轮胎与路面之间的摩擦抗滑性能研究
混凝土路面的抗滑性能及其影响因素研究

混凝土路面的抗滑性能及其影响因素研究一、研究背景与意义随着城市化进程的加速,交通拥堵已成为城市面临的重要问题之一。
为了缓解交通压力,提高交通运输效率,道路建设成为城市发展的重要方面。
而路面抗滑性能是影响道路交通安全的关键因素之一,研究混凝土路面的抗滑性能及其影响因素,对于提高道路安全性和交通运输效率具有重要的意义。
二、混凝土路面的抗滑性能1. 定义混凝土路面的抗滑性能是指路面在受到水、油、雪、冰等外界因素作用时,能否保持足够的摩擦系数,避免车辆侧滑或打滑,从而保障行车安全。
2. 影响因素(1)路面材料:混凝土路面的材料成分及配合比、表面粗糙度等均会对路面抗滑性能产生影响。
(2)路面湿度:路面湿度是影响路面抗滑性能的重要因素。
湿度越高,路面的摩擦系数越低,车辆侧滑或打滑的可能性越大。
(3)路面温度:路面温度也会影响路面抗滑性能。
在低温下,路面容易结冰或积雪,增加车辆侧滑或打滑的风险。
(4)车速及车辆类型:车速越高,路面与轮胎之间的摩擦力越小,车辆侧滑或打滑的风险越大。
不同类型的车辆对路面抗滑性能的要求也不同,比如重型卡车需要更高的路面抗滑性能。
三、混凝土路面抗滑性能的测试方法为了评估混凝土路面的抗滑性能,需要进行相关的测试。
目前常见的测试方法有以下几种:1. 滑移试验法:该方法是通过模拟车辆在路面上行驶时的滑移情况,来评估路面的抗滑性能。
测试时,会在路面上放置一定数量的水或油,然后测量轮胎与路面之间的摩擦力,从而评估路面的抗滑性能。
2. 剪切试验法:该方法是通过测量路面表面的黏滞力和剪切力,来评估路面的抗滑性能。
测试时,会使用一种称为“剪切盘”的设备,在路面表面施加一定的剪切力,然后测量路面表面的黏滞力和剪切力。
3. 微观结构分析法:该方法通过对混凝土路面的微观结构进行分析,来评估路面的抗滑性能。
测试时,需要使用显微镜等设备对路面的微观结构进行观察和分析,从而了解路面结构对抗滑性能的影响。
四、混凝土路面抗滑性能的提高措施为了提高混凝土路面的抗滑性能,可以采取以下措施:1. 优化路面材料的配合比和表面粗糙度,提高路面的摩擦系数。
混凝土路面抗滑性能试验标准

混凝土路面抗滑性能试验标准一、前言混凝土路面是道路建设中常用的路面材料,其抗滑性能对道路行车安全至关重要。
因此,建立一套完整的混凝土路面抗滑性能试验标准,能够有效保障道路行车安全,提高混凝土路面的质量。
二、试验目的本标准的目的在于规定混凝土路面抗滑性能试验的方法和要求,以评定混凝土路面的抗滑性能,为混凝土路面的设计、施工和维修提供依据。
三、试验原理混凝土路面抗滑性能试验主要采用横向摩擦系数试验,通过模拟实际路面行车情况,测定混凝土路面的横向摩擦系数。
试验中,采用标准试验车辆,在不同速度下行驶,使试验车辆的轮胎与路面产生摩擦,测定产生摩擦的力和试验车辆的质量,从而计算出横向摩擦系数。
四、试验设备1.试验车辆:符合标准的试验车辆,包括轮胎、制动装置、速度计等。
2.试验路段:长度不小于1000米,宽度不小于4米,路面平整,无明显的裂缝和凹凸不平。
3.试验仪器:包括测力计、速度计、计时器等。
五、试验步骤1.试验前的准备工作(1)对试验车辆进行检查和校准,确保试验车辆的各项参数符合标准要求。
(2)对试验路段进行检查,排除试验中可能出现的影响因素,如路面上的杂物等。
2.试验过程(1)将试验车辆置于试验路段上,按照标准速度行驶,测定车辆的速度。
(2)在试验车辆轮胎与路面产生摩擦时,使用测力计测量摩擦力的大小。
(3)在试验过程中,每隔一段时间记录测量数据,直到试验结束。
