数字图像处理-常用车牌定位方法的介绍和分析

合集下载

数字图像处理-车牌识别-课件

数字图像处理-车牌识别-课件

与Sobel算子类似,这也是一种边缘模板,仅是模 板权系数不一样
1 1 1 M 10 0 0
1 2 1
1 0 1 和 M 21 0 2
1 0 1
ቤተ መጻሕፍቲ ባይዱ
11
G i f(jm ,kn)M i(m ,n) m 1n1
输出: g(j,k)maG x 1,G {2}
快速边缘检测
在车牌系统中还常采用一种更简单的模板来提取 边缘(对于有干扰的图像效果不理想)
数字图像处理-车 牌识别
精品
一、车牌识别技术简介
车牌识别是现代交通管理的重要措施,是 智能交通系统的重要环节
内容: 车牌识别系统是采用数字摄像技术和计算 机信息管理技术,对运行车辆实现智能管 理的综合运用技术
理论基础:数字图像处理和模式识别 车牌识别技术具有典型性,容易推广到其
它识别对象
主要应用领域
高斯-拉普拉斯算子法
二阶微分算子 该算子对噪声不敏感(5×5)
2 4 4 4 2 4 0 8 0 4 2 4 8 24 8 4 4 0 8 0 4 2 4 4 4 2
输出: g(j,k)2f(j,k)
哈夫(Hough)变换提取直线
利用图像全局特性将边缘像素连接起来形成区域 封闭边界的一种方法
定位、分割后输出
下步工作是对分割输出进行字符识别
车徽边缘提取与识别
1、彩色图像灰度化
CCD摄像头输出的图像一般是24位真彩色图像,需 进行灰度化,使不同颜色车体统一化,同时实现 快速处理
两种制式都可以采用
PAL制: 亮度 NTSC制:亮度
Y 0 .2R 2 0 .7 2 G 0 0 .0 7B 71 Y 0 .2R 9 0 .5 9 G 7 0 .1 8B 14

数字图像处理-车牌识别技术

数字图像处理-车牌识别技术

实际应用案例二
总结词
停车场管理系统
详细描述
在停车场管理中,车牌识别技术被广泛应用于车辆进出控制和停车位寻找。通过在停车场出入口安装 车牌识别设备,可以快速准确地识别进出车辆的车牌号码,实现自动计时计费、车辆进出记录等功能 ,提高停车场的运营效率和便利性。
实际应用案例三
总结词
智能安防系统
详细描述
车牌识别技术也可以应用于智能安防系统中,如小区、校园、重要场所等。通过 安装监控摄像头和车牌识别设备,可以实时监测和记录车辆进出情况,有效防范 非法入侵和车辆盗窃等安全问题,提高安防系统的可靠性和安全性。
特征提取的目的是降低数据维度,提高分类器的识别效率,同时保留足够的信息以 区分不同的车牌。
支持向量机分类器
支持向量机(SVM)是一种常用 的分类器,用于对车牌进行分类
和识别。
SVM通过找到能够将不同类别 的车牌数据点最大化分隔的决
策边界来实现分类。
在车牌识别中,SVM通常与特 征提取技术结合使用,以实现 对车牌的准确识别。
增强的目标是使车牌区域在图像中更 加突出,同时保持车牌字符清晰可辨。
常见的图像增强技术包括对比度增强、 直方图均衡化、边缘检测等,可以根 据车牌的特点选择适合的增强算法。
图像变换
图像变换是将图像进行几何变换 或频率域变换的过程,以便提取
车牌特征或进行模式识别。
常见的图像变换包括平移、旋转、 缩放、翻转等几何变换,以及傅 里叶变换、小波变换等频率域变
字符识别是车牌识别技术的最 后一步,将分割后的字符与预 定义的字符集进行匹配,以识 别出车牌上的字符。常用的识 别算法包括模板匹配、神经网 络等。
处理识别结果
详细描述
在识别出车牌上的字符后,需 要对识别结果进行处理,如去 除无关字符、合并相邻字符等 ,以提高识别准确率。

