年高考数学-第一部分数学方法、思想指导第3讲分类讨论思想、转化与化归思想2转化与化归思想课件理
人教A版高考数学(文)复习课件 专题 数学思想方法第1部分专题7第2讲

设 lg(log210)=t,则 lg(lg2)=-t.由条件可知 f(t)=5,即 f(t)= at3+bsin t+4=5,所以 at3+bsin t=1,所以 f(-t)=-at3-bsin
t+4=-1+4=3.
答案 C
规律方法 复杂的数学问题常用换元法实现化归与转化,运用 “换元”把式子转化为有理式或使整式降幂等,或者把较复杂 的函数、方程、不等式问题转化为易于解决的基本问题.
▪分类讨论的常见类型:
▪(1)由数学概念引起的分类讨论:有的概念本身 就是分类的,如绝对值、直线斜率、指数函数、 对数函数等.
▪(2)由性质、定理、公式的限制引起的分类讨论: 有的定理、公式、性质是分类给出的,在不同 的条件下结论不一致,如等比数列的前n项和公 式、函数的单调性等.
▪(3)由数学运算和字母参数变化引起分类;如偶 次方根非负,对数的底数与真数的限制,方程 (不等式)的运算与根的大小比较,含参数的取 值不同会导致所得结果不同等.
3a1+3d=6, 8a1+28d=-4,
解得ad1==-3,1.
故 an=3-(n-1)=4-n.
(2)由(1)可得 bn=n·qn-1,于是 Sn=1·q0+2·q1+3·q2+…+n·qn-1. 若 q≠1,将上式两边同乘 q,得 qSn=1·q1+2·q2+…+(n-1)·qn-1+n·qn. 两式相减,得(q-1)Sn=nqn-1-q1-q2-…-qn-1 =nqn-qqn--11=nqn+1-qn-+11qn+1. 于是,Sn=nqn+1-q-n+112qn+1. 若 q=1,则 Sn=1+2+3+…+n=nn2+1.
▪历年高考中,化归与转化思想无处不在,我们 要不断培养和训练自觉的转化意识,将有利于 提高解决数学问题的应变能力,提高思维能力 和技能、技巧.
高考数学复习 专题一 第四讲 转化与化归思想课件

|AB| |MN|
+
|MN| |AB|
的
范围是________.
[思路点拨] (1)由于条件中△ABC的三边只需满足a+c=3b
即可,因此可对a,b,c取特值,即选择特殊的三角形处理.
(2)由于题目条件中过点P(-1,1)可作无数对互相垂直的直
线,因此可取特殊位置的两条直线来解决问题.
ppt精选
8
[解析] (1)取边长a,b,c分别为4,3,5的直角三角形,易求tan
A2=12,tan C2=1,所以tan A2·tan C2=12.
(2)设
|AB| |MN|
=t,考虑特殊情况:当AB垂直OP时,MN过O,
|AB|最小,|MN|最大,所以t最小=
2 2
,t最大=
2
.所以t∈
22,
2
.
又因为t+1t ≥2
t·1t =2,所以t+1t ∈2,322.
[答案]
(1)C
本问题.
(3)数形结合法:研究原问题中数量关系(解析式)与空间形
式(图形)关系,通过互相变换获得转化途径.
(4)等价转化法:把原问题转化为一个易于解决的等价问题,
以达到化归的目的.
(5)特殊化方法:把原问题的形式向特殊化形式转化,并证
明特殊化后的问题的结论适合原问题.
(6)构造法:“构造”一个合适的数学模型,把问题变为易于
[答案]
(1)2
10 5
(2)(-∞,-8]
ppt精选
15
等与不等是数学解题中矛盾的两个方面,但是它们 在一定的条件下可以相互转化,例如本例,表面看来似 乎只具有相等的数量关系,且根据这些相等关系很难解 决,但是通过挖掘其中的不等量关系,转化为不等式(组) 来求解,则显得非常简捷有效.
