通信原理课后练习答案经典.ppt
通信原理课后习题和作业答案40页PPT

26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭
▪
27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰
▪
28、知之者不如好之者,好之者不如乐之者。——孔子
▪
29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇
▪
30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
40
通信原理课后习题和作业答案
46、法律有权打破平静。——马·格林 47、在一千磅法律里,没有一盎司仁 爱。— —英国
48、法律一多,公正就少。——托·富 勒 49、犯罪总是以惩罚相补偿;只有处弱者比强者更能得到法律的保护 。—— 威·厄尔
▪
通信原理课后答案精选版

通信原理课后答案 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】第一章习题习题 在英文字母中E 出现的概率最大,等于,试求其信息量。
解:E 的信息量:()()b 25.3105.0log E log E 1log 222E =-=-==P P I 习题 某信息源由A ,B ,C ,D 四个符号组成,设每个符号独立出现,其出现的概率分别为1/4,1/4,3/16,5/16。
试求该信息源中每个符号的信息量。
解:习题 某信息源由A ,B ,C ,D 四个符号组成,这些符号分别用二进制码组00,01,10,11表示。
若每个二进制码元用宽度为5ms 的脉冲传输,试分别求出在下列条件下的平均信息速率。
(1) 这四个符号等概率出现; (2)这四个符号出现概率如习题所示。
解:(1)一个字母对应两个二进制脉冲,属于四进制符号,故一个字母的持续时间为2×5ms。
传送字母的符号速率为等概时的平均信息速率为 (2)平均信息量为则平均信息速率为 s b 7.197977.1100B b =⨯==H R R习题 试问上题中的码元速率是多少解:311200 Bd 5*10B B R T -=== 习题 设一个信息源由64个不同的符号组成,其中16个符号的出现概率均为1/32,其余48个符号出现的概率为1/96,若此信息源每秒发出1000个独立的符号,试求该信息源的平均信息速率。
解:该信息源的熵为 =比特/符号因此,该信息源的平均信息速率 1000*5.795790 b/s b R mH === 。
习题 设一个信息源输出四进制等概率信号,其码元宽度为125 us 。
试求码元速率和信息速率。
解:B 6B 118000 Bd 125*10R T -=== 等概时,s kb M R R B b /164log *8000log 22=== 习题 设一台接收机输入电路的等效电阻为600欧姆,输入电路的带宽为6 MHZ ,环境温度为23摄氏度,试求该电路产生的热噪声电压的有效值。
《通信原理》课后习题答案及每章总结(樊昌信,国防工业出版社,第五版)第一章

《通信原理》习题参考答案第一章1-1. 设英文字母E 出现的概率为0.105,x 出现的概率为0.002。
试求E 及x 的信息量。
解: )(25.3105.01)(log 2bit E I ==)(97.8002.01)(log 2bit X I == 题解:这里用的是信息量的定义公式)(1log x P I a =注:1、a 的取值:a =2时,信息量的单位为bita =e 时,信息量的单位为nita =10时,信息量的单位为哈特莱2、在一般的情况下,信息量都用bit 为单位,所以a =21-2. 某信息源的符号集由A ,B ,C ,D 和E 组成,设每一符号独立出现,其出现概率分别为1/4,1/8,1/8,3/16和5/16。
试求该信息源符号的平均信息量。
解:方法一:直接代入信源熵公式:)()()()()(E H D H C H B H A H H ++++=516165316163881881441log log log log log 22222++++=524.0453.083835.0++++= 符号)/(227.2bit =方法二:先求总的信息量I)()()()()(E I D I C I B I A I I ++++= 516316884log log log log log 22222++++= 678.1415.2332++++= )(093.12bit =所以平均信息量为:I/5=12.093/5=2.419 bit/符号题解:1、方法一中直接采用信源熵的形式求出,这种方法属于数理统计的方法求得平均值,得出结果的精度比较高,建议采用这种方法去计算2、方法二种采用先求总的信息量,在取平均值的方法求得,属于算术平均法求平均值,得出结果比较粗糙,精度不高,所以尽量不采取这种方法计算注:做题时请注意区分平均信息量和信息量的单位:平均信息量单位是bit/符号,表示平均每个符号所含的信息量,而信息量的单位是bit ,表示整个信息所含的信息量。
通信原理教程课后习题及答案36页PPT