车牌图像定位与识别

车牌图像定位与识别

专业综合实验报告----数字图像处理专业:电子信息工程班级:姓名:学号:指导教师:2014年7月18日车牌图像定位与识别一、设计目的利用matlab实现车牌识别系统,熟悉matlab应用软件的基础知识,利用其解决数字信号处理的实际应用问题,从而加深对理论知识的掌握,巩固理论课上知识的同时,加强实践能力的提高,理论联系实践,提高自身的动手能力。

同时不断的调试程序也提高了自己独立编程水平,并在实践中不断完善理论基础,有助于自身综合能力的提高。

二、设计内容和要求车牌识别系统应包含图像获取、图像处理、图像分割、字符识别、数据库管理等几个部分,能够完成复杂背景下汽车牌照的定位分割以及牌照字符的自动识别。

这里,只要求对给定的彩色车牌图像变换成灰度图像,用阈值化技术进行字符与背景的分离,再提取牌照图像。

三、设计步骤1.打开计算机,启动MATLAB程序;2.调入给定的车牌图像,并按要求进行图像处理;3.记录和整理设计报告四、设计所需设备及软件计算机一台;移动式存储器;MATLAB软件。

五、设计过程车辆牌照识别整个系统主要是由车牌定位和字符分割识别两部分组成,其中车牌定位又可以分为图像预处理及边缘提取模块和牌照的定位及分割模块;字符识别可以分为字符分割和单个字符识别两个模块。

(一)对图像进行图像转换、图像增强和边缘检测等1.载入车牌图像:原图2.将彩图转换为灰度图并绘制直方图:灰度图灰度直方图3.用roberts 算子进行边缘检测:图像中车辆牌照是具有比较显著特征的一块图象区域,这此特征表现在:近似水平的矩形区域;其中字符串都是按水平方向排列的;在整体图象中的位置较为固定。

正是由于牌照图象的这些特点,再经过适当的图象变换,它在整幅中可以明显地呈现出其边缘。

边缘提取是较经典的算法,此处边缘的提取采用的是Roberts 算子。

roberts 边缘检测图4.图像实施腐蚀操作:腐蚀后图5.平滑图像:对于受噪声干扰严重的图象,由于噪声点多在频域中映射为高频分量,因此可以在通过低通滤波器来滤除噪声,但实际中为了简化算法也可以直接在空域中用求邻域平均值的方法来削弱噪声的影响,这种方法称为图象平滑处理。