推荐-高考数学(理)二轮课件1.4 分类讨论思想、转化与化归思想

考情分析导引 思想方法诠释 数学思想应用
1.转化与化归思想的含义 转化与化归的思想方法,就是在研究和解决有关数学问题时,采用 某种手段将问题通过变换使之转化,进而得到解决的一种思想方法. 2.转化与化归的原则 (1)熟悉化原则:(2)简单化原则;(3)直观化原则;(4)正难则反原 则;(5)等价性原则. 3.常见的转化与化归的方法 (1)直接转化法;(2)换元法;(3)数形结合法;(4)构造法;(5)坐标法;(6) 类比法;(7)特殊化方法;(8)等价问题法;(9)补集法.
考情分析导引 思想方法诠释 教学思想应用
-12应用一 应用二 应用三
(3)由(1)知,f'(x)=2e2x+2e-2x-c,而 2e2x+2e-2x≥2 2e2������ ·2e-2������ =4, 当且仅当 x=0 时等号成立. 下面分三种情况进行讨论. 当 c<4 时,对任意 x∈R,f'(x)=2e2x+2e-2x-c>0,此时 f(x)无极值; 当 c=4 时,对任意 x≠0,f'(x)=2e2x+2e-2x-4>0,此时 f(x)无极值;
f(x)在 ������ , ������ 上单调递增.
综上所述:当 m≥0 时,f(x)在(0,+∞)上单调递增;当 m≤-1 时,f(x)在
-1+ 1-������2
(0,+∞)上单调递减;当-1<m<0 时,f(x)在 0, ������
和
-1- 1-������2
-1+ 1-������2 -1- 1-������2
-3-
考情分析导引 思想方法诠释 教学思想应用
1.分类讨论思想的含义 分类讨论思想就是当问题所给的对象不能进行统一研究时,首先 需要把研究对象按某个标准分类,然后对每一类分别研究,得出每一 类的结论,最后综合各类结果得到整个问题的解答. 2.分类讨论的原则 (1)不重不漏;(2)标准要统一,层次要分明;(3)能不分类的要尽量避 免,决不无原则地讨论. 3.分类讨论的常见类型 (1)由数学概念而引起的分类讨论;(2)由数学运算要求而引起的 分类讨论;(3)由性质、定理、公式的限制而引起的分类讨论;(4)由 图形的不确定性而引起的分类讨论;(5)由参数的变化而引起的分类 讨论;(6)由实际意义引起的讨论.
高考数学二轮复习第1部分4转化与化归思想

命题热点二
命题热点三
命题热点四
对点训练 2 设 a>0,b>0,a+b=5,则 + 1 + + 3的最大值
为 3 2
.
解析 因为 a,b>0,a+b=5,所以(a+1)+(b+3)=9.令 x=a+1,y=b+3,
则 x+y=9(x>1,y>3),于是 + 1 + + 3 = + ,
-3高考命题聚焦
思想方法诠释
1.转化与化归思想的含义
转化与化归的思想方法,就是在研究和解决有关数学问题时,采
用某种手段将问题通过变换使之转化,进而得到解决的一种方法.
一般总是将复杂的问题通过变换转化为简单的问题,将难解的问题
通过变换转化为容易求解的问题,将未解决的问题通过变换转化为
已解决的问题.
-4高考命题聚焦
q=(2a,1),p=(2b-c,cos C),且q∥p.
(1)求sin A的值;
-2cos2
(2)求三角函数式
+1 的取值范围.
1+tan
解 (1)∵p∥q,∴2acos C=2b-c.根据正弦定理,
得2sin Acos C=2sin B-sin C.
又sin B=sin(A+C)=sin Acos C+cos Asin C,
1
∴2sin
又
C=cos Asin C.∵sin C≠0,∴cos
π
0<A<π,∴A= ,sin
3
3
A= .
2
1
A=2.
