方案一:200×5+1200=2200(元)方案二:180×5+1440=2340(元) 所以,按方案一购买较合算.(3)先按方案一购买2套西装获赠送2条领带,再按方案二购买3条领带. 所需费用为1600+200×3×90%=2140(元),是最省钱的购买方案.25.解:()1∵101850<<,∴应缴纳水费为:()1.51021810⨯+⨯-1516=+31=元;()210x ≤吨时, 1.5y x =,10x m <≤时,()1.51021025y x x =⨯+-=-,x m >时,()()1.5102103y m x m =⨯+-+-1522033m x m =+-+-35x m =--.26.(1)解:由题意得甲的面积为:3a ×20+3a ·2a=(6a 2+60a)cm 2. 乙的面积为:2a ×20+3a ×20=100acm 2. 丙的面积为:2a ×20+3a ·2a=(6a 2+40a )cm 2.(2)解:一块长12a(cm),宽120cm 的长方形木板的面积为:12a ×120=1440a ,需要去这块木板的226601006403501440360a a a a a a a +++++=;当a=20时,原式=320501136036⨯+=.。

苏科版数学七年级上册 代数式单元测试题(Word版 含解析)

苏科版数学七年级上册 代数式单元测试题(Word版 含解析)

一、初一数学代数式解答题压轴题精选(难)1.双11购物节期间,某运动户外专营店推出满500送50元券,满800送100元券活动,先领券,再购物。

某校准备到此专营店购买羽毛球拍和羽毛球若干.已知羽毛球拍60元1个,羽毛球3元一个,买一个羽毛球拍送3个羽毛球.(1)如果要购买羽毛球拍8个,羽毛球50个,要付多少钱?(2)如果购买羽毛球拍x个(不超过16个),羽毛球50个,要付多少钱?用含x的代数式表示.(3)该校买了羽毛球50个若干个羽毛球拍,共花费712元,请问他们买了几个羽毛球拍.【答案】(1)解:60×8+(50-8×3)×3-50=508(元)(2)解:x≤6时,60x+(50-3x)×3=150+51x; 7≤x≤12时,60x+(50-3x)×3-50=100+51x; 13≤x≤16时,60x+(50-3x)×3-100=50+51x(3)解:设共买了x个羽毛球拍,根据题意得,60x+(50-3x)×3-50=712,解得,x=12. 答:共买了12个羽毛球拍.【解析】【分析】(1)根据题意直接列式计算。

(2)根据满500送50元券,满800送100元券活动,分三种情况讨论:x≤6时;7≤x≤12时;13≤x≤16时,分别用含x的代数式表示出要付的费用。

(3)根据一共花费712元,列方程求解即可。

2.解答题:(1)已知a,b互为相反数,c,d互为倒数,x的绝对值为1,求a+b+x2﹣cdx.(2)10箱苹果,如果每箱以30千克为准,超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:+2,+1,0,﹣1,﹣1.5,﹣2,+1,﹣1,﹣1,﹣0.5.这10箱苹果的总质量是多少千克?(3)小亮用50元钱买了10枝钢笔,准备以一定的价格出售,如果每枝钢笔以6元的价格为标准,超过的记作正数,不足的记作负数,记录如下:0.5,0.7,﹣1,﹣1.5,0.8,1,﹣1.5,﹣2.1,9,0.9.①这10枝钢笔的最高的售价和最低的售价各是几元?②当小亮卖完钢笔后是盈还是亏?【答案】(1)解:∵a,b互为相反数,c,d互为倒数,∴a+b=0,cd=1,∴a+b+x2﹣cdx=x2﹣x∵|x|=1,∴x=±1∴当x=1时,x2﹣x=0;当x=﹣1时,x2﹣x=2(2)解:2+1+0﹣1﹣1.5﹣2+1﹣1﹣1﹣0.5=﹣330×10+(﹣3)=897答:这10箱苹果的总质量是897千克.(3)解:①最高售价为6+9=15元最低售价为6﹣2.1=3.9元②6×10+0.5+0.7﹣1﹣1.5+0.8+1﹣1.5﹣2.1+9+0.8﹣50=16.3元答:小亮卖完钢笔后盈利16.3元.【解析】【分析】(1)根据相反数及倒数的性质即可得出a+b=0,cd=1,再根据绝对值的意义,由|x|=1,得x=±1,然后分别将a+b=0,cd=1,x=1与x=-1代入代数式,即可算出答案;(2)首先列出加法算式,算出10箱苹果,超过的千克数或不足的千克数,然后用10乘以标准质量再加上超过或不足的千克数即可算出答案;(3)用6元的基准价加上超过基准价的最大值即可得出这10枝钢笔的最高的售价,用6元的基准价加上超过基准价的最小值即可得出这10枝钢笔的最低的售价,用这十支钢笔的总售价减去进价和为正数则小亮赚钱,和为负数则小亮亏钱。

【精选】苏科版七年级上册数学 代数式单元试卷(word版含答案)

【精选】苏科版七年级上册数学 代数式单元试卷(word版含答案)