常用的车牌识别算法

常用的车牌识别算法

常用的车牌识别算法包括以下几种:
1. 车牌定位算法:用于确定车辆图像中车牌的位置。

这种算法通常会使用图像处理技术,如梯度信息投影统计、小波变换、车牌区域扫描连线算法等,以识别图像中的车牌区域。

2. 字符分割算法:在车牌定位后,需要将车牌中的字符进行分割。

这种算法通常会使用图像处理技术和机器学习算法,如基于深度学习的字符分割算法,以准确地将各个字符分割开来。

3. 字符识别算法:用于识别分割后的字符。

这种算法通常会使用机器学习算法,如卷积神经网络(CNN)或循环神经网络(RNN),以对字符进行分类和识别。

4. 神经网络识别算法:大规模神经网络识别算法是一种深度学习算法,它能够同时处理车牌定位和字符识别两个任务,具有更高的准确性和鲁棒性。

5. 启发式车牌定位算法:综合利用了图像处理技术和机器学习算法,以提高车牌定位的准确性。

这种算法通常会使用一些特征选择方法,如SVM、HOG等,以将车牌区域和非车牌区域进行区分。

6. 角度偏差和光照波动控制算法:在车牌定位和字符识别过程中,车辆的角度偏差和光照波动会影响算法的准确性。

这种算法通常会使用一些图像处理技术,如滤波、归一化等,以减小这些因素的影响。

这些算法在车牌识别过程中相互配合,以实现准确的车牌识别。

车牌识别中的图像处理技术

车牌识别中的图像处理技术

车牌识别中的图像处理技术近年来,随着智能交通系统和物联网技术的发展,车牌识别技术在交通管理、安防监控等领域得到了广泛应用。

而车牌识别中的图像处理技术则是使得车牌识别成为可能的关键。

本文将会介绍车牌识别中的图像处理技术的相关知识。

一、车牌定位车牌识别的第一步是车牌定位。

也就是在图像中找到车牌所在的位置,这需要用到图像处理中的边缘检测和形态学处理等技术。

在边缘检测中,可以使用常用的Sobel、Prewitt边缘检测算子等;在形态学处理中,常用的有腐蚀、膨胀、开操作和闭操作等。

通过这些处理,图像中的车牌区域可以被有效地定位出来。

二、车牌图像增强车牌在拍摄过程中可能会因环境光线、拍摄姿态等原因造成图像质量不佳,因此需要对图像进行增强处理,从而提高识别准确率。

车牌图像增强的方法包括灰度拉伸、直方图均衡化、中值滤波和图像分割等。

通过这些方法,车牌的图像质量得到了很大的改善,提高了识别准确率。

三、字符分割字符分割是车牌识别的关键步骤。

在字符分割中,需要将车牌中的字符分离出来,形成一个个单独的字符图像,然后将其送入字符识别模型进行识别。

字符分割的方法有多种,如基于垂直、水平投影法的分割、基于边缘检测的分割、基于聚类分析的分割等。

选择合适的分割方法可以提高识别准确率和效率。

四、字符识别字符识别是车牌识别中最核心的步骤。

在字符识别中,常用的方法有基于特征提取的方法、基于神经网络的方法、基于支持向量机的方法等。

其中,基于深度学习的字符识别方法已成为当前较为流行的方法,其具有很高的识别准确率和广泛的适用性。

五、车牌识别系统整合通过对车牌图像进行定位、增强、字符分割和字符识别等一系列处理后,就可以得到车牌号码的识别结果。

接下来就是将这些结果整合到车牌识别系统中,实现对车辆行驶的监测和识别。

车牌识别系统的整合需要考虑到系统的建设、算法的优化和硬件设备的统一等问题,这对于车牌识别系统的稳定性和实用性具有至关重要的意义。

总之,车牌识别中的图像处理技术是实现车牌识别的基础和关键,其针对车牌图像的特征和识别难点,对车牌图像进行了一系列高效、准确的处理和识别,实现了车牌的自动化识别。

图像处理技术在车牌识别中的使用技巧研究

图像处理技术在车牌识别中的使用技巧研究

图像处理技术在车牌识别中的使用技巧研究随着交通日益增多,车牌识别系统扮演着重要的角色,确保交通安全和管理。

图像处理技术在车牌识别中的应用已经取得了显著的进展,并且在许多实际应用中得到了广泛的应用。

本文将探讨车牌识别中的图像处理技术,并提出一些使用技巧,以提高准确性和效率。

一、图像预处理在车牌识别中,预处理是非常重要的一步,其目的是消除噪声、增强车牌图像的对比度和清晰度。