-10命题热点一
高考数学化归与转化思想及方法讲解

高考数学化归与转化思想及方法讲解化归与转化的思想方法是中学数学中的重要思想方法之一,也是高考数学中重点考查的思想方法.化归与转化的思想就是将复杂或陌生、新颖的数学问题、数学信息和数学情景转化为简单或已知的数学知识和成熟的经验方法,从而解决问题的策略.化归与转化的思想,遵循以下五项基本原则: (1)化繁为简的原则. (2)化生为熟的的原则. (3)等价性原则. (4)正难反则易即逆向思维原则.当问题从正面解决困难时,可以转化为问题的逆否命题或考虑反证法.(5)形象具体化原则.将抽象的数学信息转化为可以观察,或者能够定性研究的具体问题.下面通过一些具体例子说明化归与转化思想中主要的一些方法.1.用构造法实现化归与转化例1 已知,3232,x y y x R y x --+>+∈且那么( )0y x .<+A 0y x .>+B 0 x y .<C 0 x y .>D分析:已知不等式两边都含有y x ,两个变量,而学生目前只学习一元函数,为此先把不等式化为yyxx 3232->---,使它的两边都只含有一个变量,于是可以构造辅助函数xxx f --=32)(,通过构造函数,把不等式问题化归为函数单调性问题.解:把原不等式化为y yxx3232->---,即)(3232y yxx ----->-.设.32)(xx x f --=因为函数xx--3,2均为R 上的增函数,所以xxx f --=32)(是R 上的增函数. 不等式)(3232y yxx----->-即)()(y f x f ->,0>+->∴y x y x 即,故选B .2.转换变量实现化归与转化例2设1log)2()(log 222+--+=t x t x y ,若t 在]2,2[-上变化时,y 恒取正值,求x 的取值范围.分析:本题中,如果把y 看作x 的函数,则该题就是一个有限制条件的定义域问题,解法较为复杂.由于t 在]2,2[-上变化,所以如果转换思维角度,把y 看作t 的函数,则y 就是关于t 的一次函数或常数函数.原命题的陈述方式变为:关于t 的函数y ,当自变量t 在]2,2[-上变化时,y 恒大于零,求字母x 的取值范围.从而有以下简捷解法. 解:设.1log2)(log)1(log)(2222+-+-==x x t x t f y 则)(x f 为一次函数或常数函数.当]2,2[-∈t 时,0)(>x f 恒成立,则⎩⎨⎧>>-,0)2(0)2(f f 即⎪⎩⎪⎨⎧>->+-01log3log 4log22222x x x ,解得1l o g 2-<x 或210,3log2<<∴>x x 或8>x ,所以x 的取值范围是).,8()21,0(+∞3.用换元法实现化归与转化例3已知,R a ∈求函数)cos )(sin (x a x a y --=最小值.分析:把函数)cos )(sin (x a x a y --=展开后,可以观察到该函数是关于x x x x cos sin cos sin +⋅与的三角函数式,因此可以把x x cos sin +看作一个量,把该函数式转化为一个二次函数在给定区间上的最值问题. 解:设xx t cos sin +=,则].2,2[),4sin(2-∈+=t x t π而),1(21]1)cos [(sin 21cos sin 22-=-+=⋅t x x x x所以x x x x a a t f y co s s i n )c o s (s i n )(2⋅++-==2121)1(212222-+-=-+-=a at t t at a ].2,2[,2121)(2122-∈-+-=t a a t(1)若22≤≤-a 时,当;2121)(,2m i n -==a t f a t (2)若2>a 时,)(t f 在]2,2[-上单调递减,;212)2()(2m in +-==a a f t f (3)若2-<a ,)(t f 在]2,2[-上单调递增,212)2()(2min ++=-=a af t f .4.用数形结合实现化归与转化例4 已知不等式22)12(x a x ⋅<-的解集中只有三个整数解,求实数a 的取值范围. 分析:如果本题从不等式的角度去考虑,将比较繁琐.