66、节制使快乐增加并使享受加强。 ——德 谟克利 特 67、今天应做的事没有做,明天再早也 是耽误 了。——裴斯 泰洛齐 68、决定一个人的一生,以及整个命运 的,只 是一瞬 之间。 ——歌 德 69、懒人无法享受休息之乐。——拉布 克 70、浪费时间是一桩大罪过。——卢梭
1、不要轻言放弃,否则对不起自己。
2、要冒一次险!整个生命就是一场冒险。走得最远的人,常是愿意 去做,并愿意去冒险的人。“稳妥”之船,从未能从ห้องสมุดไป่ตู้边走远。-戴尔.卡耐基。
梦 境
3、人生就像一杯没有加糖的咖啡,喝起来是苦涩的,回味起来却有 久久不会退去的余香。
通信原理教程课后习题及答案 4、守业的最好办法就是不断的发展。 5、当爱不能完美,我宁愿选择无悔,不管来生多么美丽,我不愿失 去今生对你的记忆,我不求天长地久的美景,我只要生生世世的轮 回里有你。
通信原理教程第二版 课后习题解答

《通信原理》习题第一章
M
64 2
H ( X ) P ( x i ) log
i 1
P ( x i ) P ( x i ) log
i 1
2
P ( x i ) 16 *
1 32
log
2
32 48 *
1 96
log
2
96
=5.79 比特/符号 因此,该信息源的平均信息速率 习题 1.6
1 0 PX ( f )
4
1
( )
RX
2
( )
设随机过程 X(t)=m(t) cos t ,其中 m(t)是广义平稳随机过程,且其自
f , 10 kH Z f 10 kH Z 0 ,其 它
2
(1)试画出自相关函数 R X ( ) 的曲线; (2)试求出 X(t)的功率谱密度 P X
试求 X(t)的功率谱密度 P X 解:详见例 2-12
(f )
并画出其曲线。
5
《通信原理》习题第一章
习题 2.12
已知一信号 x(t)的双边功率谱密度为
1 0 PX ( f )
4
f , 10 kH Z f 10 kH Z 0 ,其 它
2
试求其平均功率。 解: P
V
习题 1.8 解:由 D 2
设一条无线链路采用视距传输方式通信,其收发天线的架设高度都等
于 80 m,试求其最远的通信距离。
8rh
,得
D
8 r h
8 * 6 .3 7 * 1 0 * 8 0
6
6 3 8 4 9
k m
第二章习题
习题 2.1 设随机过程 X(t)可以表示成:
通信原理课后答案

第一章习题习题1.1 在英文字母中E 出现的概率最大,等于0.105,试求其信息量。
解:E 的信息量:()()b 25.3105.0log E log E 1log 222E =-=-==P P I习题1.2 某信息源由A ,B ,C ,D 四个符号组成,设每个符号独立出现,其出现的概率分别为1/4,1/4,3/16,5/16。
试求该信息源中每个符号的信息量。
解:b A P A P I A 241log )(log )(1log 222=-=-==b I B 415.2163log 2=-= b I C 415.2163log 2=-= b I D 678.1165log 2=-=习题1.3 某信息源由A ,B ,C ,D 四个符号组成,这些符号分别用二进制码组00,01,10,11表示。
若每个二进制码元用宽度为5ms 的脉冲传输,试分别求出在下列条件下的平均信息速率。
(1) 这四个符号等概率出现; (2)这四个符号出现概率如习题1.2所示。
解:(1)一个字母对应两个二进制脉冲,属于四进制符号,故一个字母的持续时间为2×5ms 。
传送字母的符号速率为Bd 100105213B =⨯⨯=-R等概时的平均信息速率为s b 2004log log 2B 2B b ===R M R R(2)平均信息量为比特977.1516log 165316log 1634log 414log 412222=+++=H则平均信息速率为 s b 7.197977.1100B b =⨯==H R R习题1.4 试问上题中的码元速率是多少? 解:311200 Bd 5*10B B R T -===习题1.5 设一个信息源由64个不同的符号组成,其中16个符号的出现概率均为1/32,其余48个符号出现的概率为1/96,若此信息源每秒发出1000个独立的符号,试求该信息源的平均信息速率。
解:该信息源的熵为96log 961*4832log 321*16)(log )()(log )()(22264121+=-=-=∑∑==i i i i Mi i x P x P x P x P X H=5.79比特/符号因此,该信息源的平均信息速率 1000*5.795790 b/s b R mH === 。
通信原理课后习题参考答案

