经济数学基础 概率统计第二章 习题解答
概率统计(概率论)第二章练习题答案及解析

第二章习题与答案同学们根据自己作答的实际情况,并结合总正误率和单个题目正误统计以及答案解析来总结和分析习题!!!标红表示正确答案标蓝表示解析1、为掌握商品销售情况,对占该地区商品销售额60%的10家大型商场进行调查,这种调查方式属于( )。
A普查B抽样调查【解析:抽取一部分单位进行调查;习惯上将概率抽样(根据随机原则来抽取样本)称为抽样调查】C重点调查【解析:在调查对象中选择一部分重点单位进行调查的一种非全面调查】D统计报表2、人口普查规定标准时间是为了()。
A确定调查对象和调查单位B避免资料的重复和遗漏。
C使不同时间的资料具有可比性D便于登记资料【解析:规定时间只是为了统计该时间段内的人口数据,没有不同时间数据对比的需要】3、对一批灯泡的使用寿命进行调查,应该采用( )。
A普查 B重点调查 C典型调查D抽样调查4、分布数列反映( )。
A总体单位标志值在各组的分布状况B总体单位在各组的分布状况【解析:课本30页1.分布数列的概念一段最后一句】C总体单位标志值的差异情况D总体单位的差异情况5、与直方图比较,茎叶图( )。
A没有保留原始数据的信息B保留了原始数据的信息【解析:直方图展示了总体数据的主要分布特征,但它掩盖了各组内数据的具体差异。
为了弥补这一局限,对于未分组的原始数据则可以用茎叶图来观察其分布。
课本P38】C更适合描述分类数据D不能很好反映数据的分布特征6、在累计次数分布中,某组的向上累计次数表明( )。
A大于该组上限的次数是多少B大于该组下限的次数是多少C小于该组上限的次数是多少【解析:向上累计是由变量值小的组向变量值大的组累计各组的次数或频率,各组的累计次数表明小于该组上限的次数或百分数共有多少。
课本P33】D小于该组下限的次数是多少7、对某连续变量编制组距数列,第一组上限为500,第二组组中值是750,则第一组组中值为 ( )。
A. 200B. 250C. 500D. 300【解析:组中值=下限+组距/2=上限+组距/2】8、下列图形中最适合描述一组定量数据分布的是( )。
概率论与数理统计第二章课后习题答案

概率论与数理统计第二章课后习题答案概率论与数理统计课后习题答案第二章1.一袋中有5 只乒乓球,编号为1,2,3,4,5,在其中同时取3只,以X 表示取出的3只球中的最大号码,写出随机变量X 的分布律. 【解】353524353,4,51(3)0.1C 3(4)0.3C C (5)0.6C X P X P X P X ==========2.设在15只同类型零件中有2只为次品,在其中取3次,每次任取1只,作不放回抽样,以X 表示取出的次品个数,求:(1) X 的分布律;(2) X 的分布函数并作图; (3)133{},{1},{1},{12}222P X P X P X P X ≤<≤≤≤<<.【解】313315122133151133150,1,2.C 22(0).C 35C C 12(1).C 35C 1(2).C 35X P X P X P X ========== 故X 的分布律为(2)当x <0时, F (x )=P (X ≤x )=0当0≤x <1时,F (x )=P (X ≤x )=P (X =0)=2235当1≤x <2时,F (x )=P (X ≤x )=P (X =0)+P (X =1)=3435 当x ≥2时, F (x )=P (X ≤x )=1 故X 的分布函数0,022,0135()34,12351,2x x F x x x(3)3.射手向目标独立地进行了3次射击,每次击中率为,求3次射击中击中目标的次数的分布律及分布函数,并求3次射击中至少击中2次的概率. 【解】设X 表示击中目标的次数.则X =0,1,2,3.31232233(0)(0.2)0.008(1)C 0.8(0.2)0.096(2)C (0.8)0.20.384(3)(0.8)0.512P X P X P X P X ============故X 的分布律为分布函数0,00.008,01()0.104,120.488,231,3x x F x x x x=≤≥??(2)(2)(3)0.896P X P X P X ≥==+==4.(1)设随机变量X 的分布律为P {X =k }=!k akλ,其中k =0,1,2,…,λ>0为常数,试确定常数a . (2)设随机变量X 的分布律为P {X =k }=a/N , k =1,2,…,N ,试确定常数a . 【解】(1)由分布律的性质知1()e !kk k P X k a a k λλ∞∞======∑∑g故e a λ-=(2) 由分布律的性质知111()NNk k aP X k a N======∑∑即 1a =.5.甲、乙两人投篮,投中的概率分别为,,今各投3次,求:(1)两人投中次数相等的概率; (2)甲比乙投中次数多的概率.【解】分别令X 、Y 表示甲、乙投中次数,则X~b (3,),Y~b (3,(1)(3,3)P X Y ==33121233(0.4)(0.3)C 0.6(0.4)C 0.7(0.3)=++22223333C (0.6)0.4C (0.7)0.3(0.6)(0.7)+0.32076=(2)=6.设某机场每天有200架飞机在此降落,任一飞机在某一时刻降落的概率设为,且设各飞机降落是相互独立的.试问该机场需配备多少条跑道,才能保证某一时刻飞机需立即降落而没有空闲跑道的概率小于(每条跑道只能允许一架飞机降落)【解】设X 为某一时刻需立即降落的飞机数,则X ~b (200,,设机场需配备N 条跑道,则有()0.01P X N ><即 2002002001C (0.02)(0.98)0.01k k kk N -=+<∑利用泊松近似2000.02 4.np λ==?=41e 4()0.01!kk N P X N k -∞=+≥<∑B 查表得N ≥9.故机场至少应配备9条跑道.7.有一繁忙的汽车站,每天有大量汽车通过,设每辆车在一天的某时段出事故的概率为 1,在某天的该时段内有1000辆汽车通过,问出事故的次数不小于2的概率是多少(利用泊松定理)【解】设X 表示出事故的次数,则X ~b (1000, 001)8.已知在五重贝努里试验中成功的次数X 满足P {X = 1}=P {X =2},求概率P {X =4}. 【解】设在每次试验中成功的概率为p ,则故所以 4451210(4)C ()33243P X ===. 9.设事件A 在每一次试验中发生的概率为,当A 发生不少于3次时,指示灯发出信号,(1)进行了5次独立试验,试求指示灯发出信号的概率;(2)进行了7次独立试验,试求指示灯发出信号的概率. 【解】(1)设X 表示5次独立试验中A 发生的次数,则X ~6(5,)5553(3)C (0.3)(0.7)0.16308kk k k P X -=≥==∑(2) 令Y 表示7次独立试验中A 发生的次数,则Y~b (7,)7773(3)C (0.3)(0.7)0.35293k k k k P Y -=≥==∑10.某公安局在长度为t 的时间间隔内收到的紧急呼救的次数X 服从参数为(1/2)t 的泊松分布,而与时间间隔起点无关(时间以小时计).(1)求某一天中午12时至下午3时没收到呼救的概率;( 2)求某一天中午12时至下午5时至少收到1次呼救的概率. 【解】(1 )32(0)e P X -== (2) 52(1)1(0)1e P X P X -≥=-==-11.设P { X =k }=kkkp p --22)1(C , k =0,1,2P {Y =m }=mm m p p --44)1(C , m =0,1,2,3,4 分别为随机变量X ,Y 的概率分布,如果已知P {X ≥1}=59,试求P {Y ≥1}. 【解】因为5(1)9P X ≥=,故4(1)9P X <=. 而 2(1)(0)(1)P X P X p <===-故得 24(1),9p -= 即 1.3p =从而 465(1)1(0)1(1)0.8024781P Y P Y p ≥=-==--=≈ 12.某教科书出版了2000册,因装订等原因造成错误的概率为,试求在这2000册书中恰有5册错误的概率.【解】令X 为2000册书中错误的册数,则X~b (2000,.利用泊松近似计算,20000.0012np λ==?=得 25e 2(5)0.00185!P X -=≈= 13.进行某种试验,成功的概率为34,失败的概率为14.以X 表示试验首次成功所需试验的次数,试写出X 的分布律,并计算X 取偶数的概率. 【解】1,2,,,X k =L L113()()44k P X k -==(2)(4)(2)P X P X P X k =+=++=+L L321131313()()444444k -=++++g L L 213141451()4==-g 14.有2500名同一年龄和同社会阶层的人参加了保险公司的人寿保险.在一年中每个人死亡的概率为,每个参加保险的人在1月1日须交12元保险费,而在死亡时家属可从保险公司领取2000元赔偿金.求:(1)保险公司亏本的概率;(2)保险公司获利分别不少于10000元、20000元的概率. 【解】以“年”为单位来考虑.(1)在1月1日,保险公司总收入为2500×12=30000元. 设1年中死亡人数为X ,则X~b (2500,,则所求概率为(200030000)(15)1(14)P X P X P X >=>=-≤由于n 很大,p 很小,λ=np =5,故用泊松近似,有514e 5(15)10.000069!kk P X k -=>≈-≈∑(2) P (保险公司获利不少于10000)(30000200010000)(10)P X P X =-≥=≤510e 50.986305!kk k -=≈≈∑ 即保险公司获利不少于10000元的概率在98%以上P (保险公司获利不少于20000)(30000200020000)(5)P X P X =-≥=≤55e 50.615961!kk k -=≈≈∑ 即保险公司获利不少于20000元的概率约为62%15.已知随机变量X 的密度函数为f (x )=A e |x |, ∞<+∞,<="" bdsfid="286" p="">求:(1)A 值;(2)P {0<="">()d 1f x x ∞-∞=?得||01e d 2e d 2x x A x A x A ∞∞---∞===??故 12A =. (2) 11011(01)e d (1e )22x p X x --<<==-?(3) 当x <0时,11()e d e 22x x x F x x -∞==?当x ≥0时,0||0111()e d e d e d 222x x x x x F x x x x ---∞-∞==+11e 2x -=-故 1e ,02()11e 02xx x F x x -?-≥??16.设某种仪器内装有三只同样的电子管,电子管使用寿命X 的密度函数为f (x )=<≥.100,0,100,1002x x x求:(1)在开始150小时内没有电子管损坏的概率;(2)在这段时间内有一只电子管损坏的概率;(3) F (x ). 【解】(1) 15021001001(150)d .3P X x x ≤==?33128[(150)]()327p P X =>==(2) 1223124C ()339p == (3) 当x <100时F (x )=0当x ≥100时()()d xF x f t t -∞=100100()d ()d x f t t f t t -∞=+?2100100100d 1xt t x==-? 故 1001,100()0,0x F x xx ?-≥?=??中任意小区间内的概率与这小区间长度成正比例,试求X 的分布函数. 【解】由题意知X ~∪[0,a ],密度函数为1,0()0,x af x a≤≤?=其他故当x <0时F (x )=0 当0≤x ≤a 时01()()d ()d d xx xx F x f t t f t t t a a-∞====?当x >a 时,F (x )=1即分布函数0,0(),01,x x F x x a a x a18.设随机变量X 在[2,5]上服从均匀分布.现对X 进行三次独立观测,求至少有两次的观测值大于3的概率. 【解】X ~U [2,5],即1,25()30,x f x ?≤≤?=其他 5312(3)d 33P X x >==?故所求概率为22333321220C ()C ()33327p =+=19.设顾客在某银行的窗口等待服务的时间X (以分钟计)服从指数分布1()5E .某顾客在窗口等待服务,若超过10分钟他就离开.他一个月要到银行5次,以Y 表示一个月内他未等到服务而离开窗口的次数,试写出Y 的分布律,并求P {Y ≥1}. 【解】依题意知1~()5X E ,即其密度函数为51e ,0()50,xx f x -?>?=??≤?x 0 该顾客未等到服务而离开的概率为25101(10)e d e 5x P X x -∞->==?2~(5,e )Y b -,即其分布律为225525()C (e )(1e ),0,1,2,3,4,5(1)1(0)1(1e )0.5167kk k P Y k k P Y P Y ----==-=≥=-==--=20.某人乘汽车去火车站乘火车,有两条路可走.第一条路程较短但交通拥挤,所需时间X 服从N (40,102);第二条路程较长,但阻塞少,所需时间X 服从N (50,42). (1)若动身时离火车开车只有1小时,问应走哪条路能乘上火车的把握大些(2)又若离火车开车时间只有45分钟,问应走哪条路赶上火车把握大些【解】(1)若走第一条路,X~N (40,102),则406040(60)(2)0.977271010x P X P Φ--??<=<==若走第二条路,X~N (50,42),则506050(60)(2.5)0.993844X P X P Φ--??<=<== ++故走第二条路乘上火车的把握大些.(2)若X~N (40,102),则404540(45)(0.5)0.69151010X P X P Φ--??<=<==若X~N (50,42),则504550(45)( 1.25)44X P X P Φ--??<=<=-1(1.25)0.1056Φ=-= 故走第一条路乘上火车的把握大些.21.设X ~N (3,22),(1)求P{2<x≤5},p{4< bdsfid="429" p=""></x≤5},p{4<> 【解】(1)23353(25)222XP X P---<≤=<≤11(1)(1)1220.841310.69150.5328ΦΦΦΦ=--=-+=-+= 433103 (410)222XP X P-----<≤=<≤770.999622ΦΦ=--=(||2)(2)(2) P X P X P X >=>+<- 323323 2222 15151122220.691510.99380.6977X XP PΦΦΦΦ-----=>+<=--+-=+-=+-=333(3)()1(0)0.522XP X PΦ->=>=-=-(2) c=322.由某机器生产的螺栓长度(cm)X~N(,),规定长度在±内为合格品,求一螺栓为不合格品的概率.【解】10.050.12(|10.05|0.12)0.060.06XP X P-?->=>1(2)(2)2[1(2)]0.0456ΦΦΦ=-+-=-=23.一工厂生产的电子管寿命X(小时)服从正态分布N(160,σ2),若要求P{120<X≤200}≥,允许σ最大不超过多少【解】120160160200160 (120200)XP X Pσσσ---<≤=<≤404040210.8ΦΦΦσσσ-=-=-≥故4031.251.29σ≤=24.设随机变量X 分布函数为F (x )=e ,0,(0),00.xt A B x ,x λ-?+≥>?(2)求P {X ≤2},P {X >3};(3)求分布密度f (x ). 【解】(1)由00lim ()1lim ()lim ()x x x F x F x F x →+∞→+→-==??得11A B =??=-?(2) 2(2)(2)1eP X F λ-≤==-33(3)1(3)1(1e)e P X F λλ-->=-=--=(3) e ,0()()0,0x x f x F x x λλ-?≥'==?25.设随机变量X 的概率密度为f (x )=??<≤-<≤.,0,21,2,10,其他x x x x 求X 的分布函数F (x ),并画出f (x )及F (x ).【解】当x <0时F (x )=0当0≤x <1时0()()d ()d ()d xxF x f t t f t t f t t -∞-∞==+?20d 2xx t t ==?当1≤x<2时()()d x F x f t t -∞=?111122()d ()d ()d d (2)d 132222212xx f t t f t t f t tt t t tx x x x -∞==+=+-=+--=-+-?当x ≥2时()()d 1xF x f t t -∞==?故 220,0,012()21,1221,2x x x F x x x x x26.