以下是一些常用的图像预处理方法:1. 图像的灰度化通过将彩色图像转换为灰度图像,可以减少计算量并简化后续处理步骤。

使用加权平均灰度法或者基于亮度感知的方法进行灰度化。

2. 去噪噪声会干扰车牌的识别过程,通过应用滤波算法,如中值滤波或高斯滤波,可以有效减少图像中的噪声。

3. 增强对比度使用直方图均衡化技术可以增强图像的对比度,使得车牌字符更加清晰可辨。

二、车牌定位车牌定位是车牌识别中的一个关键步骤,其目的是检测图像中的车牌位置。

以下是一些常用的车牌定位方法:1. 基于边缘检测的方法在车牌图像中,车牌和背景之间存在明显的边缘差异。

通过应用边缘检测算法,如Canny算法、Sobel算法或拉普拉斯算法,可以提取车牌图像的边缘特征,进而定位车牌。

2. 基于颜色的方法车牌通常具有特定的颜色特征,如中国车牌一般为蓝色。

通过分析图像中的颜色信息,可以筛选出可能的车牌区域。

可以使用颜色模型转换、颜色阈值分割等技术实现。

三、字符分割字符分割是将车牌区域中的字符分离为单个字符的过程。

以下是一些常用的字符分割方法:1. 基于投影的方法字符分割通常通过分析字符在水平或垂直方向上的投影信息来实现。

通过计算投影峰值和波谷之间的间距,可以判断字符之间的分割位置。

2. 基于联通区域的方法字符之间通常存在一定的连通性,通过分析车牌上字符的连通区域,可以实现字符的分割。

可以利用连通域标记算法或基于连通性分析的方法。

四、字符识别字符识别是车牌识别的核心步骤,其目的是将分割得到的字符识别为相应的字符。

基于图像处理技术的车牌识别与追踪算法设计

基于图像处理技术的车牌识别与追踪算法设计

基于图像处理技术的车牌识别与追踪算法设计车牌识别与追踪是图像处理技术中的一项重要应用。

随着交通流量的增加和道路安全的重要性上升,车辆管理系统对车牌识别与追踪算法的需求也越来越大。

本文将介绍基于图像处理技术的车牌识别与追踪算法的设计,以满足这一需求。

首先,车牌识别算法是车牌识别与追踪的核心。

车牌识别的主要任务是将车牌区域从整个图像中提取出来,并准确地识别车牌上的字符。

为了实现这一目标,可以采用以下基本步骤:第一步是图像预处理。

首先,图像需要进行灰度化处理,将彩色图像转换为灰度图像,降低计算量。

接下来,可以对图像进行相应的滤波操作,以去除噪声和其他干扰。

第二步是车牌定位。

车牌定位的目标是在整个图像中准确地定位到车牌区域。

可采用技术包括边缘检测、颜色分割和形状识别等。

边缘检测可以通过Canny边缘检测算法来实现,以找到车牌的边缘特征。

颜色分割基于车牌的颜色特点,通过阈值处理和颜色分布模型来确定车牌的位置。

形状识别可以利用车牌的形状特征进行识别。

第三步是字符分割。

在车牌定位的基础上,需要将车牌上的字符分割开来,以便后续的字符识别。

字符分割可以通过垂直投影算法和基于连通区域的分割方法来实现。

垂直投影算法利用字符的垂直投影特性来实现字符之间的分割。

基于连通区域的分割方法则通过像素点的连通性来确定字符之间的边界。

第四步是字符识别。

字符识别的目标是将分割后的字符准确地识别出来。

常用的字符识别算法包括模板匹配、神经网络和支持向量机等。

模板匹配方法可以通过构建字符库和计算字符之间的相似度来实现。

神经网络和支持向量机则是利用机器学习的方法进行字符识别。

除了车牌识别算法,车牌追踪算法也是车牌识别与追踪的重要组成部分。

车牌追踪的目标是在连续的图像帧中跟踪车牌的位置和状态。

车牌追踪可以分为两个主要部分:目标检测和目标跟踪。

目标检测的目标是在连续的图像帧中检测出车牌的位置。

可以使用常用的目标检测算法,例如基于特征的方法、级联分类器或深度学习方法。

图像处理中的数学形态学算法在车牌识别中的应用

图像处理中的数学形态学算法在车牌识别中的应用

图像处理中的数学形态学算法在车牌识别中的应用随着车辆数量的不断增加,车牌识别技术在交通管理、安防监控、停车场管理等领域中扮演着重要的角色。

而在车牌识别技术中,数学形态学算法作为一种重要的图像处理工具,具有很高的应用价值。