3.试验后的处理(1)根据试验数据计算出试验路段上的横向摩擦系数。
(2)对试验数据进行统计分析,确定试验结果的可靠性和精度。
六、试验要求1.试验车辆的轮胎要求符合标准规定,轮胎胎面磨损深度不得超过2mm。
2.试验路段要求平整、无明显的裂缝和凹凸不平,路面干燥,无杂物。
3.试验时应选择不同速度进行试验,以确定混凝土路面的横向摩擦系数对速度的依赖关系。
4.试验过程中应注意安全,确保试验车辆和试验人员的安全。
七、试验结果的评定试验结果应根据试验标准规定的计算公式计算出横向摩擦系数,并按照规定的数据处理方法进行处理。
路面抗滑性影响因素及防治措施研究

路面抗滑性影响因素及防治措施研究作者:冯红梅李强来源:《中国科技博览》2013年第21期[摘要]通过分析影响路面抗滑性能的主要因素,提出提高路面抗滑性能的措施。
研究结果表明,选择合适的矿物材料,添加合理的表面活性剂,并采用适当的道路养护方法是提高抗滑性能的必由之路。
[关键词]抗滑性路面路面养护中图分类号:U416文献标识码:A文章编号:1009-914X(2013)21-0000-010.引言作为表征道路安全性的一个重要指标,路面抗滑能力反映了路面抵抗车辆滑行的能力,是影响路面车辆行驶的重要因素。
近年来,道路交通量的不断增加使得路表面抗滑材料被磨损速度加快。
而路表面抗滑能力的不断下降,使得道路的安全性得不到保障的地步,进而引发交通事故的不断发生,危急国民的生命安全。
因此,采取必要的应对措施来保证道路有足够的抗滑性能成为了当务之急。
1 影响路面抗滑性能的主要因素1.1 选用矿料性能差石灰岩属于碱性材料,相比于酸性材料,它同石油沥青的粘附效果更加。
因而,在很多线路工程中,工程技术人员在选用路面矿料的时候,通常会选择石灰岩。
但是,将石灰岩作为路面矿物骨料时也存在着很多严重的缺陷,如硬度较低,耐磨性能差。
若用其修筑路面,抗滑性能不能很难得到保证。
1.2 混合表层材料抗滑性差目前,道路路面施工中的沥青表处和嵌入式路面都为下大上小的嵌缝石料,路面表层用小石屑封面,这些细料与沥青粘结易形成致密的光面,很难保证路面的宏观构造深度。
目前二、三级路面的混合料表层也多成细粒式结构,抗滑性能低。
另外,由于低标号沥青低温抗裂性差,因此在路面修建时多用较高标号的沥青,高标号沥青虽然抗裂性能相对较好,但由于粘度低,热稳定性差,容易泛油,用于路面往往形成致密油面,从而降低了路面抗滑能力。
1.3 路面污染现有沥青路面多数为砂土质路肩,在风吹和车带泥土的影响下很容易污染路面,影响路面的构造深度,在雨天容易形成一层润滑膜,致使路面的摩擦系数大大降低,进而影响路面的抗滑性能,对行人的生命安全造成威胁。
摩擦系数问题

5.报告
(1)列表逐点报告路面构造深度的测定值及3次测定的平均值;当平均值小于0.2mm时,试验结果以<0.2mm表示。
(2)每一个评定区间路面构造深度的平均值、标准差、变异系数。
三、摆式仪测定路面抗滑值试验方法
校核滑动长度时应以橡胶片长边刚刚接触路面为准,不可借摆力量向前滑动,以免标定的滑动长度过长。
(4)用喷壶的水浇洒试测路面,并用橡胶刮板刮除表面泥浆。
(5)再次洒水,并按下释放开关,使摆在路面滑过,指针即可指示出路面的摆值。但第一次测定,不做记录。当摆杆回落时,用左手接住摆,右手提起举长柄使滑溜块升高,将摆向右运动,并使摆杆和指针重新置于水平释放位置。
(4)按以上方法,同一处平行测定不少于3次,3个测点均位于轮迹带上,测点间距3~
5m,该处的测定位置以中间测点的位置表示。
4.计算
(1)计算铺砂仪在玻璃板上摊铺的量砂厚度t0。
(2)计算路面构造深度TD:
(3)每一处均取3次路面构造深度的测定结果的平均值作为试验结果,精确至0.1mm。
