数控机床-伺服参数设置.
数控机床伺服参数设置

按软键[AMP],则能显示AMP SET画面。 按软键[AXIS],则能显示AXIS SET画面。 按软键[MAINTE],则能显示AMP MAINTENANCE画面。 1.放大器设定画面 放大器设定画面包括两个部分:第一部分是显示通道号信息,第二部分显示脉冲 模块的信息。
伺服调整画面
参数的设定
设定显示伺服调整画面的参数。
#0(SVS)
0
:不显示伺服设定调整画面。
1
:显示伺服设定调整画面。
ห้องสมุดไป่ตู้
、
①功能位 ②回路增益 ③调整开始位 ④设定周期 ⑤积分增益 ⑥比例增益 ⑦滤波器 ⑧速度增益
1.按软键[SV—
PRM]。 2..按软键[SV.TUM
],选择伺服调整画面。
:PRM 2003 :PRM 1825 :(在伺服自动调整功能中使用) :(在伺服自动调整功能中使用) :PRM 2043 :PRM 2044 :PRM 2067 :
0
— — — 放大器过热 — — — 电机过热 — — 0 内装脉冲编码器断线(硬件) — — 1 分离型脉冲编码器断线(硬件) — — 0 脉冲编码器断线(软件)
诊断(202 #6(CSA):串行脉冲编码器的硬件异常。 #5(BLA):电池电压不足。(警告) #4(PHA):串行编码器或反馈电缆异常。反馈信号的计数器错误。#3(RCA):串行 编码器不良转数计数错误。 当RCA=1时,报警1 b1(FBA)=1,报警2 ALD=1和EXP=0(内装编码器断线)时,α 脉冲编码器出现CMAL报警(计数报警)。 #2(BZA):电池的电压已变为零。 更换电池,设定参考点。 #1(CKA):串行脉冲编码器不良。内部程序段停止了。 #0(SPH):串行脉冲编码器不良或反馈电缆异常。反馈信号的计数出错。
数控机床伺服参数调整方法

数控机床伺服参数调整方法数控机床伺服参数调整是指根据加工需求和机床运行情况,调整伺服系统的参数,以达到更好的加工效果和稳定性。
下面将介绍一些数控机床伺服参数调整的方法。
需要了解数控机床伺服系统的参数。
数控机床伺服系统通常包括位置控制器、伺服驱动器和伺服电机,每个部分都有一些关键参数。
位置控制器的参数包括位置环增益、速度环增益和加速度环增益;伺服驱动器的参数包括比例增益、积分时间和死区补偿;伺服电机的参数包括电机惯量、电机转矩和电机速度。
根据加工需求和机床运行情况来选择合适的参数。
加工需求包括加工件的大小、形状、材质和精度要求等,机床运行情况包括加工件的负载、加工速度和加工方式。
根据这些因素,将合适的参数值输入到机床控制软件中。
然后,通过试切来验证参数的合适性。
试切是指根据加工要求,进行一次小批量的加工测试,以评估加工效果。
在试切过程中,观察加工件的表面质量、尺寸偏差和工具磨损情况等,根据实际情况进行参数的调整,直到达到最佳的加工效果。
接下来,根据机床的反馈信息进行参数优化。
机床的反馈信息可以通过加工过程中的传感器数据获取,例如位置、速度和加速度等。
根据这些信息,可以分析机床的动态特性和稳定性,并通过调整参数来改善机床的性能。
将参数进行记录和保存。
一旦确定了合适的参数,就应该将其记录下来,并保存到机床控制软件中。
这样,在下次加工相同类型的工件时,可以直接使用这些参数,提高加工的一致性和效率。
数控机床伺服参数的调整是一个持续优化的过程。
通过合适的参数选择、试切验证和反馈信息分析,可以不断改进数控机床的加工性能,提高加工的质量和效率。
数控机床伺服参数调整方法

数控机床伺服参数调整方法随着数控技术的不断发展,数控机床在工业生产中的应用越来越广泛。
