21数怎么不够用了教学设计

合集下载

2.1 数怎么又不够用了(第二课时) 课堂教学设计

2.1 数怎么又不够用了(第二课时)  课堂教学设计

谈谈收获
学习目标 预 习 展 示 互 动 生成 达 标 拓 展 谈谈收获
• 对自己说,你有什么收获! 对自己说,你有什么收获 收获! • 对教师说,你有什么疑惑! 对教师说,你有什么疑惑 疑惑! • 对同学说,你有什么提示! 对同学说,你有什么提示 提示!
1< a<2 1.4< a<1.5 1.41< a <1.42 1.414< a <1.415 1.4142< a <1.4143 1<s<4 1.96<s<2.25 1.9881<s<2.0164 1.999396<s<2.002225 1.99996164<s<2.00024449
事实上, 事实上,a=1.41421356……
常见的无理数大致有以 下几种存在形式: 下几种存在形式 特殊意义的数: ①特殊意义的数 如π; 特定结构的数, ②特定结构的数 如: 0.3030030003‥‥‥ ; ‥‥‥ 2=2, 开方开不尽的数, ③开方开不尽的数 如: a a 是无理数 是无理数.

学习目标 预 习 展 示 互 动 生成 达 标 拓 展 谈谈收获

学习目标 预 习 展 示 互 动 生成 达 标 拓 展 谈谈收获

有两个边长为1 有两个边长为 的正方形,剪一剪 剪一剪, 的正方形 剪一剪 拼 一拼, 一拼 设法得到一个 大的正方形. 大的正方形 1 1 (1)设大正方形的边长 ) 满足什么条件? 为a,a满足什么条件? , 满足什么条件 可能是整数吗? (2)a可能是整数吗? ) 可能是整数吗 (3)a可能是分数吗? ) 可能是分数吗 可能是分数吗?
大庆65中学创新课堂教学模式

21数怎么不够用了

21数怎么不够用了

§2.1数怎么不够用了教学目标1.使学生了解正数与负数是从实际需要中产生的;2.使学生理解正数与负数的概念,并会判断一个数是正数还是负数;3.初步会用正负数表示具有相反意义的量;4.有理数的分类。