本文将重点探讨数学形态学算法在车牌识别中的应用,以及其在该领域中的优势和挑战。

一、数学形态学算法简介数学形态学算法是一种基于形状和结构分析的图像处理方法,其基本原理是利用集合论中的膨胀和腐蚀运算来分析图像中的形状和结构特征。

其中,膨胀操作可以扩张图像中的目标物体,而腐蚀操作可以收缩图像中的目标物体。

这些基本的形态学操作可以通过组合和重复应用来提取图像中的目标物体,并进行形状分析和特征提取。

二、数学形态学算法在车牌识别中的应用1. 车牌定位车牌识别的第一步是车牌的定位,即从整个图像中准确定位车牌的位置。

数学形态学算法可以通过腐蚀和膨胀操作来消除图像中的噪声,提取出车牌的边界信息。

通过应用腐蚀和膨胀操作,可以得到一系列形状和尺寸各异的区域,而其中包含车牌的区域往往具有明显的矩形或正方形特征。

因此,通过对这些区域进行形态学分析和筛选,可以有效地定位车牌的位置。

2. 车牌字符分割车牌字符分割是车牌识别的关键步骤之一,其中车牌上的字符需要被正确分割出来以方便后续的字符识别。

数学形态学算法可以通过腐蚀和膨胀操作来分离车牌上的字符,消除字符之间的干扰。

通过应用腐蚀操作,可以收缩车牌上的字符区域,使得字符之间的间隔增大;而通过应用膨胀操作,则可以扩张字符区域,使得字符之间的间隔变小。

通过选择合适的腐蚀和膨胀操作的组合方式,可以有效地实现车牌字符的分割。

3. 车牌字符识别车牌字符识别是车牌识别的最后一步,其中车牌上的字符需要被分析和识别出来。

数学形态学算法可以通过应用开运算和闭运算操作来修复和增强字符区域的形态特征,从而提高字符识别的准确性。

开运算可以消除字符区域之外的噪声,平滑字符区域的边界;而闭运算则可以填充字符区域中的空洞,增强字符区域的连通性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

车牌识别LPR(License Plate Recogniti ON)技术作为交通管理自动化的重要手段和车辆检测系统的一个重要环节,能经过图像抓拍、车牌定位、图像处理、字符分割、字符识别等一系列算法运算,识别出视野范围内的车辆牌照号码;它运用数字图像处理、模式识别、人工智能技术对采集到的汽车图像进行处理,能够实时准确地自动识别出车牌的数字、字母及汉字字符,并以计算机可直接运行的数据形式给出识别结果,使得车辆的电脑化监控和管理成为现实。

车牌识别技术的任务是处理、分析摄取的视频流中复杂背景的车辆图像,定位、分割牌照字符,最后自动识别牌照上的字符。

为了保证汽车车牌识别系统能在各种复杂环境下发挥其应有的作用,识别系统必须满足以下要求:
(1)鲁棒性:在任何情况下均能可靠正常地工作,且有较高的正确识别率。

(2)实时性:不论在汽车静止还是高速运行情况下,图像的采集识别系统必须在一定时间内识别出车牌全部字符,达到实时识别。

车牌识别技术的关键在于车牌定位、字符分割和字符识别三部分,其中车牌定位的准确与否直接决定后面的字符分割和识别效果,是影响整个LPR系统识
别率的主要因素,是车牌识别技术中最为关键的一步。

目前车牌定位的方法多种多样, 归纳起来主要有基于纹理特征分析的方法、 基于边缘检测的方法、 基于数学形态学定位、基于小波分析定位以及基于彩色图像定位等,这些方法各有所长。

1、车牌目标区域特点
车牌定位方法的出发点是利用车牌区域的特征来判断牌照,将车牌区域从整幅车辆图像中分割出来。

车牌自身具有许多的固有特征,这些特征对于不同的国家是不同的。

从人的视觉角度出发,我国车牌具有以下可用于定位的特征:
(1)车牌底色一般与车身颜色、字符颜色有较大差异;
(2)车牌有一个连续或由于磨损而不连续的边框;
(3)车牌内字符有多个,基本呈水平排列,在牌照的矩形区域内存在丰富的边缘,呈现规则的纹理特征;
(4)车牌内字符之间的间隔较均匀,字符和牌照底色在灰度值上存在较大的跳变,字符本身和牌照底内部都有比较均匀的灰度;
(5)不同图像中牌照的具体大小、位置不确定,但其长宽比在一定的变化范围内,存在1个最大值和1个最小值。