如果画出函数22)(,)12()(ax x g x x f =-= 的大致图像(如图1所示),从图像上可以看到,要使不等式成立,必须 0>a ,而且满足22)12(x a x ⋅<-的图像在y 轴的右边,由此看到,解集中三个整数解分别为3,2,1,而4不再是不等式的解,从而由函数值的大小关系,解得实数a 的取值范围. 通过数形结合,把求不等式中字母a 的问题,化归为两个二次函数在几个关键值的大小问题. 解:在同一坐标系中画出22)(,)12()(ax x g x x f =-=(0>a )的大致图像图像,如图1所示.从图1中看到,要使不等式22)12(x a x ⋅<-的解集中只有三个整数解,那么这三个解只能是3,2,1.所以⎩⎨⎧≥<)4()4()3()3(g f g f 即⎪⎩⎪⎨⎧⋅≥⋅<22224735a a 解得.1649925≤<a 这就是实数a 的取值范围. 5.用分离变量法实现化归与转化例5 若不等式012≥++ax x 对一切]21,0(∈x 成立,则a 的最小值为 .分析:要求a 的最小值,需要求出a 的取值范围.若通过讨论一元二次不等式在给定区间上恒成立,可能较繁琐.若把字母a 单独分离出来,放于不等式的一边,则另一边是关于x 的函数关系式.通过求函数式的值域或范围,可以求得字母a 的取值范围.解:因为]21,0(∈x ,所以可以把不等式012≥++ax x 化为:)1(x x a +-≥.设x x x f 1)(+=, ]21,0(∈x .因为xx x f 1)(+=在]21,0(∈x 时单调递减,所以25)1( ,25)(-≤+-≥x x x f .要使不等式)1(xx a +-≥对一切]21,0(∈x 成立,则25-≥a ,所以a 的最小值为25-.6.用特殊化法实现化归与转化例6 已知|,0,3||,1|=⋅==OB OA OB OA 点C 在ABC ∠内,且30=∠AOC .设),(R n m OB n OA m OC ∈+=,则=nm ( )31 .A 3 .B 33.C 3 .D图1解析:本题若按通常解法,需要根据向量所给出的平面几何关系,把OB n OA m OC +=两边平方后,得到n m ,关系式,从中求出nm ,比较繁琐.现在如果把n m ,特殊化,如取1=m 则OB AC //.由AC OA AOC OA ⊥=∠=,30,1|| 得33||=AC ,所以31=n ,则3=nm ,由此判断选择支D C A ,,错误,故B 正确.7.用导数实现化归与转化例7 已知函数22()ln (0)f x x a x x x=++>, (I )令1a =,求函数()f x 在2x =处的切线方程;(Ⅱ)若()f x 在[1,)+∞上单调递增,求a 的取值范围.分析:本题是一个非基本初等函数在某点处切线和单调性的问题.在(I )中,把1a =代入函数的解析式后,再求函数的导数,得()f x 在2x =处的切线斜率,最后写出方程.在(Ⅱ)中,先求函数22()ln (0)f x x a x x x=++>的导函数)(x f ',再令0)(≥'x f 在[1,)+∞上恒成立,求得a 的取值范围. 通过导数的几何意义,把非基本初等函数的切线和单调性问题,化归为求导函数值和不等式恒成立问题,这是导数的重要贡献之一. 解:(I )由2222()ln ,'()2af x x a x f x x x x x=++=-+得切线的斜率k '(2)4f ==切点坐标(2,5+ln 2), 所求切线方程为(5ln 2)4(2)y x -+=-,即02ln 34=+--y x(Ⅱ)若函数为[1,)+∞上单调增函数,则()0f x ≥在[1,)+∞上恒成立,即不等式2220ax x x-+≥在[1,)+∞上恒成立 也即222a x x ≥-在[1,)+∞上恒成立.令22()2,x x xϕ=-上述问题等价于m ax (),a x ϕ≥而22()2x x xϕ=-为在[1.)+∞上的减函数, 则max ()(1)0,x ϕϕ==于是0a ≥为所求.8.用定义、公式、定理、图形和已知结论等实现化归与转化例8已知数列{}n a 的前n 项和322+=n S n ,求数列{}n a 的通项n a .分析:数列{}n a 的前n 项和已知,根据前n 项和定义n n a a a S +++= 21得,当2≥n 时,1--=n n n S S a ,把数列{}n a 的前n 项和问题转化为数列的通项问题. 