教学重点和难点负数的意义有理数的分类教学过程一、从学生原有的认知结构提出问题大家知道,数学与数是分不开的,它是一门研究数的学问.现在我们一起来回忆一下,小学里已经学过哪些类型的数?学生答后,教师指出:小学里学过的数可以分为三类:自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的.为了表示一个人、两只手、……,我们用到整数1,2,……4.87、……为了表示“没有人”、“没有羊”、……,我们要用到0.但在实际生活中,还有许多量不能用上述所说的自然数,零或分数、小数表示.二、师生共同研究形成正负数概念某市某一天的最高温度是零上5℃,最低温度是零下5℃.要表示这两个温度,如果只用小学学过的数,都记作5℃,就不能把它们区别清楚.它们是具有相反意义的两个量.现实生活中,像这样的相反意义的量还有很多.例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,“高于”和“低于”其意义是相反的.和“运出”,其意义是相反的.同学们能举例子吗?学生回答后,教师提出:怎样区别相反意义的量才好呢?待学生思考后,请学生回答、评议、补充.教师小结:同学们成了发明家.甲同学说,用不同颜色来区分,比如,红色5℃表示零下5℃,黑色5℃表示零上5℃;乙同学说,在数字前面加不同符号来区分,比如,△5℃表示零上5℃,×5℃表示零下5℃…….其实,中国古代数学家就曾经采用不同的颜色来区分,古时叫做“正算黑,负算赤”.如今这种方法在记账的时候还使用.所谓“赤字”,就是这样来的.现在,数学中采用符号来区分,规定零上5℃记作+5℃(读作正5℃)或5℃,把零下5℃记作-5℃(读作负5℃).这样,只要在小学里学过的数前面加上“+”或“-”号,就把两个相反意义的量简明地表示出来了.让学生用同样的方法表示出前面例子中具有相反意义的量:高于海平面8848米,记作+8848米;低于海平面155米,记作-155米;教师讲解:什么叫做正数?什么叫做负数?强调,数0既不是正数,也不是负数,它是正、负数的界限,表示“基准”的数,零不是表示“没有”,它表示一个实际存在的数量.并指出,正数,负数的“+”“-”的符号是表示性质相反的量,符号写在数字前面,这种符号叫做性质符号.三、运用举例变式练习例所有的正数组成正数集合,所有的负数组成负数集合.把下列各数中的正数和负数分别填在表示正数集合和负数集合的圈里:此例由学生口答,教师板书,注意加上省略号,说明这是因为正(负)数集合中包含所有正(负)数,而我们这里只填了其中一部分.然后,指出不仅可以用圈表示集合,也可以用大括号表示集合.课堂练习任意写出6个正数与6个负数,并分别把它们填入相应的大括号里:正数集合:{…},负数集合:{…}.四、给出有理数概念1.整数和分数统称为有理数,即有理数是英语“Rational number”的译名,更确切的译名应译作“比2.有理数的分类按有理数的符号分为三类:正有理数、负有理数和零,简称正数、负数和零五、小结由于实际生活中存在着许多具有相反意义的量,因此产生了正数与负数.正数是大于0的数,负数就是在正数前面加上“-”号的数.0既不是正数,也不是负数,0可以表示没有,也可以表示一个实际存在的数量,如0℃.六、练习设计1.北京一月份的日平均气温大约是零下3℃,用负数表示这个温度.2.在小学地理图册的世界地形图上,可以看到亚洲西部地中海旁有一个死海湖,图中标着-392,这表明死海的湖面与海平面相比的高度是怎样的?3.在下列各数中,哪些是正数?哪些是负数?-3.6,-4,9651,-0.1.4.如果-50元表示支出50元,那么+200元表示什么?5.河道中的水位比正常水位低0.2米记作-0.2米,那么比正常水位高0.1米记作什么?6.如果自行车车条的长度比标准长度长2毫米记作+2毫米,那么比标准长度短3毫米记作什么?7.一物体可以左右移动,设向右为正,问:(1)向左移动12米应记作什么?(2)“记作8米”表明什么?8.在-3,0,1/2,-5,6,-0.7,20%,516中,分数有_________,整数有_________。

2.1数怎么不够用了(教案)

2.1数怎么不够用了(教案)
1.讨论主题:学生将围绕“正负数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
另外,我觉得在课堂总结环节,可以让学生们来总结今天学到的知识点,这样既能检验他们的学习效果,也能提高他们的表达能力。同时,针对学生们在课堂中提出的疑问,我需要在课后进行总结,为下一节课做好准备,确保他们能够真正掌握正负数的知识。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解正负数的基本概念。正负数是表示具有相反意义的量的数,它是数系扩展的重要部分,广泛应用于生活各个领域。
2.案例分析:接下来,我们来看一个具体的案例。例如,温度计上0℃以上为正,以下为负,这样表示既简洁又明确。
3.重点难点解析:在讲授过程中,我会特别强调正负数的概念和加减运算规则这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
-数系扩展的意义:让学生理解数系扩展的必要性,认识到数学知识的发展过程。
2.教学难点
-正负数的概念理解:学生可能难以理解负数的实际意义,需要通过生动的实例和实际操作来加强理解。
-突破方法:借助数轴、温度计等教具,让学生直观地感受正负数。
-正负数的加减运算:学生可能对正数与负数的加减运算感到困惑,需要通过逐步引导和练习来突破。
3.介绍正数与负数的表示方法,以及它们在数轴上的表示。
4.探索正数与负数的加减运算规则,并通过实例进行解释和练习。
5.引导学生思考数系扩展的必要性,激发他们对数学知识的探索兴趣。

《数怎么不够用了》教学设计新部编版

《数怎么不够用了》教学设计新部编版

精品教学教案设计| Excellent teaching plan教师学科教案[20 -20学年度第—学期]任教学科:________________ 任教年级:________________ 任教老师:________________xx市实验学校课题:《数怎么不够用了》东坑中学王杰教学目标:知识与技能:借助生活中的实例理解有理数的意义,会判断一个数是正数还是负数,能应用正负数表示生活中具有相反意义的量,会将有理数正确分类。