数控机床伺服系统作为数控机床的核心部件之一,其性能和稳定性直接影响到数控机床的加工精度和效率。
合理调整数控机床伺服系统的参数是提高数控机床加工质量和效率的重要手段之一。
本文将介绍数控机床伺服参数调整的方法,希望能对相关人士有所帮助。
1. 调整前的准备在进行数控机床伺服系统参数调整之前,首先需要对数控机床进行全面的检查和维护。
确保数控机床的各个部件处于正常工作状态,特别是伺服系统的传感器、执行器和控制器等部件要进行细致的检查,发现问题及时进行修理或更换,以确保调整参数时能够得到准确的反馈数据。
在进行参数调整之前,需要对数控机床的加工工艺进行详细的分析和了解,包括加工材料、加工工艺、加工精度要求等,这些信息将直接影响到伺服系统参数的选择和调整。
2. 调整方法(1)速度环参数调整伺服系统的速度环参数直接影响到伺服电机的加减速性能,对于需要进行高速加工的数控机床尤为重要。
速度环参数主要包括速度比例增益、速度积分增益、速度微分增益等。
在调整速度环参数时,可以先将速度比例增益调整到一个适中的数值,然后逐步增加速度积分增益和速度微分增益,直到获得令人满意的响应速度和稳定性。
伺服系统的限位参数可以对伺服电机的运动范围进行限制,避免因误操作或其他原因导致的伺服电机超出规定范围的运动。
在调整限位参数时,需要根据实际工艺要求和数控机床的运动范围进行合理设置,以确保伺服电机在安全范围内工作。
3. 调整后的测试在完成伺服系统参数调整之后,需要进行全面的测试,以确保伺服系统参数调整的效果符合实际工艺需求。
测试内容主要包括加速度、速度、位置控制精度、动态响应速度等方面的测试。
通过测试结果可以评估伺服系统参数调整的效果,如果需要进一步调整,则可以根据测试结果进行调整。
数控机床伺服系统参数调整是一项复杂而又重要的工作,需要经验丰富的技术人员来进行。
数控系统伺服驱动器接线及参数设定

数控系统伺服驱动器接线及参数设定数控系统是一种实现数控机床运动控制的系统,它通过数控程序控制伺服驱动器驱动电机实现机床各轴的精确定位和运动控制。
正确的接线和参数设定对于数控系统的稳定运行和良好性能至关重要。
一、数控系统伺服驱动器接线1.电源线接线:将电源线的两根火线分别接入伺服驱动器的AC1和AC2端口,将零线接入伺服驱动器的COM端口。
2.电动机线接线:将电动机的三根相线分别接入伺服驱动器的U、V、W端口,注意保持相序正确。
3.编码器线接线:将编码器的信号线分别接入伺服驱动器的A相、B相和Z相端口,注意保持对应关系。
4.I/O信号线接线:将数控系统的输入信号线分别接入伺服驱动器的I/O端口,将数控系统的输出信号线分别接入伺服驱动器的O/I端口。
二、数控系统伺服驱动器参数设定伺服驱动器的参数设定包括基本参数设定和运动参数设定。
1.基本参数设定:包括电源参数设定、电机参数设定和编码器参数设定。
-电源参数设定:设置电源电压和频率等基本参数,确保电源供电稳定。
-电机参数设定:设置电机类型、额定电流、极数等参数,确保驱动器与电机匹配。
-编码器参数设定:设置编码器型号、分辨率等参数,确保编码器信号精确反馈。
2.运动参数设定:包括速度参数设定、加速度参数设定和位置参数设定。
-速度参数设定:设置速度环的比例增益、积分增益和速度限制等参数,确保速度控制精度。
-加速度参数设定:设置加速度环的比例增益、积分增益和加速度限制等参数,确保加速度控制平稳。
-位置参数设定:设置位置环的比例增益、积分增益和位置限制等参数,确保位置控制准确。
3.其他参数设定:包括滤波参数设定、限位参数设定和插补参数设定等。
-滤波参数设定:设置滤波器的截止频率和衰减系数等参数,确保驱动器与电机的振动减小。