设随机变量X 的密度函数为(1)f (x )=a e |x |,λ>0;(2) f (x )=?<≤<<.,0,21,1,10,2其他x x x bx 试确定常数a ,b ,并求其分布函数F (x ). 【解】(1)由()d 1f x x ∞-∞=?知||021e d 2e d x x aa x a x λλλ∞∞---∞===故 2a λ=即密度函数为 e ,02()e 02xx x f x x λλλλ-?>??=??≤??当x ≤0时1()()d e d e 22xxx x F x f x x x λλλ-∞-∞===?当x >0时0()()d e d e d 22xxx x F x f x x x x λλλλ--∞-∞==+?11e 2xλ-=-故其分布函数11e ,02()1e ,02xx x F x x λλ-?->??=??≤??(2) 由12201111()d d d 22b f x x bx x x x ∞-∞==+=+?得 b =1即X 的密度函数为2,011(),120,x x f x x x<=≤当x ≤0时F (x )=0 当0<1时0<="" bdsfid="679" p=""> ()()d ()d ()d xxF x f x x f x x f x x -∞-∞==+?2d 2xx x x ==?当1≤x <2时01211()()d 0d d d xxF x f x x x x x x x -∞-∞==++?312x=- 当x ≥2时F (x )=1 故其分布函数为20,0,012()31,1221,2x x x F x x x x ≤<27.求标准正态分布的上α分位点,(1)α=,求z α; (2)α=,求z α,/2z α. 【解】(1)()0.01P X z α>=即1()0.01z αΦ-= 即()0.09z αΦ= 故2.33z α= (2)由()0.003P X z α>=得1()0.003z αΦ-=即()0.997z αΦ= 查表得2.75z α= 由/2()0.0015P X z α>=得/21()0.0015z α-Φ=即/2()0.9985z αΦ= 查表得/2 2.96z α=求Y =X 的分布律.【解】Y 可取的值为0,1,4,91(0)(0)5117(1)(1)(1)615301(4)(2)511(9)(3)30P Y P X P Y P X P X P Y P X P Y P X =======-+==+====-=====29.设P {X =k }=(2)k, k =1,2,…,令 1,1,.X Y X ?=?-?当取偶数时当取奇数时求随机变量X 的函数Y 的分布律.【解】(1)(2)(4)(2)P Y P X P X P X k ===+=++=+L L242111()()()222111()/(1)443k =++++=-=L L2(1)1(1)3P Y P Y =-=-==30.设X ~N (0,1).(1)求Y =e X 的概率密度;(2)求Y =2X 2+1的概率密度;(3)求Y =|X |的概率密度.【解】(1)当y ≤0时,()()0Y F y P Y y =≤=当y >0时,()()(e )(ln )xY F y P Y y P y P X y =≤=≤=≤ln ()d yX f x x -∞=故 2/2ln d ()1()(ln ),0d y Y Y x F y f y f y y y y -===> (2)2(211)1P Y X =+≥=当y ≤1时()()0Y F y P Y y =≤=当y >1时2()()(21)Y F y P Y y P X y =≤=+≤212y P X P X ?-??=≤=≤≤ ? ???()d X f x x =故 d ()()d Y Y XX f y F y f f y ?==+? ???(1)/4,1y y --=>(3) (0)1P Y ≥=当y ≤0时()()0Y F y P Y y =≤=当y >0时()(||)()Y F y P X y P y X y =≤=-≤≤ ()d y X yf x x -=故d()()()()d Y Y X X f y F y f y f y y==+- 2/2y y -=> 31.设随机变量X ~U (0,1),试求:(1) Y =e X 的分布函数及密度函数;(2) Z =2ln X 的分布函数及密度函数. 【解】(1) (01)1P X <<=故 (1e e)1XP Y <=<= 当1y ≤时()()0Y F y P Y y =≤=当1<=""Y F y P y P X y =≤=≤ln 0d ln yx y ==?当y ≥e 时()(e )1XY F y P y =≤=即分布函数0,1()ln ,1e 1,e Y y F y y y y ≤??=<故Y 的密度函数为11e ,()0,Y y y f y ?<其他(2)由P (0(0)1P Z >=当z ≤0时,()()0Z F z P Z z =≤=当z >0时,()()(2ln )Z F z P Z z P X z =≤=-≤/2(ln )(e )2z z P X P X -=≤-=≥ /21d 1e z z x --==-?即分布函数-/20,0()1-e ,Z z z F z z ≤?=?>?0故Z 的密度函数为/21e ,0()20,z Z z f z z -?>?=??≤?032.设随机变量X 的密度函数为f (x )=22,0π,π0,.xx ?<试求Y =sin X 的密度函数. 【解】(01)1P Y <<= 当y ≤0时,()()0Y F y P Y y =≤=当0(0arcsin )(πarcsin π)P X y P y X =<≤+-≤< arcsin π220πarcsin 22d d ππyy x xx x -=+?? 222211arcsin 1πarcsin ππy y =+--()()2arcsin πy =当y ≥1时,()1Y F y = 故Y 的密度函数为201π()0,Y y f y ?<其他 33.设随机变量X 的分布函数如下:≥<+=.)3(,)2(,)1(,11)(2x x x x F试填上(1),(2),(3)项.【解】由lim ()1x F x →∞=知②填1。
经济数学基础——概率统计课后习题答案

目录习题一(1)习题二(16)习题三(44)习题四(73)习题五(97)习题六(113)习题七(133)1 / 81习 题 一1.写出下列事件的样本空间: (1) 把一枚硬币抛掷一次; (2) 把一枚硬币连续抛掷两次;(3) 掷一枚硬币,直到首次出现正面为止;(4) 一个库房在某一个时刻的库存量(假定最大容量为M ).解(1)Ω={正面,反面} △ {正,反}(2)Ω={(正、正),(正、反),(反、正),(反、反)} (3)Ω={(正),(反,正),(反,反,正),…} (4) Ω={x ;0≤x ≤m }2.掷一颗骰子的实验,观察其出现的点数,事件A =“偶数点”,B =“奇数点”,C =“点数小于5”,D =“小于5的偶数点”,讨论上述各事件间的关系. 解{}{}{}{}{}.4,2,4,3,2,1,5,3,1,6,4,2,6,5,4,3,2,1=====D C B A ΩA 与B 为对立事件,即B =A ;B 与D 互不相容;A ⊃D ,C ⊃D.3. 事件A i 表示某个生产单位第i 车间完成生产任务,i =1,2,3,B 表示至少有两个车间完成生产任务,C 表示最多只有两个车间完成生产任务,说明事件B 及B -C 的含义,并且用A i (i =1,2,3)表示出来. 解B 表示最多有一个车间完成生产任务,即至少有两个车间没有完成生产任务. 313221A A A A A A B ++=B -C 表示三个车间都完成生产任务 321321321321+++A A A A A A A A A A A A B =321321321321321321321A A A A A A A A A A A A A A A A A A A A A C ++++++=321A A A C B =- 4. 如图1-1,事件A 、B 、C 都相容,即ABC ≠Φ,把事件A +B ,A +B +C ,AC +B ,C -AB 用一些互不相容事件的和表示出来. 解B A A B A +=+C B A B A A C B A ++=++C B A B B AC +=+BC A C B A C B A AB C ++=-5.两个事件互不相容与两个事件对立的区别何在,举例说明.解 两个对立的事件一定互不相容,它们不可能同时发生,也不可能同时不发生;两个互不相容的事件不一定是对立事件,它们只是不可能同时发生,但不一定同时不发生. 在本书第6页例2中A 与D 是对立事件,C 与D 是互不相容事件.6.三个事件A 、B 、C 的积是不可能事件,即ABC =Φ,问这三个事件是否一定互不相容?画图说明. 解 不一定. A 、B 、C 三个事件互不相容是指它们中任何两个事件均互不相容,即两两互不相容.如图1-2,事件ABC =Φ,但是A 与B 相容.7. 事件A 与B 相容,记C =AB ,D =A+B ,F =A -B.说明事件A 、C 、D 、F的关系.解由于AB ⊂A ⊂A+B ,A -B ⊂A ⊂A+B ,AB 与A -B 互不相容,且A =AB +(A -B).因此有A =C +F ,C 与F 互不相容, D ⊃A ⊃F ,A ⊃C.8. 袋内装有5个白球,3个黑球,从中一次任取两个,求取到的两个球颜色不同的概率.解记事件A 表示“取到的两个球颜色不同”.则有利于事件A 的样本点数目#A =1315C C .而组成实验的样本点总数为#Ω=235+C ,由古典概率公式有图1-1图1-2P (A )==Ω##A 2815281315=C C C (其中#A ,#Ω分别表示有利于A 的样本点数目与样本空间的样本点总数,余下同)9. 计算上题中取到的两个球中有黑球的概率.解设事件B 表示“取到的两个球中有黑球”则有利于事件B 的样本点数为#25C B =.1491)(1)(2825=-==C C B P B P -10. 抛掷一枚硬币,连续3次,求既有正面又有反面出现的概率.解设事件A 表示“三次中既有正面又有反面出现”, 则A 表示三次均为正面或三次均为反面出现. 而抛掷三次硬币共有8种不同的等可能结果,即#Ω=8,因此43821#1)(1)(=-=Ω-=-=A A P A P # 11. 10把钥匙中有3把能打开一个门锁,今任取两把,求能打开门锁的概率.解设事件A 表示“门锁能被打开”. 则事件A 发生就是取的两把钥匙都不能打开门锁.15811)(1)(21027==Ω-=-=C C A A P A P -##从9题-11题解中可以看到,有些时候计算所求事件的对立事件概率比较方便.12. 一副扑克牌有52张,不放回抽样,每次一张,连续抽取4张,计算下列事件的概率:(1)四张花色各异;(2)四张中只有两种花色.解设事件A 表示“四张花色各异”;B 表示“四张中只有两种花色”.,113113113113452##C C C C A , C Ω==) +#2132131133131224C C C C C C B (= 105013##)(4524.C ΩA A P ===30006048+74366##)(452 )(.C ΩB B P ===13. 口袋内装有2个伍分、3个贰分,5个壹分的硬币共10枚,从中任取5枚,求总值超过壹角的概率.解设事件A 表示“取出的5枚硬币总值超过壹角”.)+(+C =##25231533123822510C C C C C C A C Ω , = 50252126)(.ΩA A P ==##=14. 袋中有红、黄、黑色球各一个,每次任取一球,有放回地抽取三次,求下列事件的概率:A =“三次都是红球” △ “全红”,B =“全白”, C =“全黑”,D =“无红”,E =“无白”, F =“无黑”,G =“三次颜色全相同”,H =“颜色全不相同”,I =“颜色不全相同”.解 #Ω=33=27,#A =#B =#C =1, #D =#E =#F =23=8, #G =#A +#B +#C =3,#H =3!=6,#I =#Ω-#G =24271)()()(===C P B P A P 278)()()(===F P E P D P 982724)(,92276)(,91273)(======I P H P G P 15. 一间宿舍内住有6位同学,求他们中有4个人的生日在同一个月份的概率.解设事件A 表示“有4个人的生日在同一个月份”.#Ω=126,#A =21124611C C 0073.01221780##)(6==ΩA A P = 16. 事件A 与B 互不相容,计算P )(B A +.解 由于A 与B 互不相容,有AB =Φ,P (AB )=0.1)(1)()(=-==+AB P AB P B A P 17. 设事件B ⊃A ,求证P (B )≥P (A ). 证∵B ⊃A∴P (B -A )=P (B ) -P (A ) ∵P (B -A )≥0 ∴P (B )≥P (A )18. 已知P (A )=a ,P (B )=b ,ab ≠0 (b >0.3a ),P (A -B )=0.7a ,求P (B +A ),P (B -A ),P (B +A ). 解由于A -B 与AB 互不相容,且A =(A -B )+AB ,因此有P (AB )=P (A )-P (A -B )=0.3aP (A +B )=P (A )+P (B )-P (AB )=0.7a +b P (B -A )=P (B )-P (AB )=b -0.3a P(B +A )=1-P (AB )=1-0.3a19. 50个产品中有46个合格品与4个废品,从中一次抽取三个,计算取到废品的概率.解设事件A 表示“取到废品”,则A 表示没有取到废品,有利于事件A 的样本点数目为#A =346C ,因此P (A )=1-P (A )=1-3503461C C ΩA-=## =0.225520. 已知事件B ⊃A ,P (A )=ln b≠0,P (B )=ln a ,求a 的取值范围.解因B ⊃A ,故P (B )≥P (A ),即ln a ≥ln b ,⇒a ≥b ,又因P (A )>0,P (B )≤1,可得b >1,a ≤e ,综上分析a 的取值范围是:1<b ≤a ≤e21. 设事件A 与B 的概率都大于0,比较概率P (A ),P (AB ),P (A +B ),P (A )+P (B )的大小(用不等号把它们连接起来). 解由于对任何事件A ,B ,均有AB ⊂A ⊂A +B且P (A +B )=P (A )+P (B )-P (AB ),P (AB )≥0,因此有 P (AB )≤P (A )≤P (A +B )≤P (A )+P (B )22. 一个教室中有100名学生,求其中至少有一人的生日是在元旦的概率(设一年以365天计算).解 设事件A 表示“100名学生的生日都不在元旦”,则有利于A 的样本点数目为#A =364100,而样本空间中样本点总数为 #Ω=365100,所求概率为1001003653641##1)(1)(-=Ω-=-=A A P A P= 0.239923. 从5副不同手套中任取4只手套,求其中至少有两只手套配成一副的概率.解设事件A 表示“取出的四只手套至少有两只配成一副”,则A 表示“四只手套中任何两只均不能配成一副”.21080##)(4101212121245===C C C C C C ΩA A P 62.0)(1)(=-=A P A P24. 某单位有92%的职工订阅报纸,93%的人订阅杂志,在不订阅报纸的人中仍有85%的职工订阅杂志,从单位中任找一名职工求下列事件的概率: (1)该职工至少订阅一种报纸或期刊; (2)该职工不订阅杂志,但是订阅报纸.解设事件A 表示“任找的一名职工订阅报纸”,B 表示“订阅杂志”,依题意P (A )=0.92,P (B )=0.93,P (B |A )=0.85P (A +B )=P (A )+P (A B )=P (A )+P (A )P (B |A )=0.92+0.08×0.85=0.988P (A B )=P (A +B )-P (B )=0.988-0.93=0.05825. 分析学生们的数学与外语两科考试成绩,抽查一名学生,记事件A 表示数学成绩优秀,B 表示外语成绩优秀,若P (A )=P (B )=0.4,P (AB )=0.28,求P(A |B ),P (B |A ),P (A +B ).解P (A |B )=7.04.028.0)()(==B P AB PP (B |A)=7.0)()(=A P AB PP (A +B )=P (A )+P (B )-P (AB )=0.5226. 设A 、B 是两个随机事件. 0<P (A )<1,0<P (B )<1,P (A |B )+P (A |B )=1. 求证P (AB )=P (A )P (B ). 