过程与方法:1.体会负数引入的必要性,感受有理数应用的广泛性,并领悟数学知识来源于生活,体会数学知识与现实世界的联系。

2. 能结合具体情境出现并提出数学问题,并解释结果的合理性。

情感态度与价值观:乐于接触社会环境中的数学信息,愿意谈论数学话题,在数学活动中发挥积极作用。

教学重点:理解并掌握有理数的概念;会用正负数表示具有相反意义的量;教学难点:有理数的分类。

教学方法:自主学习,合作探究教学过程:一创设情境:某班举行知识竞赛,评分标准是答对一题加10分,答错一题扣10分,不回答得0分,每个队的基本分均为0分,四个队的答题情况见课本37页。

自主学习:探究一:什么是正负数。

1.你能把每个队的最后得分计算出来吗?2. 第一队与第四队的得分相同吗?如何区分呢?3. 自学课本38页并完成下表:4. 上面出现了一些带“一”的数,生活中你见过这样的数吗?5. 小组共同学习课本39页。

议一议6•你能再举出生活中的其他实例吗。

合作交流:1. 通过上面的学习你知道什么样的数是正数,什么样的数是负数了吗?0是正数啊还是负数?你能给它们下一个定义吗?2. 通过学习你能理解负数引入的必要性吗?归纳总结:1. 正数:2. 负数:.零:例题解析:探究二•探究正负数的意义。

(1) 如果上升20m 记作+20m 那么下降10m 记作 _________ m.(2)高出海平面 50m 记作+50m 那么-20m 表示 _______________________分析:我们规定上升和高出海平面为正,那么下降记作“负”。