这是最常见和应用最广泛的解题方法,它蕴含着最直接的化归与转化的思想.解:因为322+=n S n ,所以当2≥n 时, 1--=n n n S S a 243)1(23222-=---+=n n n , 又当1=n 时,53211=+==S a ,所以⎩⎨⎧=≥-=1,52,24n n n a n .9.利用命题的否定或反证法实现化归与转化例9 已知下列三个方程: 03442=+-+a ax x , 0)1(22=+-+a x a x ,0222=-+a ax x 至少有一个方程有实数根,求实数a 的取值范围.分析:若从题设入手,三个方程至少有一个有实数根,则需要分为三类,即有一个方程有实根,有两个方程有实根, 有三个方程有实根.而且前两类中又各有三种情况,比较复杂.因此考虑该问题的相反情况即:三个方程都没有实根.求得a 的范围后,再在R 上求补集.该转化较好的体现了正难反则易的思想.解:假设三个方程均无实根,则有⎪⎩⎪⎨⎧<--<-<+--)()()(30)2(4)2(2 041)-(a 1 0)34(4)4(2222a a a a a ,解(1)得:,2123<<-a 解(2)得:,311>-<a a 或解(3)得:.02<<-a 所以三个方程均无实数解时.123-<<-a 因此三个方程至少有一个实数解时a 的取值范围是123-≥-≤a a 或.10.利用归纳类比实现化归与转化例10 在球面上有四个点C B A P 、、、,如果PC PB PA 、、两两互相垂直,如图2所示,且,a PC PB PA ===那么这个球面的面积是( )223.a A π 223 .a B π 23 .a C π 2433.a D π解析:本题若只从题设条件入手,不易确定PC PB PA 、、与球心及球的半径的关系,因此不易找到等量关系进行计算.若类比我们熟悉的球与多面体的组合体,则可以联想到球的内接正方体. PC PB PA 、、看作正方体顶点P 处的三条棱(如图3),正方体的体对角线PD 就是球的直径. 通过类比, 确定了球心及半径与已知条件的关系,把问题转化为球的内接正方体P C B AD图3P ABC图2问题.所以球的半径a r 23=,球的表面积2234a rS ππ==.故选C .化归与转化的思想贯穿于解题行为的始终,化归与转化的方法精彩纷呈,不胜枚举.让我们深刻理解化归与转化的精髓,把握化归与转化的方法,进一步提高分析问题和解决问题的能力.。
2021年高考数学二轮复习第一部分数学方法、思想指导第3讲分类讨论思想、转化与化归思想1分类讨论思想

最值与单调性问题;(4)二元二次方程表示曲线类型的判定等.
-14应用一
应用二
应用三
关闭
突破训练3假设函数f(x)=aex-x-2a有两个零点,那么实数a的取值
函数 f(x)=aex-x-2a 的导函数 f'(x)=aex-1,
范围是(
= ,cos α=
=- ,
5
5
- 5
- 5
5
∴sin α+cos α= 5 ;
5
∴
B sin α+cos α=± 5 ,故选 B.
∴当 m>0 时,sin α=
5
5
α+cos α=- ;
关闭
解析
答案
-8应用一
应用二
应用三
应用二 由数学运算、性质、定理、公式引起的分类讨论
例2设等比数列{an}的前n项和为Sn.假设S3+S6=2S9,那么数列的
1-
q3(2q6-q3-1)=0,即(2q3+1)·
(q3-1)=0,因为 q≠1,
所以 q3-1≠0,则 2q3+1=0,
3
4
解得 q=- 2 .
C
关闭
解析
答案
-9应用一
应用二
应用三
思维升华1.在中学数学中,一次函数、二次函数、指数函数、对
数函数的单调性,根本不等式,等比数列的求和公式等在不同的条
1
2
ax2+(a-1)x+(11-2
(-1) -
=
(x>0),
1
≤0,即 a≥ 2时,0<x<1 时,f'(x)<0,x>1 时,f'(x)>0,
2018高考新课标数学理二轮专题复习课件:攻略一第2讲分类讨论思想、转化与化归思想 精品

当 x∈(t,3)时恒成立,∴m+4≥2t-3t 恒成立, 则 m+4≥-1,即 m≥-5; 由②得 m+4≤2x-3x,当 x∈(t,3)时恒成立,则 m +4≤23-9,即 m≤-337.