(3)校核滑动长度
①用扫帚扫净路面表面,并用橡胶刮板清除摆动范围内路面上的松散粒料。
②让摆自由悬挂,提起摆头上的举升柄,将底座上垫块置于定位螺丝下面,使摆头上的滑溜块升高,放松紧固把手,转动立柱上升降把手、使摆缓缓下降。当滑块上的橡胶片刚刚接触路面时,即将紧固把手旋紧,使摆头固定。
①量砂筒:一端是封闭的,容积为(25土0.15)mL,可通过称量砂
筒中水的质量以确定其容积V,并调整其高度,使其容积符合要求。带一专门的刮尺将筒口量
砂刮平。
2推平板:推平板应为木制或铝制,直径50mm, 底面粘一层厚1.5mm的橡胶片,上面有一圆柱把手。
公路路面抗滑性能影响因素研究

制 动 力 系数 B C F
制 动 距 离数 S DN
抗
滑 移 指数 S N
滑
性
纵向摩擦 系数 P C F
横 向 力 系数 S C F 构造深度 T D
能
测 试
积水 , 在宏观构造众 多的使用 特性 中, 最突 出的是抗 滑、 减少 雨天 交通事故的作用 。在车辆速度较低 时 , 面微观构 造对抗 滑性 能 路 起决定性作用 。但在高速行车 时 , 宏观构 造的存在 能为 轮胎与路 面界面上 的积水 提供 排泄 空间 , 保障 轮胎 与路面 间 的接触 面积 。 车速越高 , 为迅速排除表面水所需 的宏观构造 的深度 越大 。据 国
路面抗滑能力是指路 面和轮胎之间存在 的阻抗能 力 , 因此除 了路 结构对抗滑性 能的影响见图 2 。 面本身 的特性会影 响抗 滑性之外 , 轮胎 的特性 或其他 同时影 响路 由图 2可见 , 在微观构造 上 , 3比 4要粗 糙 , 在低 速时 3的摩 面及轮胎 的外 在环境 因素也将对抗滑值 的变化产 生影 响 , 些因 擦 系数 比4大 , 因 3宏 观较细 , 这 但 即构造深 度小 于 4 故高速 时摩 , 素可归纳 为路 面因素 、 车辆 因素 、 环境 因素和路面 污染程 度等 , 现 擦 系数 比4 。同理 , 的微观 、 小 1 宏观 构造都不好 , 故在高 速 、 速 低
人 工法 H
直接
路面的微观构造为与其接触 的轮 胎抗 滑值
低速行驶 时的路表 面抗 滑能力 起决定 作用 。主要影 响在 低 速行 车( 0k / ) 5 i h 时路面 的抗 滑能力 , n 同时对高 速行 驶时路 面抗 滑力
也有一定影响。 路面的宏观构造是 指路 面集料 间 的开放 空 间 、 隙 和沟槽 , 孔 水平方向 0 5nl~5 r、 . -l 0mn 垂直 方 向 0 2ml—1 m, A l r . i 0 m 这部 分构 l 造主要 由集料外露或路面表面纹理 提供 , 经过特殊 处理形成 的大 构造 , 断面波 长在 0 5ml一 0nn范围内 。 其 . i 5 l l l 路表面通过宏观 构造 可以迅 速排 除轮胎 与路 面表 面之 间 的
混凝土路面抗滑性能检测标准

混凝土路面抗滑性能检测标准一、前言混凝土路面是公路交通建设中常见的路面类型之一,其抗滑性能是保障道路行车安全的关键因素之一。
因此,制定一套完整的混凝土路面抗滑性能检测标准对于保障公路交通建设的安全和高效运营具有重要意义。
二、适用范围本标准适用于混凝土路面抗滑性能的检测,包括混凝土路面摩擦系数和抗滑指数等相关指标的检测。
三、术语和定义1、混凝土路面:指由水泥、砂、石料等材料制成的路面。
2、摩擦系数:路面与轮胎之间的摩擦力与垂直于路面的力的比值。
3、抗滑指数:路面防滑性能的定量化指标,通常用摩擦系数的倒数表示。
4、静态摩擦系数:车轮在静止状态下与路面之间的摩擦系数。
5、动态摩擦系数:车轮在运动状态下与路面之间的摩擦系数。