2022学年七年级数学上册《2.1 数怎么不够用了》教案(2)北师大版

2022学年七年级数学上册《2.1 数怎么不够用了》教案(2)北师大版

《数怎么不够用了(2)》教案教学目标1.使学生理解有理数的意义,并能将给出的有理数进行分类;2.培养学生树立分类讨论的思想.教学重点:有理数包括哪些数.教学难点:有理数的分类及其分类的标准.教学方法:三疑三探教学教学过程一、设疑自探1、复习引入2.学生设疑①.什么是正、负数②.如何用正、负数表示具有相反意义的量数0表示量的意义是什么举例说明.③.任何一个正数都比0大吗任何一个负数都比0小吗4.什么是整数什么是分数根据学生的回答引出新课.二.解疑合探1.给出新的整数、分数概念引进负数后,数的范围扩大了.过去我们说整数只包括自然数和零,引进负数后,我们把自然数叫做正整数,自然数前加上负号的数叫做负整数,因而整数包括正整数自然数、负整数和零,同样分数包括正分数、负分数,即2.给出有理数概念整数和分数统称为有理数,即有理数是英语“Rationa number”的译名,更确切的译名应译作“比3.有理数的分类为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类的方法也常常不同根据有理数的定义可将有理数分成两类:整数和分数.有理数还有没有其他的分类方法待学生思考后,请学生回答、评议、补充.教师小结:按有理数的符号分为三类:正有理数、负有理数和零,简称正数、负数和零,并指出,在有理数范围内,正数和零统称为非负数.并向学生强调:分类可以根据不同需要,用不同的分类标准,但必须对讨论对象不重不漏地分类.三、运用举例变式练习例1将下列数按上述两种标准分类:例2下列各数是正数还是负数,是整数还是分数:三、质疑再探说说你还有什么疑惑或问题(由学生或老师来解答所提出的问题)四.运用拓展1、25,-100按两种标准分类.2.下列各数是正数还是负数,是整数还是分数3.练习设计把下列各数填在相应的括号里将各数用逗号分开:正整数集合:{…};负整数集合:{…};正分数集合:{…};负分数集合:{…}.2.填空题:1整数和分数合起来叫做______,正分数和负分数合起来叫做______.3.选择题1-100不是 [ ]A .有理数 B .自然数 C .整数 D .负有理数2在以下说法中,正确的是 [ ]A .非负有理数就是正有理数B .零表示没有,不是有理数C .正整数和负整数统称为整数D .整数和分数统称为有理数4、小结教师引导学生回答如下问题:本节课学习了哪些基本内容学习了什么数学思想方法应注意什么问题5、板书设计数轴(1)教学目标 1.使学生正确理解数轴的意义,掌握数轴的三要素;3.使学生初步理解数形结合的思想方法.教学重点:初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数.教学难点:正确理解有理数与数轴上点的对应关系.教学方法:三疑三探教学教学过程一、设疑自探1、复习引入小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗2.用“射线”能不能表示有理数为什么3.你认为把“射线”做怎样的改动,才能用来表示有理数呢待学生回答后,教师指出,这就是我们本节课所要学习的内容——数轴.二.解疑合探让学生观察挂图——放大的温度计,同时教师给予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度.在0上10个刻度,表示10℃;在0下5个刻度,表示-5℃.与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下边说边画:1.画一条水平的直线,在这条直线上任取一点作为原点通常取适中的位置,如果所需的都是正数,也可偏向左边用这点表示0相当于温度计上的0℃;2.规定直线上从原点向右为正方向箭头所指的方向,那么从原点向左为负方向相当于温度计上0℃以上为正,0℃以下为负;3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,…提问:我们能不能用这条直线表示任何有理数可列举几个数在此基础上,给出数轴的定义,即规定了原点、正方向和单位长度的直线叫做数轴.进而提问学生:在数轴上,已知一点P 表示数-5,如果数轴上的原点不选在原来位置,而改选在另一位置,那么P 对应的数是否还是-5如果单位长度改变呢如果直线的正方向改变呢通过上述提问,向学生指出:数轴的三要素——原点、正方向和单位长度,缺一不可.三.质疑再探:说说你还有什么疑惑或问题(由学生或老师来解答所提出的问题)2.1数怎么不够用了(2) (一)知识回顾 (三)例题解析 (五)课堂小结(二)观察发现 例1、例2 (四)课堂练习 练习设计1分别指出表示-2,3,-4,0,1各数的点.2A,H,D,E,O各点分别表示什么数2.在下面数轴上,A,B,C,D各点分别表示什么数3.下列各小题先分别画出数轴,然后在数轴上画出表示大括号内的一组数的点:1{-5,2,-1,-3,0}; 2{-4,,,};最后引导学生得出结论:正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,零用原点表示.小结指导学生阅读教材后指出:数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法.本节课要求同学们能掌握数轴的三要素,正确地画出数轴,在此还要提醒同学们,所有的有理数都可用数轴上的点来表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个问题以后再研究.作业:P39 1、22.2数轴(1)(一)知识回顾(三)例题解析(五)课堂小结例1、例2(二)观察发现(四)课堂练习练习设计教学后记。