证∵P (A |B )+P (A |B )=1且P (A |B )+P (A |B )=1∴P (A |B )=P (A |B ))(1)()()()()()(B P AB P A P B P B A P B P AB P --== P (AB )[1-P (B )]=P ( B )[P ( A )-P ( AB )]整理可得P (AB )=P ( A ) P ( B )27. 设A 与B 独立,P ( A )=0.4,P ( A +B )=0.7,求概率P (B ). 解P ( A +B )=P (A )+P (A B )=P ( A )+P (A ) P ( B )⇒0.7=0.4+0.6P (B ) ⇒P (B )=0.528. 设事件A 与B 的概率都大于0,如果A 与B 独立,问它们是否互不相容,为什么?解因P (A ),P (B )均大于0,又因A 与B 独立,因此P (AB )=P (A )P (B )>0,故A 与B 不可能互不相容.29. 某种电子元件的寿命在1000小时以上的概率为0.8,求3个这种元件使用1000小时后,最多只坏了一个的概率.解设事件A i 表示“使用1000小时后第i 个元件没有坏”, i =1,2,3,显然A 1,A 2,A 3相互独立,事件A 表示“三个元件中最多只坏了一个”,则A =A 1A 2A 3+1A A 2A 3+A 12A A 3+A 1A 23A ,上面等式右边是四个两两互不相容事件的和,且P (A 1)=P (A 2)=P (A 3)=0.8P ( A )=[][])()(3)(12131A P A P A P + =0.83+3×0.82×0.2 =0.89630. 加工某种零件,需经过三道工序,假定第一、二、三道工序的废品率分别为0.3,0.2,0.2,并且任何一道工序是否出现废品与其他各道工序无关,求零件的合格率.解设事件A 表示“任取一个零件为合格品”,依题意A 表示三道工序都合格.P (A )=(1-0.3)(1-0.2)(1-0.2)=0.44831. 某单位电话总机的占线率为0.4,其中某车间分机的占线率为0.3,假定二者独立,现在从外部打电话给该车间,求一次能打通的概率;第二次才能打通的概率以及第m 次才能打通的概率(m 为任何正整数).解设事件A i 表示“第i 次能打通”,i =1,2,…,m ,则P (A 1)=(1-0.4)(1-0.3)=0.42 P (A 2)=0.58×0.42=0.2436P (A m )=0.58m -1×0.4232. 一间宿舍中有4位同学的眼镜都放在书架上,去上课时,每人任取一副眼镜,求每个人都没有拿到自己眼镜的概率.解设A i 表示“第i 人拿到自己眼镜”,i =1,2,3,4.P (A i )=41,设事件B 表示“每个人都没有拿到自己的眼镜”.显然B 则表示“至少有一人拿到自己的眼镜”. 且B =A 1+A 2+A 3+A 4.P (B )=P (A 1+A 2+A 3+A 4) =∑∑∑-+-=≤≤≤≤4141414321)()()()(i j i k j i k j i i i i A A A A P A A A P A A P A p <<<P (A i A j )=P (A i )P (A j |A i )=)41(1213141≤≤=⨯j i < P (A i A j A k )=P (A i )P (A j |A i )P (A k |A i A j )=41×31×21=241(1≤i <j <k ≤4) P (A 1A 2A 3A 4)=P (A 1)P (A 2|A 1)P (A 3|A 1A 2)×P (A 4|A 1A 2A 3) =2411213141=⨯⨯⨯ 85241241121414)(3424=-⨯+⨯-⨯=C C B P83)(1)(=-=B P B P33. 在1,2,…,3000这3000个数中任取一个数,设A m =“该数可以被m 整除”,m =2,3,求概率P (A 2A 3),P (A 2+A 3),P (A 2-A 3).解依题意P (A 2)=21,P (A 3)=31P (A 2A 3)=P (A 6)=61P (A 2+A 3)=P (A 2)+P (A 3)-P (A 2A 3)=32613121=-+ P (A 2-A 3)=P (A 2)-P (A 2A 3)=316121=-34. 甲、乙、丙三人进行投篮练习,每人一次,如果他们的命中率分别为0.8,0.7,0.6,计算下列事件的概率:(1)只有一人投中; (2)最多有一人投中; (3)最少有一人投中.解设事件A 、B 、C 分别表示“甲投中”、“乙投中”、“丙投中”,显然A 、B 、C 相互独立.设A i 表示“三人中有i 人投中”,i =0,1,2,3,依题意,)()()() ()(0C P B P A P C B A P A P == =0.2×0.3×0.4×=0.024 P (A 3)=P (ABC )=P (A )P (B )P (C ) =0.8×0.7×0.6=0.336P (A 2)=P (AB C )+P (A B C )+P (A BC )=0.8×0.7×0.4+0.8×0.3×0.6+0.2×0.7×0.6=0.452 (1)P (A 1)=1-P (A 0)-P (A 2)-P (A 3)=1-0.024-0.452-0.336=0.188(2)P (A 0+A 1)=P (A 0)+P (A 1)=0.024+0.188=0.212 (3)P (A +B +C )=P (0A )=1-P (A 0)=0.97635. 甲、乙二人轮流投篮,甲先开始,假定他们的命中率分别为0.4及0.5,问谁先投中的概率较大,为什么?解设事件A 2n -1B 2n 分别表示“甲在第2n -1次投中”与“乙在第2n 次投中”,显然A 1,B 2,A 3,B 4,…相互独立.设事件A 表示“甲先投中”.⋯+++=)()()()(543213211A B A B A P A B A P A P A P⋯⨯⨯⨯⨯=+++0.40.5)(0.60.40.50.60.42743.014.0=-= 计算得知P (A )>0.5,P (A )<0.5,因此甲先投中的概率较大.36. 某高校新生中,北京考生占30%,京外其他各地考生占70%,已知在北京学生中,以英语为第一外语的占80%,而京外学生以英语为第一外语的占95%,今从全校新生中任选一名学生,求该生以英语为第一外语的概率.解设事件A 表示“任选一名学生为北京考生”,B 表示“任选一名学生,以英语为第一外语”. 依题意P (A )=0.3,P (A )=0.7,P (B |A)=0.8,P (B |A )=0.95. 由全概率公式有P (B )=P (A )P (B |A )+P (A )P (B |A )=0.3×0.8+0.7×0.95=0.90537. A 地为甲种疾病多发区,该地共有南、北、中三个行政小区,其人口比为9 : 7 : 4,据统计资料,甲种疾病在该地三个小区内的发病率依次为4‰,2‰,5‰,求A 地的甲种疾病的发病率.解设事件A 1,A 2,A 3分别表示从A 地任选一名居民其为南、北、中行政小区,易见A 1,A 2,A 3两两互不相容,其和为Ω.设事件B 表示“任选一名居民其患有甲种疾病”,依题意:P (A 1)=0.45,P (A 2)=0.35,P (A 3)=0.2,P (B |A 1)=0.004,P (B |A 2)=0.002,P (B |A 3)=0.005=∑=31)|()(i i i A B P A P=0.45×0.004+ 0.35×0.002+ 0.2×0.005 =0.003538. 一个机床有三分之一的时间加工零件A ,其余时间加工零件B ,加工零件A 时,停机的概率为0.3,加工零件B 时停机的概率为0.4,求这个机床停机的概率.解设事件A 表示“机床加工零件A ”,则A 表示“机床加工零件B ”,设事件B 表示“机床停工”.)|()()|()()(A B P A P A B P A P B P +=37.0324.0313.0=⨯+⨯=39. 有编号为Ⅰ、Ⅱ、Ⅲ的3个口袋,其中Ⅰ号袋内装有两个1号球,1个2号球与1个3号球,Ⅱ号袋内装有两个1号球和1个3号球,Ⅲ号袋内装有3个1号球与两个2号球,现在先从Ⅰ号袋内随机地抽取一个球,放入与球上号数相同的口袋中,第二次从该口袋中任取一个球,计算第二次取到几号球的概率最大,为什么?解设事件A i 表示“第一次取到i 号球”,B i 表示第二次取到i 号球,i =1,2,3.依题意,A 1,A 2,A 3构成一个完全事件组.41)()(,21)(321===A P A P A P41)|()|(,21)|(131211===A B P A B P A B P41)|()|(,21)|(232221===A B P A B P A B P61)|(,31)|(,21)|(333231===A B P A B P A B P应用全概率公式∑==31)|()()(i i j i j A B P A P B P 可以依次计算出4811)(,4813)(,21)(321===B P B P B P . 因此第二次取到1号球的概率最大.40. 接37题,用一种检验方法,其效果是:对甲种疾病的漏查率为5%(即一个甲种疾病患者,经此检验法未查出的概率为5%);对无甲种疾病的人用此检验法误诊为甲种疾病患者的概率为1%,在一次健康普查中,某人经此检验法查为患有甲种疾病,计算该人确实患有此病的概率.解设事件A 表示“受检人患有甲种疾病”,B 表示“受检人被查有甲种疾病”,由37题计算可知P (A )=0.0035,应用贝叶斯公式)|()()|()()|()()|(A B P A P A B P A P A B P A P B A P +=01.09965.095.00035.095.00035.0⨯⨯⨯=+ 25.0=41. 甲、乙、丙三个机床加工一批同一种零件,其各机床加工的零件数量之比为5 : 3 : 2,各机床所加工的零件合格率,依次为94%,90%,95%,现在从加工好的整批零件中检查出一个废品,判断它不是甲机床加工的概率.解设事件A 1,A 2,A 3分别表示“受检零件为甲机床加工”,“乙机床加工”,“丙机床加工”,B 表示“废品”,应用贝叶斯公式有∑==31111)|()()|()()|(i i i A B P A P A B P A P B A P7305020+1030+06.05.006.05.0=⨯⨯⨯⨯=....74)|(1)|(11=-=B A P B A P42. 某人外出可以乘坐飞机、火车、轮船、汽车4种交通工具,其概率分别为5%,15%,30%,50%,乘坐这几种交通工具能如期到达的概率依次为100%,70%,60%与90%,已知该旅行者误期到达,求他是乘坐火车的概率.解设事件A 1,A 2,A 3,A 4分别表示外出人“乘坐飞机”,“乘坐火车”,“乘坐轮船”,“乘坐汽车”,B 表示“外出人如期到达”.∑==41222)|()()|()()|(i i i A B P A P A B P A P B A P1.05.04.03.03.015.0005.03.015.0⨯+⨯+⨯+⨯⨯==0.20943. 接39题,若第二次取到的是1号球,计算它恰好取自Ⅰ号袋的概率.解39题计算知P (B 1)=21,应用贝叶斯公式 21212121)()|()()|(111111=⨯==B P A B P A P B A P44. 一箱产品100件,其次品个数从0到2是等可能的,开箱检验时,从中随机地抽取10件,如果发现有次品,则认为该箱产品不合要求而拒收,若已知该箱产品已通过验收,求其中确实没有次品的概率. 解设事件A i 表示一箱中有i 件次品,i =0, 1, 2.B 表示“抽取的10件中无次品”,先计算P (B )∑++⨯===20101001098101001099)1(31)|()()(i i i C C C C A B P A P B P37.0)(31)|(0==B P B A P45. 设一条昆虫生产n 个卵的概率为λλ-=e !n p n n n =0, 1, 2, …其中λ>0,又设一个虫卵能孵化为昆虫的概率等于p (0<p <1).如果卵的孵化是相互独立的,问此虫的下一代有k 条虫的概率是多少?解设事件A n =“一个虫产下几个卵”,n =0,1,2….B R =“该虫下一代有k 条虫”,k =0,1,….依题意λλ-==e !)(n p A P n n n⎩⎨⎧≤≤=-n k q p C n k A B P k n k k nn k 00)|(>其中q =1-p .应用全概率公式有∑∑∞=∞===kn n k n n n k n k A B P A P A B P A P B P )|()()|()()(0∑∞=-λ--λ=ln k n k nq p k n k n n !)(!!e ! ∑∞=-λ--λλk n k n k k n q k p !)()(e !)( 由于q k n k n k n k n k n q k n q λ∞=--∞=-∑∑=-λ=-λe !)()(!)()(0,所以有 ,2,1,0e)(e e !)()(===--k kp k p B P pp q k k λλλλλ习 题 二1. 已知随机变量X 服从0-1分布,并且P {X ≤0}=0.2,求X 的概率分布.解X 只取0与1两个值,P {X =0}=P {X ≤0}-P {X <0}=0.2,P {X =1}=1-P {X =0}=0.8.2. 一箱产品20件,其中有5件优质品,不放回地抽取,每次一件,共抽取两次,求取到的优质品件数X 的概率分布.解X 可以取0, 1, 2三个值. 由古典概型公式可知{})2,1,0(2202155===-m C C C m X P mm 依次计算得X 的概率分布如下表所示:3. 上题中若采用重复抽取,其他条件不变,设抽取的两件产品中,优质品为X 件,求随机变量X 的概率分布.解X 的取值仍是0, 1, 2.每次抽取一件取到优质品的概率是1/4,取到非优质品的概率是3/4,且各次抽取结果互不影响,应用伯努利公式有{}1694302=⎪⎭⎫⎝⎛==X P{}1664341112=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==C X P {}1614122=⎪⎭⎫⎝⎛==X P4. 第2题中若改为重复抽取,每次一件,直到取得优质品为止,求抽取次数X 的概率分布.解X 可以取1, 2,…可列个值. 且事件{X =n }表示抽取n 次,前n -1次均未取到优质品且第n 次取到优质品,其概率为41431⋅⎪⎭⎫ ⎝⎛-n . 因此X 的概率分布为 {}⋯=⎪⎭⎫⎝⎛==-,2,143411n n X P n5. 盒内有12个乒乓球,其中9个是新球,3个为旧球,采取不放回抽取,每次一个直到取得新球为止,求下列随机变量的概率分布. (1)抽取次数X ;(2)取到的旧球个数Y . 解(1)X 可以取1, 2, 3, 4各值.{}{}4491191232431=⨯====X P X P {}22091091121233=⨯⨯==X P {}2201991011121234=⨯⨯⨯==X P (2)Y 可以取0, 1, 2, 3各值.{}{}4310====X P Y P{}{}44921====X P Y P {}{}220932====X P Y P {}{}220143====X P Y P 6. 上题盒中球的组成不变,若一次取出3个,求取到的新球数目X 的概率分布. 解X 可以取0, 1, 2, 3各值.{}2201031233===C C X P{}2202713122319===C C C X P{}22010823121329===C C C X P{}22084331239===C C X P 7. 已知P {X =n }=p n ,n =1, 2, 3, …, 求p 的值.解根据{}∑=∞=11n n X P =, 有∑-==∞=111n n pp P 解上面关于p 的方程,得p =0.5.8. 已知P {X =n }=p n ,n =2, 4, 6, …,求p 的值.解1122642=-=⋯+++p p p p p解方程,得p =2±/29. 已知P {X =n }=cn ,n =1,2,…, 100, 求c 的值. 解∑=+⋯++==10015050)10021(1n cc cn =解得c =1/5050 .10. 如果p n =cn _2,n =1,2,…, 问它是否能成为一个离散型概率分布,为什么?解,1121∑=∑∞=∞=n n n n c p 由于级数∑∞=121n n 收敛, 若记∑∞=121n n =a ,只要取ac 1=,则有∑∞=1n n p =1,且p n >0.所以它可以是一个离散型概率分布.11. 随机变量X 只取1, 2, 3共三个值,其取各个值的概率均大于零且不相等并又组成等差数列,求X 的概率分布.解设P {X =2}=a ,P {X =1}=a -d ,P {X =3}=a +d . 由概率函数的和为1,可知a =31,但是a -d 与a +d 均需大于零,因此|d |<31, X 的概率分布为其中d 应满足条件:0<|d |<312. 已知{}λ-==e !m c λm X P m ,m =1, 2, …, 且λ>0, 求常数c . 