++++++++++++++++++++++++++第一章习题答案1-1解:1-2解:1-3解:1-4 解:1-5 解:1-6 解:1-7 解:1-8 解:第二章习题答案2-1 解:群延迟特性曲线略2-2 解:2-3 解:2-4 解:二径传播时选择性衰落特性图略。
2-5 解:2-6 解:2-7 解:2-8 解:第三章习题答案3-4 解:3-5 解:3-6 解:3-7 解:3-8 解:3-9 解:3-10 解:3-11 解:第四章习题答案4-2 解:4-3 解:4-4 解:4-6 解:4-8 解:4-9 解:4-10 解:4-11 解:4-12 解:4-13 解:4-15 解:4-16 解:4-17 解:第五章习题答案5-1 解:,,,(1)波形(2)5-2 解:,,(1)(2)相干接收时5-3 解:,,(1)相干解调时(2)非相干解调时5-4 解:,,,(1)最佳门限:而:所以:(2)包检:5-5 解:系统,,5-6 解:(1)信号与信号的区别与联系:一路可视为两路(2)解调系统与解调系统的区别与联系:一路信号的解调,可利用分路为两路信号,而后可采用解调信号的相干或包检法解调,再进行比较判决。
前提:信号可分路为两路信号谱不重叠。
5-7 解:系统,,,(1)(2)5-8 解:系统,,,,(1)(2)所以,相干解调时:非相干解调时:5-9 解:5-10 解:(1)信号时1 0 0 1 0(2)1 0 1 0 0,5-12 解:时:相干解调码变换:差分相干解调:,,(1):a:相干解调时解得:b:非相干解调时解得:(2):(同上)a:相干解调时,b:非相干解调时,(3)相干解调时即在保证同等误码率条件下,所需输入信号功率为时得1/4,即(4)a:差分相干解调时即在保证同等误码率条件下,所需输入信号功率为时得1/4,即b:相干解调的码变换后解得:5-16 解:(A方式)0 1 1 0 0 1 1 1 0 1 0 0 ,5-17 解:(1)时所以(2)时所以5-18 解:5-19 解:,::一个码元持续时间,含:个周波个周波。
通信原理通信课后答案02