四、设备和工具1、摩擦系数测试仪:用于测试路面静态摩擦系数和动态摩擦系数。
2、抗滑指数测试仪:用于测试路面抗滑指数。
3、温度计:用于测量路面温度。
五、检测方法1、混凝土路面摩擦系数检测(1)静态摩擦系数检测静态摩擦系数是指车轮在静止状态下与路面之间的摩擦系数。
检测时,应将测试仪的轮胎放置在路面上,使其与路面相接触,然后通过测试仪测量静态摩擦系数。
(2)动态摩擦系数检测动态摩擦系数是指车轮在运动状态下与路面之间的摩擦系数。
检测时,应将测试仪的轮胎放置在路面上,然后通过测试仪测量动态摩擦系数。
2、混凝土路面抗滑指数检测抗滑指数是路面防滑性能的定量化指标,通常用摩擦系数的倒数表示。
检测时,应先测量路面温度,然后通过测试仪测量路面的摩擦系数,最后计算出路面的抗滑指数。
六、检测结果的判定和处理1、混凝土路面静态摩擦系数根据不同的使用环境和要求,对于混凝土路面静态摩擦系数,应根据实际情况进行判定和处理。
一般来说,静态摩擦系数应大于0.5。
2、混凝土路面动态摩擦系数根据不同的使用环境和要求,对于混凝土路面动态摩擦系数,应根据实际情况进行判定和处理。
一般来说,动态摩擦系数应大于0.35。
3、混凝土路面抗滑指数根据不同的使用环境和要求,对于混凝土路面抗滑性能,应根据实际情况进行判定和处理。
道路与桥梁工程试验检测技术第一篇第4章路面抗滑性能检测

出版社
测量程序(TEXTUREHRA);③一般路面测量程序(TEXTURE);④传感 器校核程序(SENSORCHECK)。 2)根据被测路面状况,选择一般路面测量程序或大孔隙、粗糙度大的路面 测量程序进行测量。 3)以稳定的速度推车行驶进行测定,仪器按每一个计算区打印出该段构造 深度的平均值。 4.2.3电动铺砂仪测定路面构造深度 本方法适用于测定沥青路面及水泥混凝土路面表面构造深度,用以评定路面 表面的宏观粗糙度及路面表面的排水性能和抗滑性能。 (1)仪器设备 1)电动铺砂仪。 2)量砂。
摩擦系数差异不大,一般是能保证汽车安全行驶的。
2
2021/7/22
道路与桥梁工程试验检测技术
出版社
(3)面层结合料及集料 结合料的品种对摩擦系数有很大影响。 (4)路面上结冰、积雪及其他状态 路面上的结冰与积雪,均会使路面摩擦系数降低。 4.1.2路面抗滑标准 大量的试验与实践表明,由于雨水的润滑作用,引起路面摩擦系数降低,使 路面滑溜。 影响路面抗滑性能的因素很多,但主要的有石料的抗滑性能(即石料磨光值 PSV),它既影响低速行车时路面的抗滑能力,也影响高速行车时路面的抗滑 能力。 《公路沥青路面设计规范》中规定:在设计高速公路、一级公路的沥青表面 层时,应选用抗滑、耐磨石料,其石料磨光值应大于42。沥青路面表层抗滑
3
2021/7/22
道路与桥梁工程试验检测技术
出版社
性能指标有: 1)摩擦系数。高速公路、一级公路宜在竣工后第一夏季采用摩擦系数测定 车,以(50±1) km/h的车速测定横向力系数SFC。 2)路面宏观构造深度。 3)一般于竣工后第一个夏季测定沥青面层横向力系数或摆值、路面宏观构 造深度。
4
2021/7/22
道路与桥梁工程试验检测技术
路面抗滑性能试验检测方法_secret

路面抗滑性能试验检测方法路面抗滑性能是指车辆轮胎受到制动时沿表面滑移所产生的力。
通常,抗滑性能被看作是路面的表面特性,并用轮胎与路面问的摩阻系数来表示。
表面的特性包括路表细构造和粗构造;影响抗滑性能的因素有路面表面特性、路面潮湿程度和行车速度。
路表面构造是指集料表面的粗糙度,它随车轮的反复磨耗而渐被磨光。
通常采用石料磨光值(PSV)表征抗磨光的性能。
细构造在低速(30-50KM/h以下)时对路表抗滑性能起决定作用。