一、初一数学代数式解答题压轴题精选(难)1.如图所示,在边长为a米的正方形草坪上修建两条宽为b米的道路.(1)为了求得剩余草坪的面积,小明同学想出了两种办法,结果分别如下:方法①:________ 方法②:________请你从小明的两种求面积的方法中,直接写出含有字母a,b代数式的等式是:________(2)根据(1)中的等式,解决如下问题:①已知:,求的值;②己知:,求的值.【答案】(1)(a-b)2;a2-2ab+b2;(a-b)2=a2-2ab+b2(2)解:①把代入∴,∴②原式可化为:∴∴∴【解析】【解答】解:(1)方法①:草坪的面积=(a-b)(a-b)= .方法②:草坪的面积= ;等式为:故答案为:,;【分析】(1)方法①是根据已知条件先表示出矩形的长和宽,再根据矩形的面积公式即可得出答案;方法②是正方形的面积减去两条道路的面积,即可得出剩余草坪的面积;根据(1)得出的结论可得出;(2)①分别把的值和的值代入(1)中等式,即可得到答案;②根据题意,把(x-2018)和(x-2020)变成(x-2019)的形式,然后计算完全平方公式,展开后即可得到答案.2.某超市在十一长假期间对顾客实行优惠,规定如下:一次性购物优惠办法少于100元不予优惠超过100元但低于500元超过100元部分给予九折优惠超过500元超过500元部分给予八折优惠________元:小明妈妈一次性购300元的衣服,她实际付款________元:如果他们两人合作付款,则能少付________元. (2)小芳奶奶在该超市一次性购物x元生活用品,当x大于或等于500时,她们实际付款________元(用含x的式子表示,写最简结果)(3)如果小芳奶奶两次购物货款合计900元,第一次购物的货款为a元(200<a<300),两次购物小芳奶奶实际付款多少元?(用含a的式子表示)(4)如何能更省钱,请给出一些建议.【答案】(1)190;280;10(2)(0.8x+60)(3)解:100+0.9(a-100)+100+0.9×(500-100)+0.8(900-a-500)=(0.1a+790)元. 答:两次购物小芳奶奶实际付款(0.1a+790)元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第11题图
七年级上数学代数式单元测试
班级 姓名
一、选择题
1.计算-2x 2+3x 2的结果是 ( ) A.-5x 2
B.5x 2
C.-x 2
D.x 2
2.足球每个m 元,篮球每个n 元,桐桐为学校买了4个足球,7个篮球共需要( ) A.(7m+4n)元 B.28mn 元 C.(4m+7n)元
D.11mn 元
3.已知代数式-3x m-1y 3
与y n x n+1
是同类项,那么m,n 的值分别是 ( ) A. n=-3,m=-1
B. n=-3,m=-3
C. n=3,m=5
D. n=2,m=3
4.下列各组代数式中,是同类项的是( )
A .5x 2
y 与
15xy B .-5x 2y 与15yx 2 C .5ax 2与15
yx 2 D .83与x 3
5.下列式子合并同类项正确的是 ( )
A .3x +5y =8xy
B .3y 2-y 2
=3
C .15ab -15ba =0
D .7x 3-6x 2
=x 6.同时含有字母a 、b 、c 且系数为1的五次单项式有( )
A .1个
B .3个
C .6个
D .9个 7.右图中表示阴影部分面积的代数式是 ( ) A .ab +bc B .c(b -d)+d(a -c) C .ad +c(b -d) D .ab -cd
8.圆柱底面半径为3 cm ,高为2 cm ,则它的体积为( )
A .97π cm 2
B .18π cm 2
C .3π cm 2
D .18π2 cm 2
9.下面选项中符合代数式书写要求的是( )
A .213
cb 2
a
B .ay·3
C .24
a b
D .a×b+c
10.已知,a b 两数在数轴上的位置如图所示,则化简代数式12a b a b +--++的结果 是( )
A.1
B.23b +
C.23a -
D.-1
11.在排成每行七天的月历表中取下一个33⨯方块(如
图所示).若所有日期数之和为189,则n 的值为( ) A.21
B.11
C.15
D.9
12. 下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中
一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共
有12个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为( )
A.21
B.24
C.27
D.30 二、填空题
13.体育委员带了500元钱去买体育用品,已知一个足球a 元,一个篮球b 元,则代数式500-3a-2b 表示的意义为 。