∴使函数 g(x)在区间(t,3)上总不为单调函数的 m 的 取值范围为-337<m<-5.
解析:(1)若 a>1,有 a2=4,a-1=m,此时 a=2,m =12,此时 g(x)=- x为减函数,不合题意.
若 0<a<1,有 a-1=4,a2=m, 故 a=14,m=116,检验知符合题意.
(2)∵{an}是等比数列,Sn>0,可得 a1=S1>0,q≠0. 当 q=1 时,Sn=na1>0; 当 q≠1 时,Sn=a1(11--qqn)>0,即11--qqn>0(n∈N*).
[规律方法] 一般问题特殊化,使问题处理变得直 接、简单.特殊问题一般化,可以使我们从宏观整体的高 度把握问题的一般规律,从而达到成批处理问题的效果.
角度 2 函数、方程、不等式之间的转化 [例 2-2] 已知函数 f(x)=3e|x|.若存在实数 t∈[-1, +∞),使得对任意的 x∈[1,m],m∈Z 且 m>1,都有 f(x +t)≤3ex,试求 m 的最大值.
角度 3 正难则反的转化
[例 2-3] (1)若二次函数 f(x)=4x2-2(p-2)x-2p2 -p+1 在区间[-1,1]内至少存在一个值 c,使得 f(c)>0, 则实数 p 的取值范围为________.
(2)(2016·湖北襄阳统考)若对于任意 t∈[1,2],函数 g(x)=x3+m2 +2x2-2x 在区间(t,3)上总不为单调函数, 则实数 m 的取值范围是________.
数学四大思想:函数与方程、转化与化归、分类讨论、数形结合

数学四大思想:函数与方程、转化与化归、分类讨论、数形结合数学四大思想:函数与方程、转化与化归、分类讨论、数形结合;函数与方程函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。
方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。
有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的。
笛卡尔的方程思想是:实际问题→数学问题→代数问题→方程问题。
宇宙世界,充斥着等式和不等式。
我们知道,哪里有等式,哪里就有方程;哪里有公式,哪里就有方程;求值问题是通过解方程来实现的……等等;不等式问题也与方程是近亲,密切相关。
而函数和多元方程没有什么本质的区别,如函数y=f(x),就可以看作关于x、y的二元方程f(x)-y=0。
可以说,函数的研究离不开方程。
列方程、解方程和研究方程的特性,都是应用方程思想时需要重点考虑的。
函数描述了自然界中数量之间的关系,函数思想通过提出问题的数学特征,建立函数关系型的数学模型,从而进行研究。
它体现了“联系和变化”的辩证唯物主义观点。
一般地,函数思想是构造函数从而利用函数的性质解题,经常利用的性质是:f(x)、f (x)的单调性、奇偶性、周期性、最大值和最小值、图像变换等,要求我们熟练掌握的是一次函数、二次函数、幂函数、指数函数、对数函数、三角函数的具体特性。
在解题中,善于挖掘题目中的隐含条件,构造出函数解析式和妙用函数的性质,是应用函数思想的关键。
对所给的问题观察、分析、判断比较深入、充分、全面时,才能产生由此及彼的联系,构造出函数原型。
另外,方程问题、不等式问题和某些代数问题也可以转化为与其相关的函数问题,即用函数思想解答非函数问题。
函数知识涉及的知识点多、面广,在概念性、应用性、理解性都有一定的要求,所以是高考中考查的重点。
我们应用函数思想的几种常见题型是:遇到变量,构造函数关系解题;有关的不等式、方程、最小值和最大值之类的问题,利用函数观点加以分析;含有多个变量的数学问题中,选定合适的主变量,从而揭示其中的函数关系;实际应用问题,翻译成数学语言,建立数学模型和函数关系式,应用函数性质或不等式等知识解答;等差、等比数列中,通项公式、前n项和的公式,都可以看成n的函数,数列问题也可以用函数方法解决。