解{}∑∑∞=-∞====11e !1m m m m c m X p λλ由于∑∑∞=∞==+=10e !1!m mm mm m λλλ, 所以有∑∞=---=-=-=11)e 1(e )1e (e !m m c c m c λλλλλ 解得λ--=e 11c13. 甲、乙二人轮流投篮,甲先开始,直到有一人投中为止,假定甲、乙二人投篮的命中率分别为0.4及0.5,求:(1)二人投篮总次数Z 的概率分布; (2)甲投篮次数X 的概率分布; (3)乙投篮次数Y 的概率分布.解设事件A i 表示在第i 次投篮中甲投中,j 表示在第j 次投篮中乙投中,i =1,3,5,…,j =2,4,6,…,且A 1, B 2, A 3,B 4,…相互独立.(1){}{}1222321112---=-=k k k A B A B A p k Z P=(0.6×0.5)1-k ·0.4=0.4(0.3)1-k k=1, 2, … {})(2212223211k k k k B A B A B A p k Z P ---== =0.5×0.6×(0.6×0.5)1-k =0.3k k=1, 2, …(2){}{}12223211---==n n n A B A B A p n X P{}n n n n B A B A B A p 212223211---+ )5.06.04.0()5.06.0(1⨯+⨯=-n ,2,13.07.01=⨯=-n n (3) {}4.0)(01===A P Y P{}{}{}122121121211+--+==n n n n n A B A B A P B A B A P n Y P )4.05.05.0(6.0)5.06.0(1⨯+⨯⨯⨯=-n ,2,13.042.01=⨯=-n n14. 一条公共汽车路线的两个站之间,有四个路口处设有信号灯,假定汽车经过每个路口时遇到绿灯可顺利通过,其概率为0.6,遇到红灯或黄灯则停止前进,其概率为0.4,求汽车开出站后,在第一次停车之前已通过的路口信号灯数目X 的概率分布(不计其他因素停车). 解X 可以取0, 1, 2, 3, 4 .P { X =0 } =0.4P { X =1 }=0.6×0.4=0.24 P { X =2 } =0.62×0.4=0.144 P { X =3 } =0.63×0.4=0.0864 P { X =4 } =0.64=0.129615. ⎩⎨⎧∈=.,0],[,sin )(其他,b a x x x f问f (x )是否为一个概率密度函数,为什么?如果(1).π23,)3( ;π,0)2( ;2π,0======b a b a b a π解在[0, 2π]与[0, π]上,sin x ≥0,但是,1d sin π≠⎰x x ,1d sin 2π=⎰x x 而在⎥⎦⎤⎢⎣⎡π23,π上,sin x ≤0.因此只有(1)中的a , b 可以使f (x )是一个概率密度函数.16. ⎪⎩⎪⎨⎧≤=-.0,00e )(,22x x c x x f c x ,>其中c >0,问f (x )是否为密度函数,为什么? 解易见对任何x ∈(-∞ , +∞) , f ( x ) ≥ 0,又1d e 202=⎰-∞+x cx cx f (x )是一个密度函数 .17. ⎩⎨⎧+=.0.2<<,2)(其他,a x a x x f问f ( x )是否为密度函数,若是,确定a 的值;若不是,说明理由. 解如果f ( x )是密度函数,则f ( x )≥0,因此a ≥0,但是,当a ≥0时,444|d 2222≥+==⎰⨯++a x x a a a a由于x x f d )(⎰+∞∞-不是1,因此f ( x )不是密度函数.18. 设随机变量X ~f ( x )⎪⎩⎪⎨⎧∞++=.,0,,)1(π2)(2其他<<x a x x f 确定常数a 的值,如果P { a < x < b } =0.5,求b 的值.解)arctan 2π(2arctan π2d )1(π22a x x x a a -π==+⎰⎰+∞+∞ 解方程 π2⎪⎭⎫⎝⎛a arctan - 2π=1得a =0{}b x x x f b x P b barctan π2|arctan π2d )(000==⎰=<< 解关于b 的方程:π2arctan b =0.5 得b =1.19. 某种电子元件的寿命X 是随机变量,概率密度为⎪⎩⎪⎨⎧≥=.100,0,100100)(2<x x x x f 3个这种元件串联在一个线路中,计算这3个元件使用了150小时后仍能使线路正常工作的概率.解串联线路正常工作的充分必要条件是3个元件都能正常工作. 而三个元件的寿命是三个相互独立同分布的随机变量,因此若用事件A 表示“线路正常工作”,则3])150([)(>X P A P ={}32d 1001502150=⎰∞+x x X P =>278)(=A P 20. 设随机变量X ~f ( x ),f ( x )=A e -|x|,确定系数A ;计算P { |X | ≤1 }.解A x A x A x x 2d e 2d e 10||=⎰=⎰=∞+-∞+∞-- 解得A =21 {}⎰⎰---==≤10||11d e d e 211||x x X P x x632.0e 11≈-=-21. 设随机变量Y 服从[0, 5]上的均匀分布,求关于x 的二次方程4x 2+4xY +Y +2=0有实数根的概率. 解4x 2+4xY +Y +2=0. 有实根的充分必要条件是△=b 2-4ac =16Y 2-16(Y +2)=16Y 2-16Y -32≥0 设事件P (A )为所求概率.则{}{}{}120321616)(2-≤+≥=≥--=Y P Y P Y Y P A P =0.622. 设随机变量X ~ f ( x ),⎪⎩⎪⎨⎧-=.,01||,1)(2其他,<x x cx f 确定常数c ,计算.21||⎭⎬⎫⎩⎨⎧≤X P解π|arcsin d 1111211c x c x xc ==-⎰=--c =π131arcsin 2d 1121||0212121 2=π=-π=⎭⎬⎫⎩⎨⎧≤⎰-xx x X P 23. 设随机变量X 的分布函数F ( x )为⎪⎩⎪⎨⎧≥=.1,1,10,0,0)(x x x A x x F <<,<确定系数A ,计算{}25.00≤≤X P ,求概率密度f ( x ).解连续型随机变量X 的分布函数是连续函数,F (1)= F (1-0),有A =1.⎪⎩⎪⎨⎧=.,0,10,21)(其他<<x xx f {}5.0)0()25.0(25.00=-=≤≤F F X P24. 求第20题中X 的分布函数F ( x ) .解{}t x X P x F t xd e 21)(||-∞-⎰=≤=当t ≤ 0时, x t x t x F e 21d e 21)(=⎰=∞-当t >0时,t t t x F t x t t x d e 21d e 21d e 21)(-00||⎰+⎰=⎰=-∞--∞-x x ---=-+=e 211)e 1(2121 25. 函数(1+x 2)-1可否为连续型随机变量的分布函数,为什么? 解不能是分布函数,因F (-∞)= 1 ≠ 0.26. 随机变量X ~f ( x ),并且)1(π)(2x ax f +=,确定a 的值;求分布函数F ( x );计算{}1||<X P .解a x a x x a ==⎰+=∞+∞-∞+∞-arctan πd )1(π12因此a =1x xt t t x F ∞-∞-=⎰+=arctan π1d )1(π1)(2x arctan π121+= {}⎰+=⎰+=-102112d )1(π12d )1(π11||x x x x X P < 21arctan π210==x 27. 随机变量X 的分布函数F ( x ) 为:⎪⎩⎪⎨⎧≤-=.2,02,1)(2x x xA x F ,> 确定常数A 的值,计算{}40≤≤X P .解由F ( 2+0 )=F ( 2 ),可得4,041==-A A{}{})0()4(4X 040F F P X P -=≤=≤≤<=0.7528. 随机变量X ~f ( x ),f ( x )=,e e x x A-+确定A 的值;求分布函数F ( x ) .解⎰+=⎰+=∞∞-∞∞--x A x A xxx x d e1e d e e 12 A A x 2πe arctan ==∞∞- 因此A =π2,xtxt t t x F ∞-∞--=+=⎰e arctan π2d )e e (π2)(x e arctan π2= 29. 随机变量X ~f ( x ),⎪⎩⎪⎨⎧=.,00,π2)(2其他<<a x x x f确定a 的值并求分布函数F ( x ) .解2202202ππd π21a x x x a a==⎰=因此,a = π 当0<x <π时,⎰=x x t tx F 0222πd π2)(⎪⎪⎩⎪⎪⎨⎧≥≤=π1,π0,π0,0)(22x x xx x F << 30. 随机变量X 的分布函数为)0(0,e 22210,0)(22>>a x ax x a x x F ax⎪⎩⎪⎨⎧++-≤=-求X 的概率密度并计算⎭⎬⎫⎩⎨⎧a X P 10<<.解当x ≤ 0时,X 的概率密度f ( x ) =0;当x > 0时,f ( x ) =F′ ( x )⎪⎩⎪⎨⎧≤=-.0,e 2,0,0)(23> x x a x x f ax其他)0()1(1010F a F a x P a x P -=⎭⎬⎫⎩⎨⎧≤=⎭⎬⎫⎩⎨⎧<<<08.0e 2511≈-=-31. 随机变量X 服从参数为0.7的0-1分布,求X 2,X 2-2X 的概率分布.解X 2仍服从0-1分布,且P { X 2=0 } =P { X =0 } =0.3,P {X 2=1}=P {X =1}=0.7X 2-2X 的取值为-1与0 , P {X 2-2X =0} =P { X =0 } =0.3P { X 2-2X =-1 } =1-P { X =0 } =0.732. 已知P { X =10n } =P { X =10-n }=,,2,1,31=n nY =l gX ,求Y 的概率分布. 解Y 的取值为±1, ±2 , …P { Y =n } =P { l gX =n } =P { X =10n } =31P { Y =-n } =P { l gX =-n } =P { x =10-n } =31n =1 , 2 , …33. X 服从[a ,b ]上的均匀分布,Y =ax +b (a ≠0),求证Y 也服从均匀分布.证设Y 的概率密度为f Y ( y ) ,X 的概率密度为f X ( x ),只要a ≠ 0,y = ax + b 都是x 的单调函数. 当a > 0时,Y 的取值为[a 2+b ,ab +b ],ax y h b y a y h x y 1)(,)(1)(='='-== ],,[,)(1])([)()(2b ab b a y a b a y h f y h y f X Y ++∈-='=当],[2b ab b a y ++∈时,f Y ( y ) =0.类似地,若a <0,则Y 的取值为[ ab +b , a 2+b ]⎪⎩⎪⎨⎧+≤≤+--=.,0,,)(1)(2其他b a y b ab a b a y f Y因此,无论a >0还是a <0,ax +b 均服从均匀分布.34. 随机变量X 服从[0 , 2π]上的均匀分布Y =cos X , 求Y 的概率密度f Y ( y ).解y =cos x 在[0,2π]上单调,在(0 , 1)上,h ( y ) = x =arccos yh′ ( y ) = 211y -- , f x ( x ) = π2 , 0 ≤ x ≤ 2π. 因此⎪⎩⎪⎨⎧-=.0,10,1π2)(2其他,<<y yy f Y35. 随机变量X 服从(0 , 1)上的均匀分布,Y =e x , Z =|ln X |,分别求随机变量Y 与Z 的概率密度f Y ( y ) 及f Z ( z ) .解y = e x 在(0 , 1)内单调 , x =ln y 可导,且x′y = y1, f X ( x ) =10 < x < 1 , 因此有⎪⎩⎪⎨⎧.,0,e 1,1)(其他 <<y yy f Y在(0 , 1)内ln x < 0|ln x |=-ln x 单调,且x = e z -,x′z =-e z -,因此有⎩⎨⎧∞+=-.,0,0e )(其他<<,z z f z z36. 随机变量X ~f ( x ) , ⎩⎨⎧≤=-0,00,e )(x x x f x >Y = X , Z = X 2 , 分别计算随机变量Y 与Z 的概率密度f y ( y ) 与f Z ( z ) . 解当x > 0时,y =x 单调,其反函数为x = y 2 , x′y = 2y ⎪⎩⎪⎨⎧≤=-.0,0,0,e 2)(2y y y y f y Y >当x > 0时z =x 2也是单调函数,其反函数为x =z , x′ z =z21⎪⎩⎪⎨⎧≤=-.0,00e 21)(z ,z zz f zz > 37.随机变量X ~f ( x ),当x ≥ 0时,)1(2)(2x x f +=π, Y =arctan X ,Z =X1,分别计算随机变量Y 与Z 的概率密度f Y ( y ) 与fz ( z ) . 解由于y = arctan x 是单调函数,其反函数x =tan y , x′ y =sec 2y 在⎪⎭⎫⎝⎛-2π,0内恒不为零,因此,当0 < y <π2时, π2)tan 1(π2sec )(22=+=y y y f Y 即Y 服从区间(0 , 2π)上的均匀分布.z = x 1在x >0时也是x 的单调函数,其反函数x =z 1, x′ z =21z-.因此当z >0时,)1(π2])1(1[π21)(222z zz z fz +=+-=⎪⎩⎪⎨⎧≤+=0,00,)1(π2)(2z z z z f z >即Z =X1与X 同分布. 38. 一个质点在半径为R ,圆心在原点的圆的上半圆周上随机游动. 求该质点横坐标X 的密度函数f X ( x ) .解如图,设质点在圆周位置为M ,弧MA 的长记为L ,显然L 是一个连续型随机变量,L 服从[0,πR ]上的均匀分布.⎪⎩⎪⎨⎧≤≤=.,0π0,π1)(其他,R l Rl f L M 点的横坐标X 也是一个随机变量,它是弧长L 的函数,且X = R cos θ = R cos RL函数x = R cos l / R 是l 的单调函数 ( 0< l < πR ) ,其反函数为l = R arccos Rx22xR R l x--=' 当-R < x < R 时,L′x ≠ 0,此时有2222π1π1)(xR R x R Rx f X -=⋅--=当x ≤ -R 或x ≥ R 时,f X ( x ) =0 .39. 计算第2 , 3 , 5 , 6 , 11各题中的随机变量的期望. 解根据第2题中所求出的X 概率分布,有2138223815138210=⨯+⨯+⨯=EX亦可从X 服从超几何分布,直接计算2120521=⨯==N N n EX在第3题中21161216611690=⨯+⨯+⨯=EX亦可从X 服从二项分布(2,41),直接用期望公式计算:21412=⨯==np EX在第5题中(1)3.122014220934492431=⨯+⨯+⨯+⨯=EX(2)3.022013220924491430=⨯+⨯+⨯+⨯=EY在第6题中,25.2220843220108222027122010=⨯+⨯+⨯+⨯=EX在第11题中,⎪⎭⎫⎝⎛+⨯+⨯+⎪⎭⎫ ⎝⎛-⨯=d 313312d 311EX31|<d <|0 d 22+=40. P { X = n } =nc, n =1, 2, 3, 4, 5, 确定C 的值并计算EX .解160137543251==++++=∑=c c c c c c n c n 13760=C 137300551==∑⋅==C n c n EX n 图2-141. 随机变量X 只取-1, 0, 1三个值,且相应概率的比为1 : 2 : 3,计算EX . 解设P { X =-1 } = a ,则P { X =0 } =2a , P { X =1 } =3a ( a >0 ) ,因a + 2a + 3a = 1 , 故a =1/631631620611=⨯+⨯+⨯-=EX42. 随机变量X 服从参数为0.8的0-1分布,通过计算说明EX 2是否等于( EX )2 ? 解EX =P { X =1 } =0.8,( EX )2 =0.64EX 2=1×0.8=0.8>( EX )243. 随机变量X ~f ( x ) ,f ( x ) =0.5e - | x |,计算EX n ,n 为正整数.解当n 为奇数时,)(x f x n 是奇函数,且积分x x x n d e 0-∞⎰收敛,因此0d e 5.0||=⎰=-∞+∞-x x EX x n n当n 为偶数时,x x x x EX x n x n n d e 5.02d e 5.00||-∞+-∞+∞-⎰=⎰=!)1(d e 0n n x x x n =+Γ=⎰=-∞+44. 