以上几种特征都是概念性的,各项特征单独看来都非车牌图像所独有,但将它们结合起来可以唯一地确定车牌。

在这些特征中,颜色、形状、位置特征最为直观,易于提取。

纹理特征比较抽象,必须经过一定的处理或者转换为其他特征才能得到相应的可供使用的特征指标。

通常文字内容特征至少需要经过字符分割或识别后才可能成为可利用的特征,一般只是用来判断车牌识别正确与否。

2 、常用的车牌定位算法
根据车牌的不同特征,可以采用不同的定位方法。

目前车牌定位的方法很多,最常见的定位技术主要有基于边缘检测的方法、基于彩色分割的方法、基于小波变换的方法、基于遗传算法的方法、基于数学形态学的车牌定位和基于灰度图像纹理特征分析的方法等,在此对几种常用的定位算法进行简单的介绍。

2.1 基于边缘检测的车牌定位方法
所谓“边缘”就是指其周围像素灰度有阶跃变化的那些像素的集合。

“边缘”的两侧分属于两个区域,每个区域的灰度均匀一致,而这两个区域的灰度在特征上存在一定的差异。

边缘检测的任务是精确定位边缘和抑制噪声。

检测的方法有多种, 例如Roberts 边缘算子、Prewitt 算子、Sobel 算子以及拉普拉斯边缘检测。

这些方法正是利用物体边缘处灰度变化剧烈这一特点来检测图像的边缘。

各算子对不同边缘类型的敏感程度不同, 产生的效果也不同, 经过大量实验分析可知, Roberts边缘算子是一种利用局部方差算
子寻找边缘的算子, 定位比较精确; Prewitt算子和Sobel算子对噪声有一定的抑制能力, 但不能完全排
除伪边缘; 拉普拉斯算子是二阶微分算子, 对图像中的阶跃型边缘点定位准确且具有旋转不变性, 但容易丢失一部分边缘的方向信息, 同时抗噪能力较差。

针对不同的环境和要求, 选择合适的算子来对图像进行边缘检测才能达到好的效果。

具体定位流程如图1所示。

图1 基于边缘检测的车牌定位流程
该方法的定位准确率较高、 反应时间短、 能有效去掉噪声, 适合于包含多个车牌的图像, 在多车牌图像的情况下定位速度也很快。

但是对车牌严重褪色的情况, 由于检测不到字符笔画的边缘会导致定位失败,在有外界干扰以及车牌倾斜时,定位后的区域比车牌稍大。

2.2基于彩色分割的车牌定位方法
基于彩色分割的车牌定位方法由彩色分割和目标定位等模块组成,采用多层感知器网络对彩色图像进行分割,然后通过投影法分割出潜在的车牌区域。

在进行彩色分割时采用神经网络模型,一般图像采用RGB三原色,但RGB三原色中两点的欧氏距离与颜色距离不成线性比例。

为了更好地进行彩色分割,将RGB 模式的彩色图像转化为HSI模式,即色调、饱和度和亮度,然后对输出图像的饱和度作调整。

为了减少计算量,将彩色图像抽稀后再进行模式转化。

同时,为了减少光照条件对图像分割产生的影响,采用对数方法进行彩色饱和度调整。

然后对模式转化后的彩色图像进行彩色神经网络分割,最后根据车牌底色及长宽比等先验知识,采用投影法分割出合理的车牌区域。

当获取的彩色图像质量较高时,尤其是车牌区域颜色与附近颜色差别较大时,准确率将有所下降。

该定位算法正确率较高,但由于采用了神经网络计算法,当区域颜色与附近颜色相似时,计算速度较慢。

具体定位流程如图2所示。

图2 基于彩色分割的车牌定位流程
2.3基于小波变换的车牌定位方法
小波分析是一种应用于图像处理的重要分析工具, 具有“显微镜”的特性。

小波分析的多分辨率特性使得小波分解系数在不同方向的高频子波系数具有不同特性, 因此利用方向小波能够反映出图像在不同分辨率上沿任一方向变化的情形。

小波分析的多尺度分解特性更加符合人类的视觉机制。

小波变换的基本思想是将原始信号经过伸缩、平移等运算分解为一系列具有不同空间分辨率、不同频率特性和方向特性的子带信号, 这些子带信号具有良好的时频特性, 通过利用这些特性可以实现对信号的时域、频域的局部分析。