-限位参数设定:设置限位开关的触发逻辑和触发动作等参数,确保机床在限位时及时停止。
-插补参数设定:设置插补周期、插补梯度和插补速度等参数,确保插补运动的平滑与快速。
数控机床伺服参数调整方法

数控机床伺服参数调整方法数控机床是一种通过控制系统控制的机床,它的精度和稳定性取决于伺服系统的参数调整。
伺服系统是控制电机转速和位置的关键部件,正确调整伺服系统的参数可以提高机床的加工精度和生产效率。
本文将介绍一种数控机床伺服参数调整方法。
一、伺服系统的参数数控机床的伺服系统有许多参数,常见的有比例增益、积分时间、微分时间和滤波时间等。
比例增益决定了伺服系统的响应速度和稳定性,积分时间和微分时间分别控制了伺服系统的积分和微分作用,滤波时间用于减小伺服系统的噪声。
不同的机床对参数的要求可能不同,因此需要根据具体机床的要求进行调整。
二、参数调整方法1. 比例增益的调整比例增益是伺服系统的一个重要参数,它决定了伺服系统的响应速度和稳定性。
一般来说,较大的比例增益可以提高系统的动态性能,但过大的比例增益会导致系统震荡和不稳定。
调整比例增益需要在性能和稳定性之间取得平衡。
具体的调整方法如下:(1)增加比例增益,观察系统的响应速度和稳定性,如果出现震荡现象或者系统变得不稳定,说明比例增益过大,需要适当降低。
2. 积分时间的调整(1)增加积分时间,观察系统的稳态误差,如果稳态误差减小,但超调量增大,说明积分时间过大,需要适当减小。
(1)增加滤波时间,观察系统的响应速度和抖动情况,如果系统的响应速度变慢,说明滤波时间过大,需要适当减小。
三、结论通过调整伺服系统的参数,可以有效提高数控机床的加工精度和生产效率。
在进行参数调整时,需要在性能和稳定性之间取得平衡,根据具体机床的要求进行调整。
调整伺服系统参数需要进行逐步试验,观察系统的响应速度和稳定性,在实际加工中进行实验验证,以获得最佳的参数设置。
数控机床伺服参数调整方法

数控机床伺服参数调整方法数控机床伺服参数调整是一项重要的工作,直接影响到数控机床的加工质量和效率。
正确的参数调整可以使数控机床运行平稳、精度高,同时可以减少故障发生的可能性。
下面将介绍数控机床伺服参数调整的方法。
一、了解伺服系统在进行伺服参数调整之前,我们首先需要充分了解伺服系统的工作原理和结构,包括伺服电机、编码器、伺服放大器等。
了解伺服系统的工作原理对调整参数非常有帮助。
二、参数调整前的准备工作在进行伺服参数调整之前,我们首先需要做好以下几个准备工作:1. 完善的机床维修手册和相关资料:了解数控机床的结构及所有部件的规格和性能。
2. 合适的调试设备:调试仪器和设备,如震动分析仪、示波器、频谱分析仪等。
3. 监测工具:有关数控机床性能的监测工具,如力传感器、位移传感器等。
4. 监控系统:对数控机床伺服系统的运行参数进行监测和记录。
5. 了解数控系统的功能和基本原理。
三、参数调整的具体步骤1. 伺服放大器增益参数的调整伺服放大器的增益参数是影响数控机床伺服性能的关键参数之一。
增益过大或过小都会导致系统性能下降,因此需要正确、合理地进行调整。
调整增益参数时,可以利用调试仪器进行监测和调整。
我们可以通过震动分析仪或频谱分析仪对伺服系统进行监测,得到系统的频率响应曲线。
接着,可以根据频率响应曲线的特性来调整伺服放大器的增益参数,使之达到最佳状态。
2. 速度环参数的调整速度环是数控机床伺服系统中的重要部分,对其速度环参数进行合理调整可以提高系统的速度响应性能。
调整速度环参数时,我们可以通过示波器监测伺服系统的速度响应特性,并根据实际情况进行调整。
四、参数调整后的测试在完成伺服参数的调整后,我们需要进行严密的测试,以确认参数调整的效果。