14.已知当x=1时,2ax 2
+bx 的值为3,则当x=2时,ax 2
+bx 的值为 。

15.若关于x 的多项式3x 3
+2x 2
-mx 2
+5x-1与多项式3x 3
+nx+3x-1相等,则m n
= 。

16.a 是某数的十位数字,b 是它的个位数字,则这个数可表示为_______.
17.若A =x 2-3x -6,B =2x 2
-4x +6,则3A -2B =_______
18.单项式5.2×105a 3
bc 4
的次数是_______,单项式-
23
πa 2
b 的系数是_______. 19.代数式x 2-x 与代数式A 的和为-x 2
-x +1,则代数式A =_______.
20.已知21×2=21+2,32×3=32+3,43×4=43+4,…,若a b ×10=a
b
+10(a 、b 都是正整数),
则a +b 的值是_______.
21.当
时,代数式13
++qx px 的值为 2 005,则当时,代数式13
++qx px 的值为
__________.
22.已知甲、乙两种糖果的单价分别是x 元/千克和12元/千克.为了使甲、乙两种糖果分别销售与把它们混合成什锦糖后再销售的收入保持不变,则由20千克甲种糖果和y 千克乙种糖果混合而成的什锦糖的单价应是 元/千克.
三、解答题
23.合并同类项.
(1)5(2x -7y)-3(4x -10y); (2) (5a -3b)-3(a 2
-2b);
(3)3(3a 2-2ab)-2(4a 2
-ab) (4) 2x -[2(x +3y)-3(x -2y)] 24.化简并求值. (1)
,其中


(2),其中.
25.用同样大小的黑色棋子按如图所示的规律摆放:
(1)第5个图形有多少颗黑色棋子?
(2)第几个图形有2016颗黑色棋子?请说明理由.
26.有这样一道计算题:“计算(2x3-3x2y-2xy2)-(x3-2xy2+y3)+(-x3+3x2y-y3)的值,其中x
=1
2
,y=-1”,甲同学把x=
1
2
看错成x=-
1
2
,但计算结果仍正确,你说是怎么一回事?
27.某市出租车收费标准:3 km以内(含3 km)起步价为8元,超过3 km后每1 km加收1.8元.(1)若小明坐出租车行驶了6 km,则他应付多少元车费?
(2)如果用s表示出租车行驶的路程,m表示出租车应收的车费,请你表示出s与m之间的数量关系(s>3).
28.一种蔬菜x千克,不加工直接出售每千克可卖y元;如果经过加工质量减少了20%,价格增加了40%,问:(1)x千克这种蔬菜加工后可卖多少钱?
(2)如果这种蔬菜有1 000千克,不加工直接出售每千克可卖1.50元,加工后原1 000千克这种蔬菜可卖多少钱?比不加工多卖多少钱?
29、观察图,解答下列问题.(本题10分)
(1)图中的小圆圈被折线隔开分成六层,第一层有1个小圆圈,第二层有3个圆圈,第三层有5个圆圈,……,第六层有11个圆圈.如果要你继续画下去,那么第八层有几个小圆圈?第n层呢?
(2)某一层上有65个圆圈,这是第几层?
(3)数图中的圆圈个数可以有多种不同的方法.
比如:前两层的圆圈个数和为(1+3)或22,
由此得,1 + 3 = 22.
同样,
由前三层的圆圈个数和得:1 + 3 + 5 = 32.
由前四层的圆圈个数和得:1 + 3 + 5 + 7 = 42.
由前五层的圆圈个数和得:1 + 3 + 5 + 7 + 9 = 52.
……
根据上述请你猜测,从1开始的n个连续奇数之和是多少?用公式把它表示出来.
(4)计算:1 + 3 + 5 + … + 99的和;
(5)计算:101 + 103 + 105 + … + 199的和.
参考答案
一、选择题
1.D 2.C 3.C 4.B 5.C 6.C 7.C 8.B 9.C 10.B 11.A 12.B 二、填空题
13.因为买一个足球a 元,一个篮球b 元.所以3a 表示体育委员买了3个足球,2b 表示体育委员买了2个篮球,所以代数式500-3a-2b 表示体育委员买了3个足球、2个篮球后剩余的钱. 14.:6 15.4 16.10a +b 17.-x 2
-x -30 18.8;-
23
π 19.-2x 2
+1 20.19 21.-2003 22.
y
y
x ++201220
三、解答题23.(1)-2x -5y (2)-3a 2
+5a +3b (3)a 2
-4ab (4)3x -12y 24.解:(1)对原式去括号、合并同类项,
得()()2233214632181--++=----=--x y x y x y x y x y . 将2,0.5==-x y 代入得
.
(2)对原式去括号、合并同类项,
得()
()()2
2
2
2
3422234222⎡⎤--+-+=-++-+⎣⎦a ab a a ab a ab a a ab
222344424=-++--=--a ab a a ab a a .
将2=-a 代入得22
242(2)4(2)2480--=-⨯--⨯-=-⨯+=a a . 25.(1)第5个图形有18颗黑色棋子. (2)
=671,所以第671个图形有2016颗黑色棋子.
26.原式=-2y 3
,与x 无关
27.(1)他应付13.4•元车费 (2)m =1.8s +2.6 28.解:(1)千克这种蔬菜加工后质量为千克,价格为
元.
故千克这种蔬菜加工后可卖
(元).
(2)加工后可卖1.12×1 000×1.5=1 680(元),
(元),
比不加工多卖180元.
29、(1)15、2n -1(2)33(3)n 2
、1+3+5+… +(2n -1)= n 2
(4)2500 (5)7500。

相关文档
最新文档