2019-2020年七年级数学上册 2.1数怎么不够用了(第2课时)教案 北师大版

2019-2020年七年级数学上册 2.1数怎么不够用了(第2课时)教案 北师大版

2019-2020年七年级数学上册 2.1数怎么不够用了(第2课时)教案北师大版一、课题§2.1数怎么不够用了(2)二、教学目标1.使学生理解有理数的意义,并能将给出的有理数进行分类;2.培养学生树立分类讨论的思想.三、教学重点和难点四、教学手段现代课堂教学手段五、教学方法启发式教学六、教学过程(一)、从学生原有的认知结构提出问题1.什么是正、负数?2.如何用正、负数表示具有相反意义的量?数0表示量的意义是什么?举例说明.3.任何一个正数都比0大吗?任何一个负数都比0小吗?4.什么是整数?什么是分数?根据学生的回答引出新课.(二)、讲授新课1.给出新的整数、分数概念引进负数后,数的范围扩大了.过去我们说整数只包括自然数和零,引进负数后,我们把自然数叫做正整数,自然数前加上负号的数叫做负整数,因而整数包括正整数(自然数)、负整数和零,同样分数包括正分数、负分数,即2.给出有理数概念整数和分数统称为有理数,即有理数是英语“Rational number”的译名,更确切的译名应译作“比3.有理数的分类为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类的方法也常常不同根据有理数的定义可将有理数分成两类:整数和分数.有理数还有没有其他的分类方法?待学生思考后,请学生回答、评议、补充.教师小结:按有理数的符号分为三类:正有理数、负有理数和零,简称正数、负数和零,即并指出,在有理数范围内,正数和零统称为非负数.并向学生强调:分类可以根据不同需要,用不同的分类标准,但必须对讨论对象不重不漏地分类.(三)、运用举例变式练习例1将下列数按上述两种标准分类:例2下列各数是正数还是负数,是整数还是分数:课堂练习25,-100按两种标准分类.2.下列各数是正数还是负数,是整数还是分数?(四)、小结教师引导学生回答如下问题:本节课学习了哪些基本内容?学习了什么数学思想方法?应注意什么问题?七、练习设计1.把下列各数填在相应的括号里(将各数用逗号分开):正整数集合:{…};负整数集合:{…};正分数集合:{…};负分数集合:{…}.2.填空题:的数是______,在分数集合里的数是______;(2)整数和分数合起来叫做______,正分数和负分数合起来叫做______.3.选择题(1)-100不是[ ]A.有理数 B.自然数 C.整数 D.负有理数(2)在以下说法中,正确的是[ ]A.非负有理数就是正有理数B.零表示没有,不是有理数C.正整数和负整数统称为整数D.整数和分数统称为有理数八、板书设计2.1数怎么不够用了(2)(一)知识回顾(三)例题解析(五)课堂小结(二)观察发现例1、例2(四)课堂练习练习设计九、教学后记在传授知识的同时,一定要重视数学基本思想方法的教学.关于这一点,布鲁纳有过精彩的论述.他指出,掌握数学思想和方法可以使数学更容易理解和更容易记忆,更重要的是领会数学思想和方法是通向迁移大道的“光明之路”,如果把数学思想和方法学好了,在数学思想和方法的指导下运用数学方法驾驭数学知识,就能培养学生的数学能力.不但使数学学习变得容易,而且会使得别的学科容易学习.显然,按照布鲁纳的观点,数学教学就不能就知识论知识,而是要使学生掌握数学最根本的东西,用数学思想和方法统摄具体知识,具体解决问题的方法,逐步形成和发展数学能力.为了使学生掌握必要的数学思想和方法,需要在教学中结合内容逐步渗透,而不能脱离内容形式地传授.本课中,我们有意识地突出“分类讨论”这一数学思想方法,并在教学中注意渗透两点:1.分类的标准不同,分类的结果也不相同;2.分类的结果应是无遗漏、无重复,即每一个数必须属于某一类,又不能同时属于不同的两类.2019-2020年七年级数学上册 2.1整式学案人教新课标版【学习目标】1、理解单项式及单项式系数、次数的概念,并会找出单项式系数、次数。

2.1 数怎么不够用了

2.1 数怎么不够用了

6年级:七年级 学科:数学 执笔:王新建 审核:七年级数学备课组 内容:2.1数怎么不够用了 课型:新授 时间:2009年9月8日 班级 姓名2.1 数怎么不够用了教学目标:1、借助生活中的实例引入负数,知道负数引入的必要性。

2、会判断一个数是正数还是负数,能应用正负数表示生活中具有相反意义的量。

教学重点:能正确表示生活中具有相反意义的量 教学难点:负数意义的理解。

一.学前准备:1.在数3.2,0,1,43 ,6,99,722,88中,是自然数的有____________,是奇数的有__________________,是偶数的有____________________。