随机变量X ~f ( x ) ,⎪⎩⎪⎨⎧-≤≤=.,0,21,2,10,)(<<x x x x x f计算EX n (n 为正整数) .解x x x x x x x f x EX n n n n d )2(d d )(21101⎰-+⎰=⎰=+∞+∞-1)2(21)12(122121-+--+++=++n n n n n )2()1(222++-=+n n n 45. 随机变量X ~f ( x ) ,⎩⎨⎧≤≤=.,0,10,)(其他x cx x f bb ,c 均大于0,问EX 可否等于1,为什么?解11d d )(10=+=⎰=⎰∞+∞-b c x cx x x f b 而2d 101+=⎰=+b c x cx EX b 由于方程组⎪⎪⎩⎪⎪⎨⎧=+=+1211b c b c无解,因此EX 不能等于1. 46. 计算第6,40各题中X 的方差DX . 解在第6题中,从第39题计算知EX =49, 22012152208492201084220272=⨯+⨯+=EX DX =EX 2-( EX )2≈0.46其他 其他在第40题中,已计算出EX =137300, c cn n c n EX n n 15515122=∑=⨯∑=== =137900DX =EX 2-(EX )2≈1.7747. 计算第23,29各题中随机变量的期望和方差.解在第23题中,由于f ( x ) =x21(0<x <1),因此31d 210=⎰=x xx EX51d 22102=⎰=x xx EXDX = EX 2- ( EX )2 =454在第29题中,由于f ( x ) =2π2x( 0<x <π ) , 因此π32d π2π022=⎰=x xEX2πd π22π0232=⎰=x x EX DX =EX 2- ( EX )2=18π248. 计算第34题中随机变量Y 的期望和方差.解EY =π2d 1π2d )(12=⎰-=⎰∞+∞-y y y y y yf Y EY 2=21d 1π2122=⎰-y y y DY =222π28ππ421-=-49. 已知随机变量X 的分布函数F ( x ) 为:F ( x ) =⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤+≤-++-.1,11022101,2211,022x x ,x x x x x x ,<-,<,<计算EX 与DX .解依题意,X 的密度函数f ( x ) 为:⎪⎩⎪⎨⎧≤-≤-+=.010,101,1)(其他,<,<,x x x x x f解EX =0d )1(d )1(0101=-⎰++⎰--x x x x x xEX 2=61d )1(d )1(102012=-⎰++⎰-x x x x x xDX =61 50. 已知随机变量X 的期望E X =μ,方差DX =σ2,随机变量Y = σμ-X ,求EY 和DY .解EY =σ1( EX -μ ) =0 DY = 2σDX =151. 随机变量Y n ~B ( n , 41) ,分别就n =1, 2, 4, 8, 列出Y n 的概率分布表,并画出概率函数图 .其中a = 1/65536 . 图略 .52. 设每次实验的成功率为0.8,重复实验4次,失败次数记为X ,求X 的概率分布 . 解X 可以取值0, 1,2, 3, 4.相应概率为P ( X =m ) =m m mC 2.08.0444⨯⨯--( m=0,1,2,3, 4 ) 计算结果列于下表53. 设每次投篮的命中率为0.7,求投篮10次恰有3次命中的概率 ;至少命中3次的概率 . 解 记X 为10次投篮中命中的次数,则X ~B ( 10 , 0.7 ) .{}009.03.07.0373310≈==C X P{}{}{}{}21013=-=-=-=≥X P X P X P X P =1-0.310-10×0.7×0.39-45×0.72×0.38≈0.998454.掷四颗骰子,求“6点”出现的平均次数及“6点”出现的最可能(即概率最大)次数及相应概率.解 掷四颗骰子,记“6点”出现次数为X ,则X ~B (4,61).EX = np =32由于np + p =65,其X 的最可能值为[ np + p ]=0 {}1296625)65(04===X P 若计算{}12965001==X P ,显然{}{},3,2==x P x P{}4=x P 概率更小.55.已知随机变量X ~B (n , p ),并且EX =3,DX =2,写出X 的全部可能取值,并计算{}8≤X P . 解根据二项分布的期望与方差公式,有⎩⎨⎧==23npq np 解方程,得q =32,p =31,n =9 . X 的全部可能取值为0, 1, 2, 3, …, 9. {}{}918=-=≤X P X P= 1-9)31(≈ 0.999956.随机变量X ~B (n ,p ),EX =0.8,EX 2=1.28,问X 取什么值的概率最大,其概率值为何? 解由于DX = EX 2-(EX)2=0.64, EX =0.8, 即⎩⎨⎧==8.064.0np npq 解得q = 0.8,p = 0.2,n = 4 .由于np +p =1,因此X 取0与取1的概率最大,其概率值为 {}{}4096.08.0104=====X P X P57.随机变量X ~B (n , p ),Y =e aX ,计算随机变量Y 的期望EY 和方差DY .解随机变量Y 是X 的函数,由于X 是离散型随机变量,因此Y 也是离散型随机变量,根据随机变量函数的期望公式,有 }{ }{∑+==∑==∑+==∑∑====-==-==-ni n a i n i a i n ni ai ni na i n i a i n ni ni in i i n ai ai q p q p C i X P EY q p q p C qp C i X P EY 022022000)e ()e ()e ()e ()e (e en ap n ap q q DY 22)e ()e (+-+=58. 从一副扑克牌(52张)中每次抽取一张,连续抽取四次,随机变量X ,Y 分别表示采用不放回抽样及有放回抽样取到的黑花色张数,分别求X ,Y 的概率分布以及期望和方差.解X 服从超几何分布,Y 服从二项分布B (4,21).)4,3,2,1,0(45242626===-m C C C m X P m m }{)4,3,2,1,0()21()21(44===-m C m Y P mm m }{ 具体计算结果列于下面两个表中.1 2214171651485226522641252264211===⨯===⨯⨯⨯=--⋅⋅==⨯==npq DY np EY N n N N N N N n DX N N nEX 59. 随机变量X 服从参数为2的泊松分布,查表写出概率4,3,2,1,0,==m m X P }{并与上题中的概率分布进行比较.X0 1 2 3 4 P0.13530.27070.27070.18040.090260.从废品率是0.001的100000件产品中,一次随机抽取500件,求废品率不超过0.01的概率.解 设500件中废品件数为X ,它是一个随机变量且X 服从N=100000,1N =100,n =500的超几何分布.由于n 相对于N 较小,因此它可以用二项分布B (500,0.001)近似.又因在二项分布B (500,0.001)中,n =500比较大,而p =0.001非常小,因此该二项分布又可用泊松分布近似,其分布参数λ=np =0.5.}∑=≈≤=≤⎩⎨⎧=-505.0999986.0e !5.05X 001.0500m m m P X P }{ 61.某种产品每件表面上的疵点数服从泊松分布,平均每件上有0.8个疵点,若规定疵点数不超过1个为一等品,价值10元;疵点数大于1不多于4为二等品,价值8元;4个以上者为废品,求: (1)产品的废品率; (2)产品价值的平均值解 设X 为一件产品表面上的疵点数目,(1)}{}>{314≤-=X P X P ∑==-==300014.01m m X P }{(2)设一件产品的产值为Y 元,它可以取值为0,8,10. )(61.98088.0101898.08 110418 10108800元}{}<{}{}{}{≈⨯+⨯=≤+≤==⨯+=⨯+=⨯=X P X P Y P Y P Y P EY62.设书籍中每页的印刷错误服从泊松分布,经统计发现在某本书上,有一个印刷错误的页数与有2个印刷错误的页数相同,求任意检验4页,每页上都没有印刷错误的概率.解设一页书上印刷错误为X ,4页中没有印刷错误的页数为Y ,依题意,}{}{21===X P X P 即λλλλ--=e !2e2解得λ=2,即X 服从λ=2的泊松分布.2e 0-===}{X P p 显然Y ~B )e ,4(2-84e 4-===p Y P }{63.每个粮仓内老鼠数目服从泊松分布,若已知一个粮仓内,有一只老鼠的概率为有两只老鼠概率的两倍,求粮仓内无鼠的概率. 解设X 为粮仓内老鼠数目,依题意λλλλ--⨯====e!22e 2212}{}{X P X P解得λ=1.1e 0-==}{X P64.上题中条件不变,求10个粮仓中有老鼠的粮仓不超过两个的概率.解 接上题,设10个粮仓中有老鼠的粮仓数目为Y ,则Y ~B (10,p ),其中,e 10101--==-==}{}>{X P X P 1e -=q)45e 80e 36(e 2102128+-==+=+==≤---}{}{}{}{Y P Y P Y P Y P65.设随机变量X 服从][3,2上的均匀分布,计算E (2X ),D (2X ),2)2(X D .解EX =2.5,DX =1276)(,12122=+=EX DX EXE (2X )=5,D (2X )=4DX =31,][⎰==-===32 442242225211d )(1616)4()2(x x EX EX EX DX X D X D 45150416)2(720150414457765211)(222242===-=-=DX X D EX EX DX66.随机变量X 服从标准正态分布,求概率P }{}{}{}{7,1,535.2,3-≤≤≤≤≤X P X P X P X . 解3(3)0.9987P X Φ≤=={} 2.355(5)(2.35)0.0094P X ΦΦ≤≤=-={}1(1)0.8413P X Φ≤=={}71(7)0P X Φ≤-=-={}67.随机变量X 服从标准正态分布,确定下列各概率等式中的a 的数值: (1);9.0=≤}{a X P ;(2){};9.0 =≤a X P(3){};97725.0=≤a X P (4){};1.0 =≤a X P 解(1){}()0.9P X a a Φ≤==,查表得a =1.28(2){} 2()10.9P X a a Φ≤=-=,得Φ(a )=0.95, 查表得a =1.64(3){}()0.97725P X a a Φ≤==,查表得a =2(4){}1.01)(2 =-Φ=≤a a X P ,得Φ(a )=0.55, 查表得a =0.1368. 随机变量X 服从正态分布)2,5(2N ,求概率{}85<<X P ,{}0≤X P ,{}25 <-X P .解{}⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-=2552588X 5ΦΦ<<P (1.5)(0)0.4332ΦΦ=-=P {}()()00620521520...X =-=-=≤ΦΦ{}1)1(212525 -Φ=⎭⎬⎫⎩⎨⎧≤-=-X P X P <=0.682669.随机变量X 服从正态分布),(2σμN ,若{}975.09=<X P ,{}062.02=<X P ,计算μ和σ的值,求{}6>X P .。
概率论与数理统计课程第二章练习题及解答

概率论与数理统计课程第二章练习题及解答一、判断题(在每题后的括号中 对的打“√”错的打“×” )1、连续型随机变量X 的概率密度函数)(x f 也一定是连续函数 (×)2、随机变量X 是定义在样本空间S 上的实值单值函数 (√)3、取值是有限个或可列无限多个的随机变量为离散随机变量 (√)4、离散型随机变量X 的分布律就是X 的取值和X 取值的概率 (√)5、随机变量X 的分布函数()F x 表示随机变量X 取值不超过x 的累积概率(√)6、一个随机变量,如果它不是离散型的那一定是连续型的 (×)7、我们将随机变量分成离散型和连续型两类 (×)8、若()()()()P ABC P A P B P C =成立,则,,A B C 相互独立 (×)9、若,,A B C 相互独立,则必有()()()()P ABC P A P B P C = (√) 二、单选题1、设123,,X X X 是随机变量,且22123~(0,1),~(0,2),~(5,3),X N X N X N{22)(1,2,3)i i P P X i =-≤≤=,则( A )A .123P P P >> B. 213P P P >> C. 321P P P >> D. 132P P P >>2、设随机变量~(0,1)X N ,其分布函数为()x Φ,则随机变量min{,0}Y X =的分布函数()F y 为( D )A 、1,()(),0y F y y y >⎧=⎨Φ≤⎩ B 、1,()(),0y F y y y ≥⎧=⎨Φ<⎩C 、0,()(),y F y y y ≤⎧=⎨Φ>⎩ D 、0,()(),y F y y y <⎧=⎨Φ≥⎩ 3、设随机变量X 的密度函数为()x ϕ,且()()x x ϕϕ-=,()F x 是X 的分布函数,则对任意实数a ,有( B )A 、0()1()aF a x dx ϕ-=-⎰B 、01()()2a F a x dx ϕ-=-⎰C 、()()F a F a -=D 、()2()1F a F a -=-分析 ()()()()a a aF a x dx x tt dt x dx ϕϕϕ-+∞-∞+∞-==--=⎰⎰⎰令1()()()()()2()aa a aax dx x dx x dx x dx x dxFa a x dxϕϕϕϕϕϕ+∞-+∞-∞-∞-==+++=⎰⎰⎰⎰⎰⎰(-)+21()()2a F a x dx ϕ-=-⎰,选B4、设1F x ()与2F x ()分别为随机变量1X 与2X 的分布函数,为使12F x aF x bF x()=()-()是某一随机变量的分布函数,在下列给定的各组数值中应取( A )A 、3255a b ==-,B 、2233a b ==,C 、1322a b =-=,D 、1322a b ==-,分析 根据分布函数的性质lim 1x F x →+∞=(),即121lim x F x F aF bF a b →+∞=∞∞∞()=(+)=(+)-(+)=-在给的四个选项中只有A 满足1a b =-,选A5、设1X 和2X 是任意两个相互独立的连续型随机变量,它们的概率密度分别为1f x ()和2f x (),分布函数分别为1F x()和2F x (),则( D ) A 、12f x f x ()+()必为某一随机变量的概率密度 B 、12f x f x ()()必为某一随机变量的概率密度C 、12F x F x()+()必为某一随机变量的分布密度 D 、12F x F x()()必为某一随机变量的分布密度 分析 首先可否定选项A 与C ,因为1212[]21f x f xdx f xdx f xdx +∞+∞+∞-∞-∞-∞=+=≠⎰⎰⎰()+()()()12F F ∞∞≠(+)+(+)=1+1=21对于选项B ,若112x f x -⎧⎨⎩,〈〈-1()=0,其它,210x f x ⎧⎨⎩,〈〈1()=0,其它,则对任何 1212(,),0,01x f x f x f xf x dx +∞-∞∈-∞+∞≡=≠⎰()()()(),也应否定C 。
经济数学基础课后答案(概率统计第三分册)第二章习题解答

f
(
x)
c ,
1 x2
x 1
0,
其它
确
定c值
;
计
算P
x
1 2
.
1
解:1 f ( x)dx
1
1
c
x2
dx
1
c
1
1 dx 1 x2
c arcsin x 1 c , c 1
1
1
P
X
1
2
2
1
2
1
1
2
21
dx arcsin x
1 x2
03
23.设连续型随机变量X 的分布函数F ( x)为
0, x 0
F
(
x)
A
x,
0 x1
1, 1 x
确定系数A;求 P{0 X 0.25};求概率密度f ( x).
解: 连续型随机变量X的分布函数是连续函数, F (1) F (1 0), 故A 1
P{0 X 0.25} F(0.25) F(0) 0.5
f
(
x)
F
(
x)
1、已知随机变量X服从0-1分布,并且PX 0 0.2 求X的概率分布。
解:X只取0与1两个值,
PX 0 PX 0 PX 0 0.2
PX 1 1 PX 0 0.8
2、一箱产品20件,其中有5件优质品,不放回地抽取,每次一件, 共抽取两次,求取到的优质品件数X的概率分布。
解: X可以取0,1,2三个值,有古典概型公式可知
y2,
x
y
2 y,
f
Y
(
y)
2 ye 0,
y2
,
y0 y 0.