测试内容包括静态性能测试和动态性能测试。
1. 静态性能测试静态性能测试主要是对数控机床伺服系统的稳态性能进行测试。
包括位置控制精度测试、速度控制精度测试、静态刚度测试等。
注意事项在进行伺服参数调整时,需要注意一些重要的事项:1. 保持安全:在进行参数调整时,需要确保机床处于停机状态,以免发生意外事故。
伺服驱动器参数设置方法

伺服驱动器参数设置方法伺服驱动器是现代工业自动化控制系统中的重要组成部分,它能够精确控制电机的转速和位置,广泛应用于数控机床、印刷设备、包装设备、纺织设备等领域。
正确的参数设置对于伺服驱动器的性能和稳定性至关重要。
本文将介绍伺服驱动器参数设置的方法,帮助用户更好地使用伺服驱动器。
1. 确定电机参数。
在进行伺服驱动器参数设置之前,首先需要确定电机的参数,包括额定转速、额定电流、电机型号等。
这些参数将直接影响到伺服驱动器的参数设置,确保参数的准确性是非常重要的。
2. 设置速度环参数。
速度环参数是伺服驱动器中最基本的参数之一,它直接影响到伺服系统的速度响应和稳定性。
在设置速度环参数时,需要根据实际应用情况调整比例增益、积分时间和微分时间等参数,以达到最佳的速度控制效果。
3. 设置位置环参数。
除了速度环参数之外,位置环参数也是伺服驱动器中非常重要的参数。
位置环参数的设置将直接影响到伺服系统的位置精度和稳定性。
在设置位置环参数时,需要根据实际应用情况调整比例增益、积分时间和微分时间等参数,以达到最佳的位置控制效果。
4. 调整过流保护参数。
过流保护是伺服驱动器中非常重要的保护功能,它能够有效地保护电机和驱动器免受过载和短路的损坏。
在设置过流保护参数时,需要根据电机的额定电流和实际负载情况进行调整,确保过流保护参数的准确性和可靠性。
5. 调整过压保护参数。
过压保护也是伺服驱动器中非常重要的保护功能,它能够有效地保护电机和驱动器免受电源过压的损坏。
在设置过压保护参数时,需要根据电机的额定电压和实际电源情况进行调整,确保过压保护参数的准确性和可靠性。
6. 调整过速保护参数。
过速保护是伺服驱动器中非常重要的保护功能,它能够有效地保护电机和驱动器免受过速运行的损坏。
在设置过速保护参数时,需要根据电机的额定转速和实际运行情况进行调整,确保过速保护参数的准确性和可靠性。
总结。
通过正确的参数设置,可以使伺服驱动器在工业自动化控制系统中发挥更好的性能和稳定性。
数控系统伺服驱动器接线及参数设定

数控系统伺服驱动器接线及参数设定数控系统是一种将数字信号转化为机电信号控制机床动作的系统,其中伺服驱动器是数控系统的重要组成部分。
接下来将详细介绍数控系统伺服驱动器接线及参数设定的相关内容。
一、数控系统伺服驱动器接线1.电源接线:伺服驱动器需要接入适配的电源,以提供稳定的电源电压。
通常有三种常用的电源接线方式:单相220V接线、三相380V接线、单相220V与三相380V混合接线。
-单相220V接线:适用于功率较小的伺服驱动器。
通常需要连接L、N和G三根导线,L为火线,N为零线,G为地线。
-三相380V接线:适用于功率较大的伺服驱动器。
通常需要连接主线和辅助线。
主线有三根导线:R、S、T分别为三相电的火线,辅助线为PE 线,用于连接设备的接地线。
-单相220V与三相380V混合接线:适用于一些特殊场合,需根据具体情况进行接线。
2.控制信号接线:伺服驱动器需要接收数控系统发出的控制信号,以控制机床的动作。
通常有以下几个常用的控制信号接线方式:-脉冲信号接线:通常需要连接PUL+、PUL-、DIR+和DIR-四个接口。
PUL+为脉冲信号正极,PUL-为脉冲信号负极,DIR+为方向信号正极,DIR-为方向信号负极。