而高速时主要作用的是粗构造,它是由路表外露集料间形成的构造,功能是使车轮下的路表水迅速排除,以避免形成水膜。
粗构造由构造深度表征。
抗滑性能测试方法有:制动距离法、激光轮拖车法(横向力系数测试)、摆式仪法、构造深度测试法(手工铺砂法、电动铺砂法、激光构造深度仪法)。
各方法的特点和调试指标,详见表1。
路面的抗滑摆值是指:用标准的手提式摆式摩擦系数测定仪,测定出路面的潮湿条件下对摆的摩擦阻力。
路表构造深度是指:一定面积的路表面凹凸不平的开口孔隙的平均的深度。
路面横向摩擦系数是指:用标准的摩擦系数测定车测定,当测车轮与行车方向成一定角度且以一定速度行驶时,轮胎与潮湿路面之间的摩擦阻力与试验轮上荷载的比值。
高速、一级公路的路面应具有良好的抗滑性能,其沥青路面抗滑性能应符合表2的要求;二级、三级公路应根据各路段的具体情况,采取必要的技术措施,以提高路面抗滑性能。
在设计高速、一级公路的沥青表面层时.应选用抗滑、耐磨石科,其石料磨光值应大于42。
高速、一级公路的摩擦系数.宜在竣工后第一个夏季采用摩擦系数测定车,以(50±1)km/h的车速测定横向力系数(SFC);宏观构造深度应在竣工后第一个夏季用铺砂法或激光构造深度仪测定,此时的测定佰应符合表2规定的竣工验收值的要求。
上述抗滑标准仅为设计阶段的抗滑标准。
公路在养护过程中,也有养护的具体标准。
路面抗滑性能测试方法比较表1沥青路面抗滑性能标准表2鉴于路面抗滑性能测试方法较多,本工程采用下面的手工铺砂法构造深度测试方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
轮胎与路面之间的摩擦抗滑性能研究
摘要:本文对橡胶的摩擦、轮胎与路面之间的摩擦特性和附着因数的含义以及影响轮胎附着性能的因素进行了分析。
橡胶与路面之间的摩擦因数受载荷和滑动速度的影响,轮胎与路面之间的摩擦因数包括粘着和滞后两部分,与轮胎结构、路面状况和轮胎的工作条件密切相关。
关键词:轮胎;路面;摩擦;附着
1 引言
橡胶是汽车轮胎的主要材料,直接与地面接触,所以研究橡胶的摩擦磨损性能,是关系汽车安全的基础环节,也是ABS防抱死装置的理论基础和操作依据。
汽车行驶、制动、加速、转弯时的唯一外力来源就是从轮胎与路面间的摩擦力获得的。
因此研究轮胎橡胶的力学行为是意义十分重大的一项基础性工作。
由于轮胎的受力状况复杂,影响轮胎摩擦力的因素繁多,准确地把握轮胎的摩擦状况还有距离,这方面的研究还有待进一步深化。
本文概括了近年来在轮胎摩擦磨损方面的研究进展。
2 摩擦的基本特性
对任意两个接触滑动固体来说,Amnions早在17世纪就提出了摩擦基本定律:摩擦力与所加载荷成正比,与接触表观面积Aa无关。
据此给出的摩擦定律一般形式为:F =μW (1)式中F—摩擦力;μ—摩擦因数;W—载荷。
摩擦因数可分为静摩擦因数和动摩擦因数,其值不仅取决于摩擦副的材料性能,还取决于摩擦副所处的系统。
两个相对运动物体产生的摩擦力通常包括两个分力:粘附力Fa和变形或滞后力Fh。
前者是两个对摩表面分子之间的相互作用力(范德华作用力),克服粘附力必须施加足够大的剪切力;后者是对摩表面粗糙凸体之间的相互啮合,若要产生相对滑动,则必须施加足够大的外力使软表面产生变形、位移或局部破坏。
将Fh分成4种形式,即弹性变形、塑性变形、材料基体的剪切和材料表面膜的剪切。
区分材料弹、塑性变形的指标是塑性指数Ip,即:Ip= (σ/β)1/2E′/H(2)式中σ—表面粗糙度的标准均方差;β—微凸体的平均曲率半径;E′—材料的弹性模量;H—材料的压痕硬度。
3 橡胶的摩擦
橡胶是粘弹性材料,不遵从传统的库仑摩擦理论。
橡胶的摩擦因数与滑动速度之间存在密切的关系。