概率论与数理统计答案 第二章1-2节

1 P { X = 1} = P( A1 A 2 A3 ∪ A1 A 2 A3 ∪ A1 A 2 A3 ) = C3 p1 (1 − p)3−1
P { X = 2} = P ( A1 A 2 A3 ∪ A1 A 2 A3 ∪ A1 A 2 A3 ) = C32 p 2 (1 − p)3− 2
同时可知: lim P { X ≥ 1} = 1
n →∞
上式的意义为:若p较小,p≠0,只要n充分大,至少有 一次命中的概率很大。即“小概率事件”在大量试验 中“至少有一次发生”几乎是必然的。
17
例4:有80台同类型设备,各台工作是相互独立的,发生故障 的概率都是0.01,且一台设备的故障能由一个人处理。 考虑两种配备维修工人的方法: 其一是由4个人维护,每人负责20台; 其二是由3个人共同维护80台。 试比较这两种方法在设备发生故障时不能及时维修的概率 的大小。
P{X=k}<0.001, 当k≥11时
16
例3:某人独立射击n次,设每次命中率为p,0<p<1, 设命中X次,(1) 求X的概率分布律; (2) 求至少有一次命中的概率。
解:这是n重伯努利试验 ⇒ X ~ b ( n , p ) ∼
(1) P { X = k} = Cnk p k (1 − p)n−k ,k = 0,1, ⋅⋅⋅, n 2 ) P { X ≥ 1} = 1 − P { X = 0} = 1 − (1 − p) n (
随机变量离散型随机变量分布律连续型随机变量概率密度概率分布函数重伯努利实验二项分布泊松分布均匀分布正态分布指数分布随机变量的函数的分布随机变量离散型随机变量分布律连续型随机变量概率密度概率分布函数重伯努利实验二项分布泊松分布均匀分布正态分布指数分布随机变量的函数的分布23定义1随机变量例1
概率论与数理统计(经管类)第二章课后习题答案

习题2.11.设随机变量X 的分布律为P{X=k}=,k=1, 2,N,求常数a.aN 解:由分布律的性质=1得∑∞k =1p kP(X=1) + P(X=2) +…..+ P(X=N) =1N*=1,即a=1aN 2.设随机变量X 只能取-1,0,1,2这4个值,且取这4个值相应的概率依次为,,求常数c.12c 34c ,58c ,716c 解:12c +34c +58c +716c =1C=37163.将一枚骰子连掷两次,以X 表示两次所得的点数之和,以Y 表示两次出现的最小点数,分别求X,Y 的分布律.注: 可知X 为从2到12的所有整数值.可以知道每次投完都会出现一种组合情况,其概率皆为(1/6)*(1/6)=1/36,故P(X=2)=(1/6)*(1/6)=1/36(第一次和第二次都是1)P(X=3)=2*(1/36)=1/18(两种组合(1,2)(2,1))P(X=4)=3*(1/36)=1/12(三种组合(1,3)(3,1)(2,2))P(X=5)=4*(1/36)=1/9(四种组合(1,4)(4,1)(2,3)(3,2))P(X=6)=5*(1/36=5/36(五种组合(1,5)(5,1)(2,4)(4,2)(3,3))P(X=7)=6*(1/36)=1/6(这里就不写了,应该明白吧)P(X=8)=5*(1/36)=5/36P(X=9)=4*(1/36)=1/9P(X=10)=3*(1/36)=1/12P(X=11)=2*(1/36)=1/18P(X=12)=1*(1/36)=1/36以上是X 的分布律投两次最小的点数可以是1到6里任意一个整数,即Y 的取值了.P(Y=1)=(1/6)*1=1/6 一个要是1,另一个可以是任何值P(Y=2)=(1/6)*(5/6)=5/36 一个是2,另一个是大于等于2的5个值P(Y=3)=(1/6)*(4/6)=1/9 一个是3,另一个是大于等于3的4个值P(Y=4)=(1/6)*(3/6)=1/12一个是4,另一个是大于等于4的3个值P(Y=5)=(1/6)*(2/6)=1/18一个是5,另一个是大于等于5的2个值P(Y=6)=(1/6)*(1/6)=1/36一个是6,另一个只能是6以上是Y 的分布律了.4.设在15个同类型的零件中有2个是次品,从中任取3次,每次取一个,取后不放回.以X 表示取出的次品的个数,求X 的分布律.解:X=0,1,2X=0时,P=C 313C 315=2235X=1时,P=C 213∗C 12C 315=1235X=2时,P=C 013∗C 22C 315=1355.抛掷一枚质地不均匀的硬币,每次出现正面的概率为,连续抛掷8次,以X 表示出现正面的次数,求23X 的分布律.解:P{X=k}=, k=1, 2, 3, 8C k 8(23)k (13)8‒k 6.设离散型随机变量X 的分布律为X -123P141214解:求P {X ≤12}, P {23<X ≤52}, P {2≤X ≤3}, P {2≤X <3}P {X ≤12}=14P {23<X ≤52}=12P {2≤X ≤3}=12+14=34P {2≤X <3}=127.设事件A 在每一次试验中发生的概率分别为0.3.当A 发生不少于3次时,指示灯发出信号,求:(1)进行5次独立试验,求指示灯发出信号的概率;(2)进行7次独立试验,求指示灯发出信号的概率.解:设X 为事件A 发生的次数,(1)P {X ≥3}=P {X =3}+P {X =4}+P {X =5}=C 35(0.3)3(0.7)2+C 45(0.3)4(0.7)1+C 55(0.3)5(0.7)0=0.1323+0.02835+0.00243=0.163(2) P{X≥3}=1‒P{X=0}‒P{X=1}‒P{X=2}=1‒C07(0.3)0(0.7)7‒C17(0.3)1(0.7)6‒C27(0.3)2(0.7)5=1‒0.0824‒0.2471‒0.3177=0.3538.甲乙两人投篮,投中的概率分别为0.6,0.7.现各投3次,求两人投中次数相等的概率.解:设X表示各自投中的次数P{X=0}=C03(0.6)0(0.4)3∗C03(0.7)0(0.3)3=0.064∗0.027=0.002P{X=1}=C13(0.6)1(0.4)2∗C13(0.7)1(0.3)2=0.288∗0.189=0.054P{X=2}=C23(0.6)2(0.4)1∗C23(0.7)2(0.3)1=0.432∗0.441=0.191P{X=3}=C33(0.6)3(0.4)0∗C33(0.7)3(0.3)0=0.216∗0.343=0.074投中次数相等的概率= P{X=0}+P{X=1}+P{X=2}+P{X=3}=0.3219.有一繁忙的汽车站,每天有大量的汽车经过,设每辆汽车在一天的某段时间内出事故的概率为0.0001.在某天的该段时间内有1000辆汽车经过,问出事故的次数不小于2的概率是多少?(利用泊松分布定理计算)解:设X表示该段时间出事故的次数,则X~B(1000,0.0001),用泊松定理近似计算=1000*0.0001=0.1λP{X≥2}=1‒P{X=0}‒P{X=1}=1‒C01000(0.0001)0(0.9999)1000‒C11000(0.0001)1(0.9999)999=1‒e‒0.1‒0.1e‒0.1=1‒0.9048‒0.0905=0.004710.一电话交换台每分钟收到的呼唤次数服从参数为4的泊松分别,求:(1)每分钟恰有8次呼唤的概率;(2)每分钟的呼唤次数大于10的概率.解: (1) P{X=8}=P{X≥8}‒P{X≥9}=0.051134‒0.021363=0.029771(2) P{X>10}=P{X≥11}=0.002840习题2.21.求0-1分布的分布函数.解:F(x)={0, x<0q, 0≤x<11,x≥12.设离散型随机变量X的分布律为:3 OF 18X -123P0.250.50.25求X 的分布函数,以及概率,.P {1.5<X ≤2.5} P {X ≥0.5}解:當x <‒1時,F (x )=P {X ≤x }=0;當‒1≤x <2時,F (x )=P {X ≤x }=P {X =‒1}=0.25;當2≤x <3時,F (x )=P {X ≤x }=P {X =‒1}+P {X =2}=0.25+0.5=0.75;當x ≥3時,F (x )=P {X ≤x }=P {X =‒1}+P {X =2}+P {X =3}=0.25+0.5+0.25=1;则X 的分布函数F(x)为:F (x )={0, x <‒10.25, ‒1≤x <20.75, 2≤x <31, x ≥3P {1.5<X ≤2.5}=F (2.5)‒F (1.5)=0.75‒0.25=0.5 P {X ≥0.5}=1‒F (0.5)=1‒0.25=0.753.设F 1(x),F 2(x)分别为随机变量X 1和X 2的分布函数,且F(x)=a F 1(x)-bF 2(x)也是某一随机变量的分布函数,证明a-b=1.证: F (+∞)=aF (+∞)‒bF (+∞)=1,即a ‒b =14.如下4个函数,哪个是随机变量的分布函数:(1)F 1(x )={0, x <‒212, ‒2≤x <02, x ≥0(2)F 2(x )={0, x <0sinx, 0≤x <π1, x ≥π(3)F 3(x )={0, x <0sinx, 0≤x <π21, x ≥π2(4)F 4(x )={0, x <0x +13, 0<x <121, x ≥125.设随机变量X 的分布函数为F(x) =a+b arctanx ,‒∞<x <+∞,求(1)常数a,b;(2) P {‒1<X ≤1}解: (1)由分布函数的基本性质 得:F (‒∞)=0,F (+∞)=1{a +b ∗(‒π2)=0a +b ∗(π2)=1of backbone backbone role; to full strengthening members youth work, full play youth employees in company development in the of force role; to improve independent Commission against corruption work level, strengthening on enterprise business key link of effectiveness monitored. , And maintain stability. To further strengthen publicity and education, improve the overall legal system. We must strengthen safety management, establish and improve the education, supervision, and evaluation as one of the traffic safety management mechanism. To conscientiously sum up the Olympic security controls, promoting integrated management to a higher level, higher standards, a higher level of development. Employees, today is lunar calendar on December 24, the ox Bell is about to ring, at this time of year, we clearly feel the pulse of the XX power generation company to flourish, to more clearly hear XX power generation companies mature and symmetry breathing. Recalling past one another across a railing, we are enthusiastic and full of confidence. Future development opportunities, we more exciting fight more spirited. Employees, let us together across 2013 full of challenges and opportunities, to create a green, low-cost operation, fullof humane care of a world-class power generation company and work hard! The occasion of the Spring Festival, my sincere wish that you and the families of the staff in the new year, good health, happy, happy5 OF 18解之a=, b=121π(2)P {‒1<X ≤1}=F (1)‒F (‒1)=a +b ∗π4‒(a +b ∗‒π4)=b ∗π2=12(将x=1带入F(x) =a+b arctanx )注: arctan 为反正切函数,值域(), arctan1=‒π2,π2 π46.设随机变量X 的分布函数为F (x )={0, x <1lnx, 1≤x <e1, x ≥e求P {X ≤2},P {0<X ≤3},P {2<X ≤2.5}解: 注: P {X ≤2}=F(2)=ln2 F(x)=P {X ≤x }P {0<X ≤3}=F (3)‒F (0)=1‒0=1;P {2<X ≤2.5}=F (2.5)‒F (2)=ln2.5‒ln2=ln2.52=ln1.25习题2.31.设随机变量X 的概率密度为:f (x )={acosx, |x |≤π20, 其他.求: (1)常数a; (2);(3)X 的分布函数F(x).P {0<X <π4}解:(1)由概率密度的性质∫+∞‒∞f (x )dx =1,∫π2‒π2acosxdx =a sinx |π2‒π2=asin π2‒asin (‒π2)=asin π2+asin π2=a +a =1A =12(2)P {0<X <π4}=(12)sin(π4)‒(12)sin (0)=12∗22+12∗0=24一些常用特殊角的三角函数值正弦余弦正切余切0010不存在π/61/2√3/2√3/3√3π/4√2/2√2/211of backbone backbone role; to full strengthening members youth work, full play youth employees in company development in the of force role; to improve independent Commission against corruption work level, strengthening on enterprise business key link of effectiveness monitored. , And maintain stability. To further strengthen publicity and education, improve the overall legal system. We must strengthen safety management, establish and improve the education, supervision, and evaluation as one of the traffic safety management mechanism. To conscientiously sum up the Olympic security controls, promoting integrated management to a higher level, higher standards, a higher level of development. Employees, today is lunar calendar on December 24, the ox Bell is about to ring, at this time of year, we clearly feel the pulse of the XX power generation company to flourish, to more clearly hear XX power generation companies mature and symmetry breathing. Recalling past one another across a railing, we are enthusiastic and full of confidence. Future development opportunities, we more exciting fight more spirited. Employees, let us together across 2013 full of challenges and opportunities, to create a green, low-cost operation, full of humane care of a world-class power generation company and work hard! The occasion of the Spring Festival, my sincere wish that you and the families of the staff in the new year, good health, happy, happy(3)X 的概率分布为:F (x )={0, x <‒π212(1+sinx ), ‒π2≤x <π21, x ≥π2 2.设随机变量X 的概率密度为f (x )=ae ‒|x |, ‒∞<x <+∞,求: (1)常数a; (2); (3)X 的分布函数. P {0≤X ≤1}解:(1),即a=∫+∞‒∞f(x)dx =∫0‒∞ae x dx +∫+∞ae ‒x dx =a +a =112(2)P {0≤X ≤1}=F (1)‒F (0)=12(1‒e ‒1)(3)X 的分布函数F (x )={12e x, x ≤01‒12e ‒x, x >03.求下列分布函数所对应的概率密度:(1)F 1(x )=12+1πarctanx , ‒∞<x <+∞;解:(柯西分布)f 1(x )=1π(1+x 2)(2)F 2(x )={1‒e ‒x 22, x >00, x ≤0π/3√3/21/2√3√3/3π/210不存在0π-1不存在7 OF 18解:(指数分布) f 2(x )={x e ‒x 22, x >00, x ≤0(3)F 3(x )={0, x <0sinx , 0≤ x ≤π21, x >π2解: (均匀分布)f 3(x )={cosx , 0≤ x ≤π20, 其他4.设随机变量X 的概率密度为f (x )={x, 0≤x <12‒x, 1≤ x <20, 其他.求: (1); (2)P {X ≥12} P {12<X <32}.解:(1)P {X ≥12}=1‒F (12)=1‒1222=1‒18=78(2)(2)P {12<X <32}=F(32)‒F(12)=(2∗32‒1‒3222)‒(3222)=345.设K 在(0,5)上服从均匀分布,求方程(利用二次式的判别式)4x 2+4Kx +K +2=0有实根的概率.解: K~U(0,5)f (K )={15 , 0≤x ≤50, 其他方程式有实数根,则Δ≥0,即(4K)2‒4∗4∗(K +2)=16K 2‒16(K +2)≥02≤K ≤‒1故方程有实根的概率为:P {K ≤‒1}+P {K ≥2}=∫5215dx =0.66.设X ~ U(2,5),现在对X 进行3次独立观测,求至少有两次观测值大于3的概率.解:P {K >3}=1‒F (3)=1‒3‒25‒2=23至少有两次观测值大于3的概率为:C 23(23)2(13)1+C 33(23)3(13)0=20277.设修理某机器所用的时间X 服从参数为λ=0.5(小时)指数分布,求在机器出现故障时,在一小时内可以修好的概率.解: P {X ≤1}=F (1)=1‒e‒0.58.设顾客在某银行的窗口等待服务的时间X(以分计)服从参数为λ=的指数分布,某顾客在窗口等待159 OF 18服务,若超过10分钟,他就离开.他一个月要到银行5次,以Y 表示他未等到服务而离开窗口的次数.写出Y 的分布律,并求P {Y ≥1}.解:“未等到服务而离开的概率”为P {X ≥10}=1‒F (10)=1‒(1‒e‒15∗10)=e ‒2P {Y =k }=C k 5(e ‒2)k(1‒e ‒2)5‒k , (k =0,1,2,3,4,5)Y 的分布律:Y 012345P0.4840.3780.1180.0180.0010.00004P {Y ≥1}=1‒P {Y =0}=1‒0.484=0.5169.设X ~ N(3,),求:22(1);P {2<X ≤5}, P {‒4<X ≤10}, P {|X |>2}, P {X >3}(2).常数c,使P {X >c }=P {X ≤c }解: (1)P {2<X ≤5}=Φ(5‒32)‒Φ(2‒32)=Φ(1)‒[1‒Φ(12)]=0.8413‒(1‒0.6915)=0.5328P {‒4<X ≤10}=Φ(10‒32)‒Φ(‒4‒32)=Φ(3.5)‒[1‒Φ(3.5)]=0.9998‒0.0002=0.9996 P {|X |>2}= 1‒P {‒2≤X ≤2}=1‒[Φ(2‒32)‒Φ(‒2‒32)]=1‒(0.3085‒0.0062)=0.6977P {X >3}= P {X ≥3}=1‒Φ(3‒32)=1‒Φ(0)=1‒0.5=0.5(2)P {X >c }=P {X ≤c }P {X >c }=1‒P {X ≥c }P {X >c }+P {X ≥c }=1Φ(c ‒32)+Φ(c ‒32)=1Φ(c ‒32)=0.5经查表,即C=3c ‒32=010.设X ~ N(0,1),设x 满足P {|X |>x }<0.1.求x 的取值范围.解:P {|X |>x }<0.12[1‒Φ(x )]<0.1‒Φ(x )<‒1920Φ(x )≥1920Φ(x )≥0.95经查表当 1.65时x ≥Φ(x )≥0.95即 1.65时x ≥P {|X |>x }<0.111.X ~ N(10,),求:22(1)P {7<X ≤15};(2)常数d,使P {|X ‒10|<d }<0.9.解: (1)P {7<X ≤15}=Φ(15‒102)‒Φ(7‒102)=Φ(2.5)‒[1‒Φ(1.5)]=0.9938‒0.0668=0.927(2)P {|X ‒10|<d }=P {10‒d <X <10+d }<0.9=Φ(10+d ‒102)‒Φ(10‒d ‒102)<0.9=Φ(d2)<0.95经查表,即d=3.3d2=1.6512.某机器生产的螺栓长度X(单位:cm)服从正态分布N(10.05,),规定长度在范围10.050.12内 0.062±为合格,求一螺栓不合格的概率.解:螺栓合格的概率为:P {10.05‒0.12<X <10.05+0.12}=P {9.93<X <10.17}=Φ(10.17‒10.050.06)‒Φ(9.93‒10.050.06)=Φ(2)‒[1‒Φ(2)]=0.9772∗2‒1=0.9544螺栓不合格的概率为1-0.9544=0.045613.测量距离时产生的随机误差X(单位:m)服从正态分布N(20,).进行3次独立测量.求:402(1)至少有一次误差绝对值不超过30m 的概率;(2)只有一次误差绝对值不超过30m的概率.