《通信原理》习题第二章3第二章习题习题2.1 设随机过程X (t )可以表示成:()2cos(2), X t t t πθ=+-∞<<∞式中,θ是一个离散随机变量,它具有如下概率分布:P (θ=0)=0.5,P (θ=π/2)=0.5试求E [X (t )]和X R (0,1)。
解:E [X (t )]=P (θ=0)2cos(2)t π+P (θ=/2)2cos(2)=cos(2)sin 22t t t ππππ+-cos t ω习题2.2 设一个随机过程X (t )可以表示成:()2cos(2), X t t t πθ=+-∞<<∞判断它是功率信号还是能量信号?并求出其功率谱密度或能量谱密度。
解:为功率信号。
[]/2/2/2/21()lim ()()1lim 2cos(2)*2cos 2()T X T T T T T R X t X t dtTt t dtTττπθπτθ→∞-→∞-=+=+++⎰⎰222cos(2)j t j t e e πππτ-==+2222()()()(1)(1)j f j t j t j f X P f R e d e e e d f f πτπππττττδδ∞-∞---∞-∞==+=-++⎰⎰习题2.3 设有一信号可表示为:4exp() ,t 0(){0, t<0t X t -≥=试问它是功率信号还是能量信号?并求出其功率谱密度或能量谱密度。
解:它是能量信号。
X (t )的傅立叶变换为:(1)004()()441j t t j t j tX x t edt e e dt e dt j ωωωωω+∞-+∞--+∞-+-∞====+⎰⎰⎰则能量谱密度 G(f)=2()X f =222416114j f ωπ=++习题2.4 X (t )=12cos 2sin 2x t x t ππ-,它是一个随机过程,其中1x 和2x 是相互统计独立的高斯随机变量,数学期望均为0,方差均为2σ。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
统计独立。
⑴ 试证明 z(t)是广义平稳的;
⑵ 试画出自相关函数 Rz ( ) 的波形; ⑶ 试求功率谱密度Pz ( f ) 及功率S。
10
.精品课件.
第3章课后作业解答
⑴ 试证明 z(t)是广义平稳的; 只要证明z(t) 的均值为常数,自相关函数仅与时间
间隔 有关即可。
E[z(t )] E[m(t )cos(ct )] E[m(t )] E[cos(ct )]
E{cos[c (t1
t2 )
2 ]
cos[c (t2
t1 )]}
1 2
E{cos[c (t1
t2 )
2 ]}
1 2
cos c
0 12
.精品课件.
第3章课后作业解答
⑵ 试画出自相关函数 Rz ( ) 的波形;
Rz (
)
1 2
Rm (
) cosc
1 / 2 Rz ( )
1
1
⑶ 试求功率谱密度Pz ( f ) 及功率S。 1 / 2
E[m(t1 )cos(ct1 ) m(t2 )cos(ct2 )]
E[m(t1 ) m(t2 )] E[cos(ct1 ) cos(ct2 )]
Rm ( ) E[cos(ct1 ) cos(ct2 )]
E[cos(ct1 ) cos(ct2 )]
1 2
作业 习题:3-5、3-6、3-7、3-8
9
.精品课件.
第3章课后作业解答
3-5 已知随机过程z(t ) m(t )cos(ct ),其中,m(t)
是广义平稳过程,且自相关函数为
1 Rm ( )
1 1 0
Rm ( ) 1 0 1
0
其他
1
1
随机变量 在 (0, 2 )上服从均匀分布,它与m(t) 彼此
平稳随机过程的功率谱密度是其自相关函数的傅里
叶变换,即
Pz (
f
)
1 2
Rm (
) cos c t
Pz (
f
)
1 2 Pm (
f
)*
1 2
(
f
fc ) ( f
fc )
13
.精品课件.
第3章课后作业解答
Pz (
f
)
1 4 Pm ( f
fc )
Pm (
f
fc )
Pm ( f ) Sa2 ( f )
E[cos(ct )]
2 0
cos(c t
)
1
2
d
1
2
sin(c t
)
2
0
0
所以,E[z(t)] E[m(t)] E[cos(ct )] 0
11
.精品课件.
cos第 c3os章 课12 [c后os(作 业) c解os(答 )]
Rz (t1 , t2 ) E[z(t1 ) z(t2 )]
n
H ( x) P( xi ) log2 P( xi ) 1.985 bit/symbol i 1
传输的平均信息速率为:
Rb RB H
5
.精品课件.
第1章课后作业解答
1-6 设一信息源的输出由128个不同的符号组成,其中 16 个出现的概率为 1/32,其余 112 个出现概率为 1/224。 信息源 每秒 发出 1000 个符号,且每个符号 彼此独立。 试计算该信息源的平均信息速率。
传输的平均信息速率为:
1
Rb
RB
H
(symbol/s) 2(bit/symbol) 5ms 2
4
.精品课件.
第1章课后作业解答
⑵ 若每个字母出现概率分别为 PA = 1/5,PB = 1/4, PC = 1/4 ,PD = 3/10 ,试计算传输的平均信息速率。 解:平均每个符号的携带的信息量为:
Rb 2400 bit/s
RB
Rb log2 M
1200
Baud
0.5h 内共收到的码元数为:
1200 0.5 3600 216104
系统的误码率为:
216 Pe 216104 0.01%
7
.精品课件.
第2章 确知信号
作业 习题:2-5、2-7、2-8、2-9
8
.精品课件.
第3章 随机过程
课后作业解答
1
.精品课件.
第1章 绪论
作业 习题:1-2、1-4、1-6、1-10
2
.精品课件.
第1章课后作业解答
1-2 某信源符号集由 A、B、C、D 和 E 组成,设每一 符号独立出现,其出现概率分别为1/4, 1/8, 1/8, 3/16 和 5/16。试求该信息源符号的平均信息量。
解:
n
⑵ 试画出 Rn ( )和 Pn ( f ) 的曲线。
Ps ()
Rn
(
)e
j
d
k 2
ek e j d
k 0 ek e j d k ek e j d
2
20
k 1
1
k2
2
k
j
k
j
k2
2
15
.精品课件.
第3章课后作业解答
Ps ( )
k2
k2 2
N
Rs (0)
Pz
(
f
)
1 4
Sa2[ ( f fc )] Sa2[ ( f fc )]
或者:
Pz ( )
1 4
Sa2 (
c
2
)
Sa2 (
c
2
)
1 S Rz (0) 2
14
.精品课件.
第3章课后作业解答
3-6 已知噪声 n(t)的自相关函数为
Rn (
)
k 2
ek
k const.
⑴ 试求其功率谱密度 Pn( f ) 和 功率 N;
H ( x) P( xi ) log2 P( xi ) i 1
1 4
log2
1 4
1 8
log 2
1 8
1 8
log 2
1 8
3
35
5
16 log2 16 16 log2 16
0.5 0.375 0.375 0.45 0.53
2.23 bit/symbol
3
.精品课件.
第1章课后作业解答
解:平均每个符号的携带的信息量为
H
16
1 224
log2
224
6.404
bit/s
符号速率为:RB 1000 Baud (symbol/s)
传输的平均信息速率为:
Rb RB H 6404 bit/s
6
.精品课件.
第1章Pe 课传错后输误总作码码元业元数数解答
1-10 已知某四进制数字传输系统的传信率为2400b/s, 接收端在 0.5h 内共收到 216 个错误码元,试计算该系 统的误码率 Pe。 解:系统的码元速率为
1-4 一个由字母 A、B、C、D 组成的字,对于传输的 每一个字母用 二进制脉冲 编码,00 代替A, 01 代替B, 10 代替 C,11 代替 D ,每个脉冲宽度为 5ms 。
⑴ 不同字母等概率出现时,试计算传输的平均信 息速率。 解:等概时该信源平均每个符号的携带的信息量为:
H log2 M log2 4 2 bit/symbol