对受一定垂直载荷作用的橡胶试样进行摩擦试验,
随切向力的增大,橡胶与路面间的摩擦力增大,当静摩擦力达到最大值后,橡胶开始滑动。
橡胶试样的摩擦因数与滑动速度的关系曲线见图1。
图1橡胶试样的摩擦因数与滑动速度的关系曲线
从图1可以看出,随滑动速度的增大,摩擦因数迅速增至最大值,然后缓慢减小,在滑动速度很大时又有所回升。
橡胶滑动摩擦因数的最大值大于粘着状态的静摩擦因数,一般出现在滑动速度为0·01~0·50 m·s-1时。
橡胶的摩擦因数不仅与滑动速度有关,而且与参与摩擦的材料、接地压力和摩擦温度等因素有关。
橡胶与路面之间的摩擦因数分为粘着和滞后两部分,粘着分量取决于橡胶和路面的微观特性,而滞后分量取决于路面的宏观特性。
橡胶的摩擦因数随垂直载荷的增大而减小,随损耗因子的增大而增大,随温度的升高而减小。
4 轮胎与路面的受力分析
4.1 轮胎的受力分析。
图1为汽车以速度v行驶时,驱动轮上的受力简图。
由于轮胎本身还充有压缩空气,具有一定的内压力。
这样,它在内、外力、扭矩的作用下,会产生变形。
图1汽车轮胎的受力
由于轮胎的迟滞现象,使法向反力N的作用点向前移动了一段距离a。
不过,a值并不大,故计算轮胎与路面的摩擦力和轮廓法向接触应力时,可将a 值的影响略去。
轮胎上承载的载荷,使轮胎下面一小部分压平而形成与路面的轮廓接触面积AG,压平量h=r0-rd。
当h不大时,轮廓接触面积呈椭圆形;当h 较大时,轮廓接触面积近似矩形。
压平量可按下式计算:(3)式中:pW为轮胎内充气压力,MPa;α1,α2分别为常数。
要计算附着系数,必须首先确定附着力。
附着力的大小取决于轮廓法向接触应力。
由于路面上微凸体的高度不一致,即轮廓接触面积上各处的法向应力的变化规律相当复杂,若要详细计算,公式变得十分复杂。
但从文献可知,该应力取决于轮胎的结构、充气压力,但变化不大。
因此,我们假定轮廓接触面积AG内,路面与胎面为密接触状态,然后用该接触面积上的平均法向接触应力来计算附着系数。
这样,轮廓法向接触应力为:(4)式中:G为作用在车轴上的径向载荷。
4.2 路面形貌。
路面形貌是指路面施工后保留下来的路面几何形貌,通常以单位面积上的微凸体个数,以及微凸体的几何形状和高度分布来表征。
从下图可以看出,路面的微凸体形状近似于球截体。
这些球截体位于某一基准线上且沿高度方向分布。
H为微凸体的高度;L为路面取样长度
图2 水泥混凝土与沥青路面的表面轮廓
5 结语
轮胎与路面之间的附着因数是影响汽车行驶安全性和运输经济性的重要参数,它受很多因素的影响,具有很大的不确定性,因此预测较为困难。
影响轮胎与路面之间附着性能的主要因素有轮胎结构、路面、环境以及轮胎的工作条件。
为提高轮胎与路面之间的附着性能,除应对轮胎和路面进行合理设计外,还应注意道路维护以及轮胎和车辆的正确使用。
参考文献:
[1]庄继德·汽车轮胎学[M]·北京:北京理工大学出版社,1996·200-203·
[2] Sakai H·Theoretical and experimental studies on the dynamics properties of tyres·Part 2:Experimental investigation of rubber friction and deformation of a tyre[J]
[3]彭旭东,谢友柏,郭孔辉·轮胎摩擦学的研究与发展[J]·中国机械工程,2009,10(2):215-219·
[4]彭旭东,谢友柏,郭孔辉·轮胎摩擦特性和胎面胶性能间关系的研究[J]·润滑与密封,2008(4):12-15·
注:文章内所有公式及图表请用PDF形式查看。