解:(1)绝对值不超过30m的概率为:P{‒30<X<30}=Φ(30‒2040)‒Φ(‒30‒2040)=Φ(0.25)‒[1‒Φ(1.25)]=0.4931至少有一次误差绝对值不超过30m的概率为:1−C 03(0.4931)0(1‒0.4931)3=1‒0.1302=0.8698(2)只有一次误差绝对值不超过30m的概率为:C13(0.4931)1(1‒0.4931)2=0.3801习题2.41.设X的分布律为X-2023P0.20.20.30.3求(1)的分布律.Y1=‒2X+1的分布律; (2)Y2=|X|解: (1)的可能取值为5,1,-3,-5.Y1由于P{Y1=5}=P{‒2X+1=5}=P{X=‒2}=0.2P{Y1=1}=P{‒2X+1=1}=P{X=‒2}=0.2P{Y1=‒3}=P{‒2X+1=‒3}=P{X=2}=0.3P{Y1=‒5}=P{‒2X+1=‒5}=P{X=3}=0.3从而的分布律为:Y1X-5-315Y10.30.30.20.2(2)的可能取值为0,2,3.Y2由于P{Y2=0}=P{|X|=0}=P{X=0}=0.2P{Y2=2}=P{|X|=0}=P{X=‒2}+P{X=2}=0.2+0.3=0.5P{Y2=3}=P{|X|=3}=P{X=3}=0.3从而的分布律为:Y2X023Y20.20.50.32.设X的分布律为X-1012P0.20.30.10.411 OF 18求Y=(X‒1)2的分布律.解:Y的可能取值为0,1,4.由于P{Y=0}=P{(X‒1)2=0}=P{X=1}=0.1P{Y=1}=P{(X‒1)2=1}=P{X=0}+P{X=2}=0.7P{Y=4}=P{(X‒1)2=4}=P{X=‒1}=0.2从而的分布律为:YX014Y0.10.70.23.X~U(0,1),求以下Y的概率密度:(1)Y=‒2lnX; (2)Y=3X+1; (3)Y=e x.解: (1) Y=g(x)=‒2lnX, 值域為(0,+∞),X=ℎ(y)=e‒Y2, ℎ'(y)=12e‒Y2 f Y(y)=f x(ℎ(y))| ℎ'(y)|=1∗12e‒Y2=12e‒Y2.即f Y(y)={12e‒Y2, y>0,0, y≤0(2) Y=g(x)=3X+1,值域為(‒∞,+∞), X=ℎ(y)=Y‒13, ℎ'(y)=13f Y(y)=f x(ℎ(y))| ℎ'(y)|=1∗13=13即f Y(y)={13, 1< y<4,0, 其他注: 由X~U(0,1),,当X=0时,Y=3*0+1=1; ,当X=1时,Y=3*1+1=4 Y=3X+1(3) Y=g(x)=e x, X=ℎ(y)=lny, ℎ'(y)=1yf Y(y)=f x(ℎ(y))| ℎ'(y)|=1∗1y=1y即f Y(y)={1y, 0< y<e,0, 其他注: ,当X=0时,; ,当X=1时,Y=e0=0 Y=e1=e4.设随机变量X的概率密度为f X(x)={32x2, ‒1<x<00, 其他.of backbone backbone role; to full strengthening members youth work, full play youth employees in company development in the of force role; to improve independent Commission against corruption work level, strengthening on enterprise business key link of effectiveness monitored. , And maintain stability. To further strengthen publicity and education, improve the overall legal system. We must strengthen safety management, establish and improve the education, supervision, and evaluation as one of the traffic safety management mechanism. To conscientiously sum up the Olympic security controls, promoting integrated management to a higher level, higher standards, a higher level of development. Employees, today is lunar calendar on December 24, the ox Bell is about to ring, at this time of year, we clearly feel the pulse of the XX power generation company to flourish, to more clearly hear XX power generation companies mature and symmetry breathing. Recalling past one another across a railing, we are enthusiastic and full of confidence. Future development opportunities, we more exciting fight more spirited. Employees, let us together across 2013 full of challenges and opportunities, to create a green, low-cost operation, fullof humane care of a world-class power generation company and work hard! The occasion of the Spring Festival, my sincere wish that you and the families of the staff in the new year, good health, happy, happy13 OF 18求以下Y 的概率密度:(1)Y=3X; (2) Y=3-X; (3)Y =X 2.解: (1) Y=g(x)=3X,X =ℎ(y )=Y 3, ℎ'(y)=13f Y (y )=f x (ℎ(y ))| ℎ'(y)|=Y 26∗13=Y218即f Y (y )={Y 218, ‒3< y <0,0, 其他(2)Y=g(x) =3-X, X=h(y) =3-Y,-1ℎ'(y)=f Y (y )=f x (ℎ(y ))| ℎ'(y)|=32∗(3‒Y)2+1=3(3‒Y)22即f Y (y )={3(3‒Y)22, 3< y <4,0, 其他(3), X=h(y)=,Y =g(x)=X 2Y ℎ'(y)=12Y,即f Y (y )=f x (ℎ(y ))| ℎ'(y)|=3Y 22∗1 2Y=3Y4f Y (y )={3Y4, 0< y <1,0, 其他5.设X 服从参数为λ=1的指数分布,求以下Y 的概率密度:(1)Y=2X+1; (2)(3) Y =e x; Y =X 2.解: (1) Y=g(x)=2X+1,X =ℎ(y )=Y ‒12, ℎ'(y )=12X 的概率密度为:f X (x )={λe ‒λx, x >0,0, x ≤0f Y (y )=f x (ℎ(y ))| ℎ'(y)|=λe ‒λ∗Y ‒12∗12=12e ‒Y ‒12即f Y (y )={12e ‒Y ‒12, y >00, 其他(2)Y =g (x )=e x , X =ℎ(y )=lnY,ℎ'(y )= 1Y注意是绝对值 ℎ'(y)of backbone backbone role; to full strengthening members youth work, full play youth employees in company development in the of force role; to improve independent Commission against corruption work level, strengthening on enterprise business key link of effectiveness monitored. , And maintain stability. To further strengthen publicity and education, improve the overall legal system. We must strengthen safety management, establish and improve the education, supervision, and evaluation as one of the traffic safety management mechanism. To conscientiously sum up the Olympic security controls, promoting integrated management to a higher level, higher standards, a higher level of development. Employees, today is lunar calendar on December 24, the ox Bell is about to ring, at this time of year, we clearly feel the pulse of the XX power generation company to flourish, to more clearly hear XX power generation companies mature and symmetry breathing. Recalling past one another across a railing, we are enthusiastic and full of confidence. Future development opportunities, we more exciting fight more spirited. Employees, let us together across 2013 full of challenges and opportunities, to create a green, low-cost operation, full of humane care of a world-class power generation company and work hard! The occasion of the Spring Festival, my sincere wish that you and the families of the staff in the new year, good health, happy, happyf Y (y )=f x (ℎ(y ))| ℎ'(y)|=e‒lnY∗1Y =1e lnY ∗1Y =1Y ∗1Y =1Y 2即f Y (y )={1Y2, y >10, 其他(3)Y =g (x )=X 2,X =ℎ(y )=Y , ℎ'(y )=12Y,,f Y (y )=f x (ℎ(y ))| ℎ'(y)|=e ‒Y∗12Y=12Ye ‒Y即f Y (y )={12Ye ‒Y, y >00, 其他6.X~N(0,1),求以下Y 的概率密度:(1) Y =|X |; (2)Y =2X 2+1解: (1) Y =g (x )=|X |, X =ℎ(y )=±Y, ℎ'(y )=1f X (x )=12πσe‒(x ‒μ)22σ2‒∞<x <+∞当X=+Y 时:f Y (y )=f x (ℎ(y ))| ℎ'(y)|=12πe‒y 22当X=-Y 时: f Y (y )=f x (ℎ(y ))| ℎ'(y)|=12πe ‒y 22故f Y (y )=12πe ‒y 22+12πe‒y 22=22πe ‒y 22=42πe‒y 22=2πe ‒y 22f Y (y )={2πe ‒y 22, y >00, y ≤0(2)Y =g (x )=2X 2+1, X =ℎ(y )=Y ‒12,ℎ'(y )=12Y ‒12永远大于0.e x 当x>0是,>1e xof backbone backbone role; to full strengthening members youth work, full play youth employees in company development in the of force role; to improve independent Commission against corruption work level, strengthening on enterprise business key link of effectiveness monitored. , And maintain stability. To further strengthen publicity and education, improve the overall legal system. We must strengthen safety management, establish and improve the education, supervision, and evaluation as one of the traffic safety management mechanism. To conscientiously sum up the Olympic security controls, promoting integrated management to a higher level, higher standards, a higher level of development. Employees, today is lunar calendar on December 24, the ox Bell is about to ring, at this time of year, we clearly feel the pulse of the XX power generation company to flourish, to more clearly hear XX power generation companies mature and symmetry breathing. Recalling past one another across a railing, we are enthusiastic and full of confidence. Future development opportunities, we more exciting fight more spirited. Employees, let us together across 2013 full of challenges and opportunities, to create a green, low-cost operation, fullof humane care of a world-class power generation company and work hard! The occasion of the Spring Festival, my sincere wish that you and the families of the staff in the new year, good health, happy, happy15 OF 18f Y (y )=f x (ℎ(y ))| ℎ'(y)|=12πe‒(Y ‒12)22∗12Y ‒12=12π(y ‒1)e‒y ‒14即f Y (y )={12π(y ‒1)e ‒y ‒14, y >10, y ≤1自测题一,选择题1,设一批产品共有1000件,其中有50件次品,从中随机地,有放回地抽取500件产品,X 表示抽到次品的件数,则P{X=3}= C .A. B.C. D.C 350C 497950C 5001000A 350A 497950A 5001000C 3500(0.05)3(0.95)497 35002.设随机变量X~B(4,0.2),则P{X>3}= A .A. 0.0016B. 0.0272C. 0.4096D. 0.8192解:P{X>3}= P{X=4}= (二项分布)C 44(0.2)4(1‒0.2)03.设随机变量X 的分布函数为F(x),下列结论中不一定成立的是D .A. B. C. D. F(x) 为连续函数F (+∞)=1 F (‒∞)=00≤F (x )≤14.下列各函数中是随机变量分布函数的为 B .A. B.F 1(x )=11+x 2, ‒∞<x <+∞F 2(x )={0, x ≤0x 1+x , x >0C.D.F 3(x )=e ‒x, ‒∞<x <+∞F 4(x )=34+12πarctanx, ‒∞<x <+∞5.设随机变量X 的概率密度为 则常数a= A .f (x )={a x 2, x >100, x ≤10A. -10B.C.D. 10解: F(x) =‒15001500∫+∞‒∞a x2dx =‒ax =16.如果函数是某连续型随机变量X 的概率密度,则区间[a,b]可以是 C f (x )={x, a<x <b0, 其他A. [0, 1]B. [0, 2]C. D. [1, 2][0,2]不晓得为何课后答案为Dof backbone backbone role; to full strengthening members youth work, full play youth employees in company development in the of force role; to improve independent Commission against corruption work level, strengthening on enterprise business key link of effectiveness monitored. , And maintain stability. To further strengthen publicity and education, improve the overall legal system. We must strengthen safety management, establish and improve the education, supervision, and evaluation as one of the traffic safety management mechanism. To conscientiously sum up the Olympic security controls, promoting integrated management to a higher level, higher standards, a higher level of development. Employees, today is lunar calendar on December 24, the ox Bell is about to ring, at this time of year, we clearly feel the pulse of the XX power generation company to flourish, to more clearly hear XX power generation companies mature and symmetry breathing. Recalling past one another across a railing, we are enthusiastic and full of confidence. Future development opportunities, we more exciting fight more spirited. Employees, let us together across 2013 full of challenges and opportunities, to create a green, low-cost operation, fullof humane care of a world-class power generation company and work hard! The occasion of the Spring Festival, my sincere wish that you and the families of the staff in the new year, good health, happy, happy7.设随机变量X 的取值范围是[-1,1],以下函数可以作为X 的概率密度的是 A A. B. {12, ‒1< x <10, 其他{2, ‒1< x <10, 其他C.D. {x, ‒1< x <10, 其他{x 2, ‒1< x <10, 其他8.设连续型随机变量X 的概率密度为 则= B .f (x )={x2, 0< x <20, 其他P{‒1≤ X ≤1}A. 0 B. 0.25 C. 0.5 D. 1解:P {‒1≤ X ≤1}=∫1‒1x2dx =x 24|1‒1=149.设随机变量X~U(2,4),则= A . (需在区间2,4内)P{3< x <4}A. B. P{2.25< x <3.25}P{1.5< x <2.5}C. D. P{3.5< x <4.5}P{4.5< x <5.5}10. 设随机变量X 的概率密度为 则X~ A .f (x )=122πe ‒(x ‒1)28A. N (-1, 2)B. N (-1, 4)C. N (-1, 8)D. N (-1, 16)11.已知随机变量X 的概率密度为fx(x),令Y=-2X,则Y 的概率密度fy(y)为 D .A.B.C.D. 2f X (‒2y)f X (‒y2)12f X(‒y2)12f X (y 2)二,填空题1.已知随机变量X 的分布律为X 12345P2a0.10.3a0.3则常数a= 0.1 .解:2a+0.1+0.3+a+0.3=12.设随机变量X 的分布律为X 123P162636记X 的分布函数为F(x)则F(2)=.解: 1216+263.抛硬币5次,记其中正面向上的次数为X,则=.P{ X ≤4}3132解:P { X ≤4}=1‒P { X =5}=1‒C 55(12)5(12)自己算的结果是12f X(‒y2)17 OF 184.设X 服从参数为λ(λ>0)的泊松分布,且,则λ= 2 .P { X =0}=12P { X =2}解:分别将.P { X =0},P { X =2}帶入P k =P { X =k }=λk k!e ‒λ5.设随机变量X 的分布函数为F (x )={0, x <a0.4, a ≤x <b1, x ≥b其中0<a<b,则= 0.4.P {a2<X <a +b 2}解:P { a 2<X <a +b 2}=F (a +b 2)‒F (a 2)=0.4‒0=0.46.设X 为连续型随机变量,c 是一个常数,则= 0.P { X =c }7. 设连续型随机变量X 的分布函数为F (x )={13e x, x <013(x +1), 0≤x <21, x ≥2则X 的概率密度为f(x),则当x<0是f(x)=.13e x 8. 设连续型随机变量X 的分布函数为其中概率密度为f(x),F (x )={1‒e ‒2x , x >00, x ≤0则f(1)= .2e ‒29. 设连续型随机变量X 的概率密度为其中a>0.要使,则常数a=f (x )={12a, ‒a < x <a 0, 其他P { X >1}=13 3 .解:P { X >1}=1‒P { X ≤1}=13,P { X ≤1}=23=12a10.