-使能信号接线:通常需要连接ENA+和ENA-两个接口。
ENA+为使能信号正极,ENA-为使能信号负极,当ENA+处于高电平时,伺服驱动器处于使能状态。
-报警信号接线:通常需要连接ALM+和ALM-两个接口。
当伺服驱动器发生故障或异常情况时,会产生报警信号,通过连接报警信号接口,可以及时响应故障并采取相应的措施。
二、数控系统伺服驱动器参数设定伺服驱动器的参数设定是为了使其能够更好地适应具体的机床加工需求,提高加工精度和效率。
1.速度参数设定:包括加速时间、减速时间、最大速度等参数的设定。
通过合理设定速度参数,可以控制机床的加工速度,以满足不同工件加工的需求。
2.位置参数设定:包括回零速度、回零位置、绝对位置、相对位置等参数的设定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
键、
键、
[SV.PARA] 键。 5.使用光标,翻页键,输入初始设定时必要的参数。
(1)初始设定位
#3(PRMCAL)1:进行参数初始设定时,自动变成1。根据脉冲编码器的脉冲数自动计算下列值。 PRM 2043(PK1V),PRM 2044(PK2V),PRM 2047(POA1), PRM 2053(PPMAX),PRM 2054(PDDP), PRM 2056(EMFCMP), PRM 2057(PVPA),PRM 2059(EMFBAS), PRM 2074(AALPH),PRM 2076(WKAC) #1(DGPRM)0:进行数字伺服参数的初始化设定。 1:不进行数字伺服参数的初始化设定。 #0(PLC01) 0:使用PRM 2023,2024的值。 1:在内部把PRM 2023,2024的值乘10倍。 (2)电机ID号 选择所使用的电机ID号,按照电机型号和规格号(中间4位:A06B-XXXX-BXXX)列于下面的表 格中。对于本手册中没叙述到的电机型号,请始化设定
本节将对数控机床安装调试时,对初始设定数字伺服参数进行说明。 1.在紧急停状态,接通电源。 2.设定显示伺服设定调整画面的参数。
方法
#0(SVS) 0:不显示伺服调整画面。 1:显示伺服调整画面。 3.暂时切断电源,再次开通电源。 4.按下面顺序,显示伺服参数的设定画面。按
数字伺服
叙述数字伺服维修上所需要的伺服调整画面的显 示内容 伺服参数的初始化设定方法 伺服调整画面
数字伺服画面调用 对于 Series 0-C/0D 按键 (数次)直到翻出伺服显示画面。
按翻页 键,显示相应的伺服轴画面。 经过上述操作如果不能够显示伺服画面,确认下面的参数设定是否正确。
SVS (#0)=0 (显示伺服画面) 对于 Series 15-A/B, 15i
:PRM 2044
⑦滤波器 :PRM 2067 ⑧速度增益 :
诊断(200) #7(OVL) 过载报警。 #6(LV) 低电压报警。 #5(OVC) 过电流报警。 #4(HCA) 异常电流报警。 #3(HVA) 过电压报警。 #2(DCA) 放电电路报警。 #1(FBA) 断线报警。 #0(OFA) 溢出报警。
伺服调整画面
参数的设定
设定显示伺服调整画面的参数。
#0(SVS)
0
:不显示伺服设定调整画面。
1
:显示伺服设定调整画面。
1.按软键[SV— PRM]。 2..按软键[SV.TUM ],选择伺服调整画面。
、
①功能位 ②回路增益 ③调整开始位 ④设定周期 ⑤积分增益 ⑥比例增益
:PRM 2003 :PRM 1825 :(在伺服自动调整功能中使用) :(在伺服自动调整功能中使用) :PRM 2043