目前利用小波分析的车牌定位算法大多是利用小波变换与其他多种方法相结合来实现更准确、快速的定位。

例如基于小波分析和数学形态学的车牌定位方法,该方法通过小波多尺度分解提取出纹理清晰且具有不同空间分辨率、不同方向的边缘子图,然后利用车牌目标区域具有水平方向低频、垂直方向高频的的特点实现子图提取,最后用数学形态学方法对小波分解后的细节图像进行一系列的形态运算,进一步消除
无用信息和噪声,以确定车牌位置。

该方法在噪声较小的情况下定位效果好,分割精度高;其缺点是速度较慢,且在噪声较大时误定位机率也随之增大。

具体定位流程如图3所示。

图3 基于小波变换的车牌定位流程
2.4基于遗传算法的车牌定位
基于遣传算法的车牌定位方法利用遗传算法对图像进行优化搜索,结合区域特征矢量构造适应度函数,最终寻找车牌区域的最佳定位参量。

车牌定位是寻找一个符合“车牌区域特征”最佳区域的过程,本质上就是从参量空间寻找最优定位参量的问题,而寻找参量空间的最优解正是遗传算法所擅长的。

但是在实时系统中,车牌定位速度受遗传算法中迭代次数的影响很大。

具体定位流程如图4所示。

图4 基于遗传算法的车牌定位流程
2.5基于数学形态学的车牌定位方法
数学形态学图像处理的基本思想是利用一个结构元素来探测一个图像, 看是否能将这个结构元素很好地放在图像内部, 同时验证填放元素的方法是否有效。

腐蚀、膨胀、开启和关闭是数学形态学的基本运算。

具体定位流程如图5所示。

图5 基于数学形态学的车牌定位流程
基于数学形态学的车牌区域定位方法不能精确确定车牌左右边界的位置, 所以必须结合其他定位方法进行精确定位。

例如基于数学形态学和边缘特征的车牌定位方法, 这种方法先对车牌图像进行预处理, 然后基于垂直方向结构元素的腐蚀运算进行滤波, 再用闭合运算来填补车牌区域内细小孔洞, 进而增强车牌区, 使车牌区成为一个连通区域, 最后利用字符边缘的特征对车牌进行准确的定位。

该方法将数学形态学运算与数字图像的特征相结合, 有效改进了传统的车牌定位方法, 提高了车牌定位的速度和准确度。

2.6基于灰度图像纹理特征分析的车牌定位方法
传统的纹理特征分析定位算法大多基于灰度图像来分析的, 因此该算法需要对图像进行预处理, 将彩色图像转换为灰度图像,然后进行行扫描, 找出图像中每一行所含有的车牌线段, 记录下它们的起始坐标和长度,如果有连续若干行均存在不少于一个的车牌线段, 且行数大于某一确定的阈值, 则认为在行的方向上找到了车牌一个候选区域, 并确定了该候选区域的起始行和高度;在已找到的可能存在车牌的区域做列扫描, 以确定该车牌候选区域的起始行和高度以及起始列坐标和长度,由此确定一个车牌区域;继续在
其他可能存在车牌的区域寻找, 直至找到所有的车牌候选区域。

图6 基于灰度图像纹理特征分析的车牌定位流程
该算法对于牌照倾斜或变形以及光照不均、偏弱或偏强有很好的效果, 但对噪声敏感, 对于背景复杂的图像可以结合垂直投影的方法来得到真正的车牌区域,可以有效地解决背景复杂的车牌定位。

车牌定位技术是车牌识别系统中的一个重要环节,在定位的精度、计算速度和适用的可靠性方面还需要进一步改进和提高。

目前,还没有一种算法能够实现对于任意背景、位置和光照条件下的汽车图像进行车牌定位。

相关文档
最新文档