设随机变量X~N(0,1),为其分布函数,则= 1 .Φ(x)Φ(x )+Φ(‒x)11.设X~N ,其分布函数为为标准正态分布函数,则F(x)与之间的关系是(μ,σ2)F (x ),Φ(x)Φ(x)=.F (x )Φ(x ‒μσ)12.设X~N(2,4),则= 0.5 .P { X ≤2}13.设X~N(5,9),已知标准正态分布函数值,为使,则Φ(0.5)=0.6915P { X <a }<0.6915常数a< 6.5. 解:, F (a )=Φ(a ‒μσ)=a ‒53a ‒53<0.514. 设X~N(0,1),则Y=2X+1的概率密度= .f Y (y )122πe‒(Y ‒1)28解:Y =g (x )=2X +1, X =ℎ(y )=Y ‒12,ℎ'(y )=12f Y (y )=f x (ℎ(y ))| ℎ'(y)|=12πe‒(Y ‒12)22∗12=122πe‒(Y ‒1)28三.袋中有2个白球3个红球,现从袋中随机地抽取2个球,以X 表示取到红球的数,求X 的分布律.解: X=0,1,2当X=0时,P { X =0}=C 03∗C 22C 25=110当X=1时,P { X =1}=C 13∗C 12C 25=610当X=2时,P { X =2}=C 23∗C 02C 25=310X 的分布律为:X 012P110610310四.设X 的概率密度为求: (1)X 的分布函数F(x);(2).f (x )={|x|, ‒1≤ x ≤10, 其他 P { X <0.5},P { X >‒0.5}解: (1)当x <-1时. F(x)=0;;当‒1≤x <0时,F(x)=∫x‒1‒x dx =‒x 22|x ‒1=12‒x 22当0≤x <1时,F (x )=1‒ 1∫xx dx =1‒x 22|1x =12+x 22当x ≥1时. F(x)=1F (X )={0, X <‒112‒x22, ‒1≤X <012+x22, 0≤X <11, X ≥1(2)P { X <0.5}=F (0.5)=12+0.522=58;P { X >‒0.5}=1‒F (‒0.5)=1‒(12‒0.522)=58五.已知某种类型电子组件的寿命X(单位:小时)服从指数分布,它的概率密度为f (x )={12000e ‒x 2000, x >00, x ≤0We will continue to improve the company's internal control system, and steady improvement in ability to manage and control, optimize business processes, to ensure smooth processes, responsibilities in place; to further strengthen internal controls, play a control post independent oversight role of evaluation complying with third-party responsibility; to actively make use of internal audit tools detect potential management, streamline, standardize related transactions, strengthening operations in accordance with law. Deepening the information management to ensure full communication "zero resistance". To constantly perfect ERP, and BFS++, and PI, and MIS, and SCM, information system based construction, full integration information system, achieved information resources shared; to expand Portal system application of breadth and depth, play information system on enterprise of Assistant role; to perfect daily run maintenance operation of records, promote problem reasons analysis and system handover; to strengthening BFS++, and ERP, and SCM, technology application of training, improve employees application information system of capacity and level. Humanistic care to ensure "zero." To strengthening Humanities care,continues to foster company wind clear, and gas are, and heart Shun of culture atmosphere; strengthening love helped trapped, care difficult employees; carried out style activities, rich employees life; strengthening health and labour protection, organization career health medical, control career against; continues to implementation psychological warning prevention system, training employees health of character, and stable of mood and enterprising of attitude, created friendly fraternity of Humanities environment. To strengthen risk management, ensure that the business of "zero risk". To strengthened business plans management, will business business plans cover to all level, ensure the business can control in control; to close concern financial, and coal electric linkage, and energy-saving scheduling, national policy trends, strengthening track, active should; to implementation State-owned assets method, further specification business financial management; to perfect risk tube control system, achieved risk recognition, and measure, and assessment, and report, and control feedback of closed ring management, improve risk prevention capacity. To further standardize trading, and strive to achieve "according to law, standardize and fair." Innovation of performance management, to ensure that potential employees "zero fly". To strengthen performance management, process control, enhance employee evaluation and levels of effective communication to improve performance management. To further quantify and refine employee standards ... Work, full play party, and branch, and members in "five type Enterprise" construction in the of core role, and fighting fortress role and pioneer model role; to continues to strengthening "four good" leadership construction, full play levels cadres in enterprise development in theof backbone backbone role; to full strengthening members youth work, full play youth employees in company development in the of force role; to improve independent Commission against corruption work level, strengthening on enterprise business key link of effectiveness monitored. , And maintain stability. To further strengthen publicity and education, improve the overall legal system. We must strengthen safety management, establish and improve the education, supervision, and evaluation as one of the traffic safety management mechanism. To conscientiously sum up the Olympic security controls, promoting integrated management to a higher level, higher standards, a higher level of development. Employees, today is lunar calendar on December 24, the ox Bell is about to ring, at this time of year, we clearly feel the pulse of the XX power generation company to flourish, to more clearly hear XX power generation companies mature and symmetry breathing. Recalling past one another across a railing, we are enthusiastic and full of confidence. Future development opportunities, we more exciting fight more spirited. Employees, let us together across 2013 full of challenges and opportunities, to create a green, low-cost operation, fullof humane care of a world-class power generation company and work hard! The occasion of the Spring Festival, my sincere wish that you and the families of the staff in the new year, good health, happy, happy19 OF 18一台仪器装有4个此种类型的电子组件,其中任意一个损坏时仪器便不能正常工作,假设4个电子组件损坏与否相互独立.试求: (1)一个此种类型电子组件能工作2000小时以上的概率;(2)一台仪器能正p 1常工作2000小时以上的概率.p 2解: (1)P 1=P {X ≥2000}=∫+∞200012000e‒x 2000dx=12000∗‒2000∗e‒x2000|+∞2000=‒e‒x 2000|+∞2000=0‒(‒e ‒1)=e ‒1(2)因4个电子组件损坏与否相互独立,故:P 2=P 14=(e ‒1)4=e ‒4当+∞带入‒x2000时变成负无穷大,e ‒∞=0。
经济数学基础——概率统计课后习题答案

2
P(A)=
1 1 C3 15 # A C5 C82 28 #
(其中#A,#Ω分别表示有利于 A 的样本点数目与样本空间的样本点总数,余下同) 9. 计算上题中取到的两个球中有黑球的概率. 解 设事件 B 表示“取到的两个球中有黑球”则有利于事件 B 的样本点数为# B C52 .
P( B) 1-P( B) 1
从 9 题-11 题解中可以看到,有些时候计算所求事件的对立事件概率比较方便. 12. 一副扑克牌有 52 张,不放回抽样,每次一张,连续抽取 4 张,计算下列事件的概率: (1)四张花色各异; (2)四张中只有两种花色. 解 设事件 A 表示“四张花色各异” ;B 表示“四张中只有两种花色”. 4 1 1 1 1 # Ω C52, # A C13C13C13C13,
3
P( A) P( B) P(C ) P( D) P( E ) P( F )
1 27 8 27
P(G)
3 1 6 2 24 8 , P( H ) , P( I ) 27 9 27 9 27 9
15. 一间宿舍内住有 6 位同学,求他们中有 4 个人的生日在同一个月份的概率. 解 设事件 A 表示“有 4 个人的生日在同一个月份”. 1 #Ω=126,#A= C64C12 112 # A 21780 P( A) = =0.0073 #Ω 12 6 16. 事件 A 与 B 互不相容,计算 P ( A B ) . 解 由于 A 与 B 互不相容,有 AB=Φ,P(AB)=0 P( A B) P( AB) 1 P( AB) 1. 17. 设事件 B A,求证 P(B)≥P(A). 证 ∵B A ∴P(B-A)=P(B) - P(A) ∵P(B-A)≥0 ∴P(B)≥P(A) 18. 已知 P(A)=a,P(B)=b,ab≠0 (b>0.3a), P(A-B)=0.7a,求 P(B+A),P(B-A),P( B + A ). 解 由于 A-B 与 AB 互不相容,且 A=(A-B)+AB,因此有 P(AB)=P(A)-P(A-B)=0.3a P(A+B)=P(A)+P(B)-P(AB)=0.7a+b P(B-A)=P(B)-P(AB)=b-0.3a P( B + A )=1-P(AB)=1-0.3a 19. 50 个产品中有 46 个合格品与 4 个废品,从中一次抽取三个,计算取到废品的概率. 解
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x
2
arctane x
29.随 机 变 量X ~ f ( x ), 2x 2 , 0 xa f ( x) 0, 其 他. 试 定 a的 值 并 求 分 布 函 数( x ). F
解 由 1 0
a
2x
当 0 x
x
dx 2
x
2 a 2 0
时
解
c c c c c 137c c 1 2 3 4 5 i 1 n 60
5
60 因 此c 137 c 300 EX n 5c n i 1 137
5
41.随机变量X 只取 1, 1三个值,且相应概率的 0, 比为 1: 3,计算 . 2: EX
解: F () 0 1, 不能是分布函数 .
确 定a值 ; 求 分 布 函 数 ( x );计 算P x 1. F
a 26. 随 机 变 量 ~ f ( x ) X , 2 (1 x )
a a 解 : f ( x )dx 1 dx arctanx a 2 (1 x )
解
X 2仍服从 1分布,且 X 2 0 PX 0 0.3 0 P P X 2 1 PX 1 0.7
X 22 X 的取值为 1与0,
P X 2 2 X 0 PX 0 0.3 P X 2 2 X 1 1 PX 0 0.7
解:串联电路正常工作 的充要条件是, 3个元件都正常工作, 3个元件的寿命是相互独 立,同分布的随机变量 , 故串联电路正常工作,3个元件都正常工作的概 即 率为:
[ PX 150 ]3
而PX 150
100 100 2 dx 2 x 150 3 150 x
a2
2
因此 a
F ( x ) 0
2t
2
dt
x2
2
0, x 0, 2 x F ( x) 2 , 0 x , 1, x .
31.随机变量 服从参数为 .7 的0 1分布,求 2, X 22 X X 0 X 的概率分布 .
1
c 1 x
2
1
dx c
1
1
1 1 x
2
dx
1
1
c arcsi nx 1 c ,
1 2
c
1 2
1 1 2 1 P X dx arcsinx 2 1 1 x 2 3 0
2
23.设 连 续 型 随 机 变 量 的 分 布 函 数 ( x )为 X F 0, x 0 F ( x) A x , 0 x 1 1, 1 x 确 定 系 数A; 求 P{0 X 0.25}; 求 概 率 密 度( x ). f
34.随 机 变 量 服 从0, 上 的 均 匀 分 布 cos X , 求Y 的 X Y 2 概 率 密 度fY ( y ).
解
y cos x 在0, 上单调,在(1 0, )上, 2 1 h( y ) x arccosy 有 h( y ) 1 y2 2 有 f X [h( y )] 因此
解: X可以取0,1,2三个值,有古典概型公式可知
PX m
m 2 C5 C15 m
2 C 20
( m 0,1,2)
3、上题中若采用重复抽取,其他条件不变,设抽取的两件产品 中,优质品为X件,求随机变量X的概率分布。 解:X的取值仍是0,1,2 3 2 9 3 6 1 1 ( ) P X 0 P X 1 C 2 ( )( ) 16 4 4 4 16
1、已知随机变量X服从0-1分布,并且PX 0 0.2 求X的概率分布。 解:X只取0与1两个值,
PX 0 PX 0 PX 0 0.2
PX 1 1 PX 0 0.8
2、一箱产品20件,其中有5件优质品,不放回地抽取,每次一件, 共抽取两次,求取到的优质品件数X的概率分布。
3 n 3 3 12
3 9 3 12
84 220
(n=0,1,2,3)
7、已知 X n pn ,n=1,2,3,……,求p的值 P
解:根据 pX n 1
n 1
p(1 p n ) lim p i lim 1 ,有 n i 1 n 1 p
2 ye y , y 0 f Y ( y) 0, y 0. 1 2 , 当x 0时,z x 单调,其反函数为 z , x z x 2 z 1 z e , z0 f Z (z) 2 z 0, z 0.
2
c 40. PX n , n 1,2,3,4,5, 确 定C 的 值 并 计 算 . EX n
a 1
1 1 1 1 F ( x) dt arctant arctanx 2 2 (1 t )
1 1 1 P X 1 dx 2 dx 2 2 1 (1 x ) 0 (1 x ) 1
x
x
1 arctanx 2 0
解:若 ( x )是密度函数,则( x ) 0, 即a 0, 此时 f f
a2 a
f ( x )dx 2 xdx x
a
a2
2 a2 a
4a 4 1
与 f ( x )dx 1矛 盾 , 故f ( x )不 是 密 度 函 数 .
19. 某 种 电 子 元 件 寿 命是 随 机 变 量 , 概 率 密 为 X 度 100 2 , x 100 f ( x) x 0, x 100 3个 这 种 元 件 串 联 在 一 线 路 个 中 , 计 算 这个 元 件 使 用 了 小 3 150 时 后 仍 能 使 线 路 正 常作 的 概 率 工 .
PX 3
PX 4
3 2 9 9 12 11 10 220
3 2 1 9 1 12 11 10 9 220
44
P 2 Y
P 3 Y
44 P X 3 9 220 1 P X 4 220
6、上题盒中球的组成不变,若一次取出3个,求取得新球数目 X的概率分布。
n
p 1 有 1 p
8、已知 P
X n p
1 p 2
n
,n=2,4,6,……,求p得值。
2 p2 (舍去) 2
p2 2 解:p 2 p4 p6 ...... 1 p1 1 p2 2
9、已知 PX n cn, n 1,2,..., 100,求c的值。
2 , 0 y1 f Y ( y) 1 y 2 其 他. 0,
36.随 机 变 量X ~ f ( x ), e x , f ( x) 0, Y x0 x 0.
X , Z X 2 , 分 别 计 算 随 机 变 量与Z的 概 率 密 度 Y . 解 当x 0时,y x单调,其反函数为 y 2 , x 2 y , x y
2
1
27.设 随 机 变 量X 的 分 布 函 数 ( x )为 F A 1 2 , x 2 F ( x) x 0, x 2. 试 确 定 常 数A, 并 求 P{0 X 4}.
解 由 F (2 0) F (2)
得 A4
A 有 1 0, 4
PX k 0.6k 0.4, ( k 0,1,2,3) 公式法: PX 4 0.64
2 x, a x a 2 17. f ( x) 其它 0, 问f ( x )是 否 为 密 度 函 数 , 若 确 定a值 ; 若 不 是 说 明 理 由 是 .
解:X可以取0,1,2,3各值。
3 1 2 C3 C9 C3 1 27 PX 0 3 PX 1 3 C12 220 C12 220
C C C 108 PX 2 3 220 PX 3 C12 C
2 9 1 3
C C 或PX n C
n 9
P{0 X 4} P{0 X 4} F (4) F (0) 0.75 .
A 28.设 随 机 变 量X ~ f ( x ), f ( x ) x , 确 定A的 值 ; x e e 求 分 布 函 数 ( x ). F
A ex 解 由 1 x dx A dx x 2x 1 e e e x Aarctan e A 2 2 因此 A 2 2 x F ( x ) dt arctane t t t (e e )
(2 3 8 [ PX 150 ]3 ) 3 27
22. 随 机 变 量 ~ X 确 定c值 ; 计 算 P
c , x 1 2 f ( x) 1 x 0, 其它 1 x . 2
解 : f ( x )dx 1
100 n 1
解: cn c(1 2 ... 100 ) 5050 c 1
1 c 5050
14.一 条 公 共 汽 车 线 路 的 站 之 间 , 有 四 个 路 口 有 信 号 灯 , 假 定 汽 车 经 两 设 过 每 个 路 口 时 , 遇 到 灯 可 通 过 , 概 率 为6, 遇 到 红 、 黄 灯 则 停 概 率 绿 0. , 为0.4, 求 汽 车 开 出 后 , 在 一 次 停 车 之 前 已 通 过 路 口 数 的 概 率 分 布 第 的 X .