2.右边几何体的主视图是( ).A .B .C .D .3. 根据左边的实物,写出右边三种视图.二.探究活动:1.某班举行知识竞赛,评分标准是:答对一题加10分,答错一题扣10分,不回答得0分,每个队的基本分均为0分,四个代表队答题情况如下表: 每个代表队最后得分是多少?你是怎么表示的?2. 零上5度与零下3度,收入3000元与支出2000 元,盈利10万元与亏损3万元,这些数有什么特点?如何表示?3. 阅读课文P 37-40页,后填空:(1)___________________________________________叫做负数。

(2)0______________,________________。

4.将你所有学过的数进行分类,你怎么分?5.例题讲解:例1(1)在知识竞赛中,如果用+10表示加10分,那么扣20分怎样表示? (2)某人转动转盘,如果用+5圈表示沿逆时针方向转了5圈,那么沿顺时针方向转了12圈怎样表示?(3)在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02克记作+0.02克,那么-0.03克表示什么?三.学习体会:本节课你的收获是: 四.自我测试:1.举出几对具有相反意义的量,并分别用正、负数表示。

2.1 数怎么不够用了(北师大版)-

2.1  数怎么不够用了(北师大版)-

2.1 数怎么不够用了教学目标:1、借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性。

2、会判断一个数是正数还是负数,能应用正负数表示生活中具有相反意义的量。

教学重点与难点:重点:负数和有理数的概念难点:负数的概念的探索教学过程:一、引入新课请同学们看图2—1,这是某天世界城市天气预报表,你能读出这天东京和旧金山的气温数据吗?你还能读出这天纽约和柏林的气温数据吗?在这个问题中,表示东京和旧金山温度的数字是9、2、16、9,这些数是我们学习过的,根据我们的生活经验,也能知道纽约和柏林在这天的天气情况。

数据中—3、—1和—6是我们以前没有学过的数,但它们却在我们的生活中出现了。

你一定非常想知道这些数的来历,以及它们的意义等。

下面欠就来讨论这个问题。

二、新课的进行大家知道,气温分为零上温度、零度、零下温度,我们所学过的数只能表示零上温度和零度,而要表示零下温度,我们所学过的数就“不够用了”。

为了记录方便,人们就用带“—”号(读作“负”)的数来表示零下温度,这就出现了柏林的某一天的气温最高为—1度(即零下1度),最低—6度(即零下6度)。

对于比零度高的气温,可以在其前面加上“+”号(读作“正”),如东京某天的气温最高为+9度,最低+2度。

正数也可以不写前面的“正”号,如+9可以写成9等。

请同学们再看下面的问题:P31讨论中,同学们可发现,第四队的分数“不够减”了,这里也出现了比零低的数,怎么办?这里我们同样可以用带有“—”号的数表示第四队的成绩,表示为—10。

这样我们就可用带有“+”号和“—”号的数表示各队每道题的得分情况,试完成下表:P32表。

议一议:生活中你见过带“—”号的数吗?与同伴进行交流。

如:零上温度与零下温度,比零高的得分与比零低的得分,盈利与亏损等。

明确:像1,2,9,21,…这样的数叫正数,它们都比零大。

在正数前面加上“—”号的数叫负数,如—1,—6,—10,32-等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1《数怎么不够用了》教学设计
一、教学目标
1、知识与能力
借助生活中的实例理解有理数的意义;会判断一个数是正数还是负数,能应用正、负数表示生活中具有相反意义的量;会将有理数正确分类。

2、解决问题
能结合具体问题情境发现并提出数学问题,并解释结果的合理性。

3、情感态度与价值观
乐于接触社会环境中的数学信息,愿意谈论数学话题,在数学活动中发挥积极作用。

二、重点和难点
重点:能应用正负数表示具有相反意义的量。

难点:运用有理数表示实际生活问题中的量。

三、教学建议
教学时,教师可利用主题图提供的情境,通过学生身边熟悉的事物,让学生感到负数的引入确实是实际生活的需要,同时能够举一反三地找出身边可用正负数表示的量,感受有理数应用的广泛性,进而发现它们具有的共同特征。

四、教学思考
体会负数引入的必要性,感受有理数应用的广泛性,并领悟数学知识来源于生活,体会数学知识与现实世界的联系。

五、教学过程。

相关文档
最新文档