FSSB画面显示基于FSSB的放大器和轴 的信息 这个信息也可以通过操作指定。 1.按功能键 SYSTEM 。 连续按向右软键几次,直到显示[FSSB]。 FSSB设定画面包括:AMP SET,AXIS SET,和AMP MAINTENANCE。 按软键[AMP],则能显示AMP SET画面。 按软键[AXIS],则能显示AXIS SET画面。 按软键[MAINTE],则能显示AMP MAINTENANCE画面。 1.放大器设定画面 放大器设定画面包括两个部分:第一部分是显示通道号信息,第二部分显示脉冲 模块的信息。
(7)移动方向
(8)速度脉冲数,位置脉冲数 ①串行αi脉冲编码器或串行α脉冲编码器时:
注: 1.NS为电机一转的位置反馈脉冲数(4倍后 )。 2.闭环时,也要设定PRM 2002#3=1,#4 =0。
9)参考计数器
参考计数器的设定主要用于栅格方式回原点,根据参考计数器的容量使电机 转一转。所以,参考计数器设定错误后,会导致每次回零的位置会不一致, 也即回零点不准。 参考计数器容量设定值是指电机转一转所需的(位置反馈)脉冲数,或者设 定为该数能够被整数除尽的分数。 也可以理解为返回参考点的栅格间隔 所以,参考计数器容量 = 栅格间隔 / 检测单位 栅格间隔 = 脉冲编码器1 转的移动量 丝杠螺距 栅格间隔 10 mm/转 检测单位 0.001 mm 所需的位置脉冲 10000 脉冲/转 参考计数器容量 10000
(10)FSSB显示和设定画面 通过一个高速串行总线(FANUC 串行伺服总线,或FSSB)连接CNC控制单 元到伺服放大器,只用用一根光缆,可显著减少机床电气的电缆使用量。 轴设定会根据轴和放大器内部之间关系自动计算并输入到FSSB设定画面。参 数1023,1905,1910-1919,1936和1937会按计算结果自动定义。 ●显示
诊断(201) 过载报警
0
—
—
—
放大器过热
1
1 1 0
—
— — —
—
— — —
—
0 1 0
电机过热
内装脉冲编码器断线(硬件) 分离型脉冲编码器断线(硬件) 脉冲编码器断线(软件)
断线报警
诊断(202) #6(CSA):串行脉冲编码器的硬件异常。 #5(BLA):电池电压不足。(警告) #4(PHA):串行编码器或反馈电缆异常。反馈信号的计数器错误。#3(RCA):串行 编码器不良转数计数错误。 当RCA=1时,报警1 b1(FBA)=1,报警2 ALD=1和EXP=0(内装编码器断线)时,α 脉冲编码器出现CMAL报警(计数报警)。 #2(BZA):电池的电压已变为零。 更换电池,设定参考点。 #1(CKA):串行脉冲编码器不良。内部程序段停止了。 #0(SPH):串行脉冲编码器不良或反馈电缆异常。反馈信号的计数出错。
注意: 伺服轴以两轴为一组控制。所以,对于连续的伺服控制数(奇数和 偶数),必须指定对于HRV1,HRV2或HRV3统一的电机类型号
(3)任意AMR功能
注意: 设定为“00000000” (4)CMR
(5)关断电源,然后再打开电源。 (6)进给齿轮比N/M(F.FG)。
设定半闭环α脉冲编码器 (注1) F.FG分子(≤32767) F.FG分母(≤32767) = 电机每转所需的 位置反馈脉冲 1,000,000 (注2) (不能约分小数)
按键 直到翻出伺服显示画面。 按 键,显示相应轴的伺服画面。 对于 Series 16, 18, 20, 21 按 键 [SYSTEM] [SV-PRM] [SV-TUN] 经过上述操作如果不能够显示伺服画面,确认下面的参数设定是否正确。
SVS (#0)=1 (显示伺服画面)
伺服画面中的报警,对应相应的诊断画面如下表所示: