平行四边形易错题精选

合集下载

人教中考数学复习平行四边形专项易错题含答案解析

人教中考数学复习平行四边形专项易错题含答案解析

(算一算)如图 3,点 F 在这张矩形纸片的边 BC 上,将纸片折叠,使 FB 落在射线 FD 上,折痕为 GF ,点 A, B 分别落在点 A , B 处,若 AG 7 ,求 BD 的长.
3
【答案】(1)21;(2)画一画;见解析;算一算: BD 3
【解析】 【分析】 (1)利用平行线的性质以及翻折不变性即可解决问题; (2)【画一画】,如图 2 中,延长 BA 交 CE 的延长线由 G,作∠ BGC 的角平分线交 AD 于 M,交 BC 于 N,直线 MN 即为所求;
【算一算】首先求出 GD=9- 7 20 ,由矩形的性质得出 AD∥ BC,BC=AD=9,由平行线的 33
性质得出∠ ቤተ መጻሕፍቲ ባይዱGF=∠ BFG,由翻折不变性可知,∠ BFG=∠ DFG,证出∠ DFG=∠ DGF,由等腰三
角形的判定定理证出 DF=DG= 20 ,再由勾股定理求出 CF,可得 BF,再利用翻折不变性, 3
(3)连接 AC,若正方形的边长为 2 ,请直接写出△ ACC′的面积最大值.
【答案】(1)45°;(2)BP+DP= 2 AP,证明详见解析;(3) 2 ﹣1.
【解析】 【分析】
(1)证明∠ CDE=∠ C'DE 和∠ ADF=∠ C'DF,可得∠ FDP'= 1 ∠ ADC=45°; 2
(2)作辅助线,构建全等三角形,证明△ BAP≌ △ DAP'(SAS),得 BP=DP',从而得 △ PAP'是等腰直角三角形,可得结论; (3)先作高线 C'G,确定△ ACC′的面积中底边 AC 为定值 2,根据高的大小确定面积的大 小,当 C'在 BD 上时,C'G 最大,其△ ACC′的面积最大,并求此时的面积. 【详解】 (1)由对称得:CD=C'D,∠ CDE=∠ C'DE, 在正方形 ABCD 中,AD=CD,∠ ADC=90°,

初二下--《平行四边形》-易错题

初二下--《平行四边形》-易错题

初二下《平行四边形》易错题一.选择题(共12小题)1.(2012•玉林)如图,在菱形ABCD中,对角线AC,BD相交于点O,且AC≠BD,则图中全等三角形有()A.4对B.6对C.8对D.10对2.(2012•武汉)在面积为15的平行四边形ABCD中,过点A作AE垂直于直线BC于点E,作AF垂直于直线CD于点F,若AB=5,BC=6,则CE+CF的值为()A.C.11+11+或11﹣B.D.11﹣11+或1+3.(2012•百色)如图,四边形ABCD是平行四边形,下列说法不正确的是()A.B.C.D.当AC=BD时,四边形ABCD是矩形当AB=BC时,四边形ABCD是菱形当AC⊥BD时,四边形ABCD是菱形当∠DAB=90°时,四边形ABCD是正方形1/354.(2010•綦江县)如图,在▱ABCD中,分别以AB、AD为边向外作等边ABE、ADF,延长CB交AE于点G,点G在点A、E之间,连接CE、CF,EF,则以下四个结论一定正确的是()①CDF≌△EBC;②∠CDF=∠EAF;③ECF是等边三角形;④CG⊥AE.A.只有①②B.只有①②③C.只有③④D.①②③④5.(2007•眉山)如图,ACD和AEB都是等腰直角三角形,∠CAD=∠EAB=90°,四边形ABCD是平行四边形,下列结论中错误的是()A.B.C.D.ACE以点A为旋转中心,逆时针方向旋转90°后与ADB重合ACB以点A为旋转中心,顺时针方向旋转270°后与DAC重合沿AE所在直线折叠后,ACE与ADE重合沿AD所在直线折叠后,ADB与ADE重合6.(2007•金华)国家级历史文化名城﹣﹣金华,风光秀丽,花木葱茏.某广场上一个形状是平行四边形的花坛(如图),分别种有红、黄、蓝、绿、橙、紫6种颜色的花.如果有AB∥EF∥DC,BC∥GH∥AD,那么下列说法中错误的是()A.C.红花,绿花种植面积一定相等B.红花,蓝花种植面积一定相等D.紫花,橙花种植面积一定相等蓝花,黄花种植面积一定相等)7.(2006•扬州)平行四边形ABCD的对角线交于点O,下列结论错误的是(A.平行四边形ABCD是中心对称B.AOB≌△COD图形C.AOB≌△BOCD.AOB与BOC的面积相等2/358.(2006•双柏县)如图所示,平行四边形ABCD中,对角线AC和BD相交于点O,如果AC=12,BD=10,AB=m,则m的取值范围是()A.10<m<12B.2<m<22C.1<m<11D.5<m<69.(2005•襄阳)如图,E、F是▱ABCD对角线AC上两点,且AE=CF,连接DE、BF,则图中共有全等三角形的对数是()A.1对B.2对C.3对D.4对10.(2005•龙岩)如图,在▱ABCD中,E、F分别是边AD、BC的中点,AC分别交BE、DF于G、H,试判断下列结论:①ABE≌△CDF;②AG=GH=HC;③EG=BG;④SAGE,其中正确的结论是(ABE=S)A.1个B.2个C.3个D.4个)11.ABCD是边长为1的正方形,BPC是等边三角形,则BPD的面积为(A.B.C.D.12.用两块完全重合的等腰直角三角形纸片拼下列图形:①平行四边形(不包括菱形、矩形、正方形);②矩形(不包括正方形);③正方形;④等腰直角三角形;⑤等边三角形.一定能拼接成的图形是()3/35A.①②③B.①③④C.②③④D.①③④⑤二.填空题(共12小题)13.(2006•河南)如图,把一个矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y轴上,连接OB,将纸片OABC沿OB折叠,使点A落在A′的位置上.若OB=,,求点A′的坐标为_________.14.(2012•和平区二模)如图,平行四边形ABCD的对角线交于点O,直线EF过点O 且EF∥AD,直线GH过点O且GH∥AB,则能用图中字母表示的平行四边形共有个.15.如图,在ABC中,AB=AC=,BC=2,在BC上有50个不同的点P1,P2,…,P50,过这50个点分别作ABC的内接矩形P1E1F1G1,P2E2F2G2,…,P50E50F50G50,每个内接矩形的周长分别为L1,L2,…,L50,则L1+L2+…+L50=.16.在▱ABCD中,AD=2,AE平分∠DAB交CD于点E,BF平分∠ABC交CD于点F.若EF=1,则▱ABCD的周长为17.己知矩形ABCD中,对角线AC、BD交于点O,AE⊥BD 于E,OE:ED=1:3,AE=AB:AD=,18.已知点P为正方形ABCD所在平面上的一点,且AP=AD,连接AP、BP、DP,则∠BPD的度数等于4/3519.如图,所示,将五个边长都为1cm的正方形按如图所示摆放,其中点A、B、C、D 分别是正方形对角线的交点、如果有n个这样大小的正方形这样摆放,则阴影面积的总和是2.20.如图,将矩形ABCD沿直线EF对折,点D恰好与BC边上的点H重合,∠GFP=62°,那么∠EHF的度数等于°.21.如图,已知AB=CD,AD=CB,则∠ABC+∠BAD=度.22.如图,用9个全等的等边三角形,按图拼成一个几何图案,从该图案中可以找出23.如图,若正方体的边长为a,M是AB的中点,则图中阴影部分的面积为5/3524.如图,正方形ABCD的边长为1,点P为边BC上任意一点(可与B点或C点重合),分别过B、C、D作射线AP的垂线,垂足分别是B′、C′、D′,则BB′+CC′+DD′的最大值为三.解答题(共6小题)25.(2012•连云港)如图,⊙O的圆心在坐标原点,半径为2,直线y=x+b(b>0)与⊙O交于A、B两点,点O关于直线y=x+b的对称点O′,(1)求证:四边形OAO′B是菱形;(2)当点O′落在⊙O上时,求b的值.6/3526.(2009•河北)在图1至图3中,点B是线段AC的中点,点D是线段CE的中点.四边形BCGF和CDHN都是正方形.AE的中点是M.(1)如图1,点E在AC的延长线上,点N与点G重合时,点M与点C重合,求证:FM=MH,FM⊥MH;(2)将图1中的CE绕点C顺时针旋转一个锐角,得到图2,求证:FMH是等腰直角三角形;(3)将图2中的CE缩短到图3的情况,FMH还是等腰直角三角形吗?(不必说明理由)7/3527.(2013•仪征市二模)已知:如图所示,ABC为任意三角形,若将ABC绕点C顺时针旋转180°得到DEC.(1)试猜想AE与BD有何关系?说明理由;(2)请给ABC添加一个条件,使旋转得到的四边形ABDE为矩形,并说明理由.28.(2011•海沧区质检)在ABC中,AB=AC=5cm,D、E分别是AB,AC的中点,将EBC沿BC折叠得到FBC,连接C、D.(1)求证:四边形DBFC是平行四边形;(2)若BC=5cm,求D、F两点之间的距离.8/3529.(2010•海沧区质检)如图,正方形ABCD的边长为,E是边AD上的一个动点(不与A重合),BE交对角线于F,连接DF.(1)求证:BF=DF;(2)设AF=x,ABF面积为y,求y与x的函数关系式,并画出图象.30.如图,已知ABD,BCE,ACF都是等边三角形.(1)求证:四边形ADEF是平行的四边形;(2)ABC满足什么条件时,四边形ADEF是菱形?说明理由.9/35初二下《平行四边形》易错题参考答案与试题解析一.选择题(共12小题)1.(2012•玉林)如图,在菱形ABCD中,对角线AC,BD相交于点O,且AC≠BD,则图中全等三角形有()A.4对B.6对C.8对D.10对考点:全等三角形的判定;菱形的性质.专题:常规题型.分析:根据菱形四条边相等,对角线互相垂直且平分,结合全等三角形的判定即可得出答案.解答:解:图中全等三角形有:ABO≌△ADO、ABO≌△CDO,ABO≌△CBO;AOD≌△COD,AOD≌△COB;DOC≌△BOC;ABD≌△CBD,ABC≌△ADC,共8对.故选C.点评:此题考查了全等三角形的判定及菱形的性质,注意掌握全等三角形的几个判定定理,在查找时要有序的进行,否则很容易出错.2.(2012•武汉)在面积为15的平行四边形ABCD中,过点A作AE垂直于直线BC于点E,作AF垂直于直线CD于点F,若AB=5,BC=6,则CE+CF的值为()A.C.11+11+或11﹣B.D.11﹣11+或1+考点:平行四边形的性质;勾股定理.专题:计算题;压轴题;分类讨论.分析:根据平行四边形面积求出AE和AF,有两种情况,求出BE、DF的值,求出CE和CF的值,相加即可得出答案.10/35解答:解:∵四边形ABCD是平行四边形,∴AB=CD=5,BC=AD=6,①如图:由平行四边形面积公式得:BC×AE=CD×AF=15,求出AE=,AF=3,在RtABE和RtADF中,由勾股定理得:AB2=AE2+BE2,把AB=5,AE=代入求出BE=同理DF=3∴CE=6﹣即CE+CF=1+②如图:∵AB=5,AE=,在ABE中,由勾股定理得:BE=同理DF=3,,CF=5+3.,,,>5,即F在DC的延长线上(如上图),,CF=3,﹣5,由①知:CE=6+∴CE+CF=11+故选D.点评:本题考查了平行四边形性质,勾股定理的应用,主要培养学生的理解能力和计算能力,注意:要分类讨论啊.3.(2012•百色)如图,四边形ABCD是平行四边形,下列说法不正确的是()A.11/35当AC=BD时,四边形ABCD是矩形B.C.D.当AB=BC时,四边形ABCD是菱形当AC⊥BD时,四边形ABCD是菱形当∠DAB=90°时,四边形ABCD是正方形考点:正方形的判定;平行四边形的性质;菱形的判定;矩形的判定.分析:根据对角线相等的平行四边形是矩形,对角线互相垂直的平行四边形是菱形,有一个角是直角的平行四边形是矩形,有一组邻边相等的平行四边形是菱形判断即可.解答:解:A、∵四边形ABCD是平行四边形,AC=BD,∴四边形ABCD是矩形,正确,故本选项错误;B、∵四边形ABCD是平行四边形,AB=BC,∴四边形ABCD是菱形,正确,故本选项错误;C、四边形ABCD是平行四边形,AC⊥BD,∴四边形ABCD是菱形,正确,故本选项错误;D、四边形ABCD是平行四边形,∠DAB=90°,∴四边形ABCD是矩形,错误,故本选项正确;故选D.点评:本题考查了菱形、矩形、正方形的判定,注意:对角线垂直且相等的平行四边形是正方形,对角线相等的平行四边形是矩形,对角线互相垂直的平行四边形是菱形,有一个角是直角的平行四边形是矩形,有一组邻边相等的平行四边形是菱形.4.(2010•綦江县)如图,在▱ABCD中,分别以AB、AD为边向外作等边ABE、ADF,延长CB交AE于点G,点G在点A、E之间,连接CE、CF,EF,则以下四个结论一定正确的是()①CDF≌△EBC;②∠CDF=∠EAF;③ECF是等边三角形;④CG⊥AE.A.只有①②B.只有①②③C.只有③④D.①②③④考点:平行四边形的性质;全等三角形的判定与性质;等边三角形的性质;等边三角形的判定.专题:压轴题.分析:根据题意,结合图形,对选项一一求证,判定正确选项.解答:解:∵△ABE、ADF是等边三角形∴FD=AD,BE=AB∵AD=BC,AB=DC∴FD=BC,BE=DC∵∠B=∠D,∠FDA=∠ABE∴∠CDF=∠EBC∴△CDF≌△EBC,故①正确;12/35∵∠FAE=∠FAD+∠EAB+∠BAD=60°+60°+(180°﹣∠CDA)=300°﹣∠CDA,∠FDC=360°﹣∠FDA﹣∠ADC=300°﹣∠CDA,∴∠CDF=∠EAF,故②正确;同理可得:∠CBE=∠EAF=∠CDF,∵BC=AD=AF,BE=AE,∴△EAF≌△EBC,∴∠AEF=∠BEC,∵∠AEF+∠FEB=∠BEC+∠FEB=∠AEB=60°,∴∠FEC=60°,∵CF=CE,∴△ECF是等边三角形,故③正确;在等边三角形ABE中,∵等边三角形顶角平分线、底边上的中线、高和垂直平分线是同一条线段∴如果CG⊥AE,则G是AE的中点,∠ABG=30°,∠ABC=150°,题目缺少这个条件,CG⊥AE不能求证,故④错误.故选B.点评:本题考查了全等三角形的判定、等边三角形的判定和性质、平行四边形的性质等知识,综合性强.考查学生综合运用数学知识的能力.5.(2007•眉山)如图,ACD和AEB都是等腰直角三角形,∠CAD=∠EAB=90°,四边形ABCD是平行四边形,下列结论中错误的是()A.B.C.D.ACE以点A为旋转中心,逆时针方向旋转90°后与ADB重合ACB以点A为旋转中心,顺时针方向旋转270°后与DAC重合沿AE所在直线折叠后,ACE与ADE重合沿AD所在直线折叠后,ADB与ADE重合考点:旋转的性质;全等三角形的性质;全等三角形的判定;平行四边形的性质;翻折变换(折叠问题).分析:本题通过观察全等三角形,找旋转中心,旋转角,逐一判断.解答:解:A、根据题意可知AE=AB,AC=AD,∠EAC=∠BAD=135°,EAC≌△BAD,13/35旋转角∠EAB=90°,正确;B、因为平行四边形是中心对称图形,要想使ACB和DAC重合,ACB应该以对角线的交点为旋转中心,顺时针旋转180°,即可与DAC重合,错误;C、根据题意可知∠EAC=135°,∠EAD=360°﹣∠EAC﹣∠CAD=135°,AE=AE,AC=AD,EAC≌△EAD,正确;D、根据题意可知∠BAD=135°,∠EAD=360°﹣∠BAD﹣∠BAE=135°,AE=AB,AD=AD,EAD≌△BAD,正确.故选B.点评:此题主要考查平行四边形的对称性:平行四边形是中心对称图形,对称中心是两对角线的交点.6.(2007•金华)国家级历史文化名城﹣﹣金华,风光秀丽,花木葱茏.某广场上一个形状是平行四边形的花坛(如图),分别种有红、黄、蓝、绿、橙、紫6种颜色的花.如果有AB∥EF∥DC,BC∥GH∥AD,那么下列说法中错误的是()A.C.红花,绿花种植面积一定相等B.红花,蓝花种植面积一定相等D.紫花,橙花种植面积一定相等蓝花,黄花种植面积一定相等考点:平行四边形的性质.专题:应用题;压轴题.分析:根据平行四边形的性质可知GH、BD、EF把一个平行四边形分割成四个小平行四边形,我们知道,一条对角线可以把一个平行四变形的面积一分为二,据此可从图中获得S 黄=S蓝,S绿=S红,S(紫+黄+绿)=S(橙+红+蓝),根据等量相减原理知S紫=S橙,依此就可找出题中说法错误的.解答:解:∵AB∥EF∥DC,BC∥GH∥AD∴GH、BD、EF把一个平行四边形分割成四个小平行四边形,∴一条对角线可以把一个平行四变形的面积一分为二,据此可从图中获得S黄=S蓝,S绿=S红,S(紫+黄+绿)=S(橙+红+蓝),根据等量相减原理知S紫=S橙,∴A、B、D说法正确,再考查S红与S蓝显然不相等.故选C.点评:本题考查的是平行四变形的性质,平行四边形的一条对角线可以把平行四边形分成两个全等的三角形,两条对角线把平行四边形的面积一分为四,同时充分利用等量相加减原理解题,否则容易从直观上对S红等于S蓝产生质疑.7.(2006•扬州)平行四边形ABCD的对角线交于点O,下列结论错误的是(A.平行四边形ABCD是中心对称B.AOB≌△COD图形C.14/35)AOB≌△BOCD.AOB与BOC的面积相等考点:平行四边形的性质.分析:根据平行四边形的性质逐个判断,即可得出结论.解答:解:A、根据平行四边形的对角线互相平分,故平行四边形是中心对称图形,正确.B、根据平行四边形的对角线互相平分,再结合对顶角相等,得AOB≌△COD,正确.C、AOB与BOC不一定全等,故错误.D、根据平行四边形的对角线互相平分,再根据三角形的面积计算公式,正确.故选C.点评:考查了平行四边形的性质:平行四边形的对角线互相平分.8.(2006•双柏县)如图所示,平行四边形ABCD中,对角线AC和BD相交于点O,如果AC=12,BD=10,AB=m,则m的取值范围是()A.10<m<12B.2<m<22C.1<m<11D.5<m<6考点:平行四边形的性质;三角形三边关系.专题:压轴题.分析:根据平行四边形的性质知:AO=AC=6,BO=BD=5,根据三角形中三边的关系有,6﹣5=1<m<6+5=11,故可求解.解答:解:∵平行四边形ABCD∴OA=OC=6,OB=OD=5∵在OAB中:OA﹣OB<AB<OA+OB∴1<m<11.故选C.点评:本题利用了平行四边形的对角线互相平分的性质和三角形中三边的关系:任意两边之和大于第三边,任意两边之差小于第三边.9.(2005•襄阳)如图,E、F是▱ABCD对角线AC上两点,且AE=CF,连接DE、BF,则图中共有全等三角形的对数是()15/35A.1对B.2对C.3对D.4对考点:平行四边形的性质;全等三角形的判定.分析:由平行四边形的性质,可得到等边或等角,从而判定全等的三角形.解答:解:∵四边形ABCD是平行四边形,∴AD=BC,DC=AB,∠DCA=∠BAC,∠DAE=∠BCF,∵AE=CF,∴本题全等三角形共3对,分别是:ADE≌△CBF(SAS),CDE≌△ABF(SAS),ADC≌△CBA(SSS或SAS或ASA或AAS).故选C.点评:这是三角形全等判定题目常见的类型,做题的关键是抓住题中已知条件,根据4个全等三角形判定定理,找满足全等条件的两个三角形,本题较简单,多数题目中全等条件不能从已知条件中直接找出,需要由已知进一步分析推出全等条件.10.(2005•龙岩)如图,在▱ABCD中,E、F分别是边AD、BC的中点,AC分别交BE、DF于G、H,试判断下列结论:①ABE≌△CDF;②AG=GH=HC;③EG=BG;④SAGE,其中正确的结论是(ABE=S)A.1个B.2个C.3个D.4个考点:全等三角形的判定与性质;平行四边形的性质.专题:压轴题.分析:根据三角形全等的判定,由已知条件可证①ABE≌△CDF;继而证得②AG=GH=HC;又根据三角形的中位线定理可证ABG≌△DCH,得③EG=BG.而④S不正确.故正确的结论有3个.解答:解:在▱ABCD中,AB=CD,∠BAE=∠D CF,BC=DA;E、F分别是边AD、BC的中点,∴AE=CF,∴①ABE≌△CDF;BF∥DE,BF=ED四边形BFDE是平行四边形BE∥DF,又AE=EDAG=GH,同理CH=HG,即EG为AHD的中位线,∴②AG=GH=HC;根据三角形的中位线定理,EG=DH,容易证明ABG≌△DCHBG=DH,∴③EG=BG;16/35ABE=SAGE④SABE=S故选C.AGE不正确.点评:本题考查了平行四边形的性质,平行线等分线段定理与全等三角形的判定,中等难度.11.ABCD是边长为1的正方形,BPC是等边三角形,则BPD的面积为()A.B.C.D.考点:正方形的性质;三角形的面积;等边三角形的性质.专题:计算题;转化思想.分析:根据三角形面积计算公式,找到BPD的面积等于BCP和CDP面积和减去BCD的面积的等量关系,并进行求解.解答:解:BPD的面积等于BCP和CDP面积和减去BCD的面积因此本题求解BCP、CDP面积和BCD的面积即可,SSSBCP=CDP=BCD===,×1×1=,+﹣=,∴SBPD=.故选B.点评:本题考查了三角形面积的计算,考查了正方形对角线平分正方形为2个全等的等腰直角三角形.解决本题的关键是找到BPD的面积等于BCP和CDP面积和减去BCD的面积的等量关系.12.用两块完全重合的等腰直角三角形纸片拼下列图形:①平行四边形(不包括菱形、矩形、正方形);②矩形(不包括正方形);③正方形;④等腰直角三角形;⑤等边三角形.一定能拼接成的图形是()①②③①③④②③④①③④⑤A.B.C.D.考点:正方形的判定;等腰三角形的判定;等边三角形的判定;平行四边形的判定.专题:作图题.解答:解:分析:本题是开放题,可以针对各种特殊的等腰三角形的组合方法,得出不同的图形.17/35①平行四边形③正方形④等腰直角三角故选择B.点评:解答此类题的关键是要突破思维定势的障碍,运用发散思维,多方思考,探究问题在不同条件下的不同结论.二.填空题(共12小题)13.(2006•河南)如图,把一个矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y轴上,连接OB,将纸片OABC沿OB折叠,使点A落在A′的位置上.若OB=,,求点A′的坐标为().考点:坐标与图形性质;矩形的性质;翻折变换(折叠问题).专题:压轴题.分析:由已知条件可得:BC=1,OC=2.设OC与A′B交于点F,作A′E⊥OC于点E,易得BCF≌△OA′F,那么OA′=BC=1,设A′F=x,则OF=2﹣x.利用勾股定理可得A′F=,OF=,利用面积可得A′E=A′F×OA′÷OF=,利用勾股定理可得OE=,所以点A’的坐标为(解答:解:∵OB=,).∴BC=1,OC=2设OC与A′B交于点F,作A′E⊥OC于点E∵纸片OABC沿OB折叠∴OA=OA′,∠BAO=∠BA′O=90°∵BC∥A′E∴∠CBF=∠FA′E∵∠AOE=∠FA′O∴∠A′OE=∠CBF∴△BCF≌△OA′F∴OA′=BC=1,设A′F=x ∴OF=2﹣x18/35∴x2+1=(2﹣x)2,解得x=∴A′F=,OF=∵A′E=A′F×OA′÷OF=∴OE=∴点A’的坐标为(故答案为:().).点评:解决本题的关键是利用三角形的全等得到点A′所在的三角形的一些相关的线段的长度,进而利用面积的不同表示方法和勾股定理得到所求的点的坐标.14.(2012•和平区二模)如图,平行四边形ABCD的对角线交于点O,直线EF过点O 且EF∥AD,直线GH过点O且GH∥AB,则能用图中字母表示的平行四边形共有考点:平行四边形的判定与性质.分析:根据两组对边分别平行的四边形是平行四边形,根据图形写出所有的平行四边形即可得解.解答:解:图中平行四边形有:▱AEOG,▱AEFD,▱ABHG,▱GOFD,▱GHCD,▱EBHO,▱EBCF,▱OHCF,▱ABCD,▱EHFG,▱AEHO,▱AOFG,▱EODG,▱BHFO,▱HCOE,▱OHFD,▱OCFG,▱BOGE.共18个.故答案为:18.点评:本题考查了平行四边形的判定,准确识别复杂图形是解题的关键,写出平行四边形时要按照一定的顺序,这样方能做到不重不漏.19/3515.如图,在ABC中,AB=AC=,BC=2,在BC上有50个不同的点P1,P2,…,P50,过这50个点分别作ABC的内接矩形P1E1F1G1,P2E2F2G2,…,P50E50F50G50,每个内接矩形的周长分别为L1,L2,…,L50,则L1+L2+…+L50=考点:等腰三角形的性质;矩形的性质.专题:规律型.分析:本题可过A作AD⊥BC于D,先找出每个ABC的内接矩形与AD 长的关系,再求这50个内接矩形的周长和.解答:解:根据题意,过A作AD垂直于BC,交BC于点D;易得BD=1,设E1F1与AD交于M,则E1M=AM•tan∠BAD=AM,∴AM=E1F1,因此矩形E1F1G1P1的周长L1=2E1F1+2E1P=2AM+2DM=2AD=4,同理可求得ABC其它的内接矩形的周长均为4,因此L1+L2+…+L50=4×50=200.故答案为200.点评:本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.16.在▱ABCD中,AD=2,AE平分∠DAB交CD于点E,BF平分∠ABC交CD于点F.若EF=1,则▱ABCD的周长为考点:平行四边形的性质.分析:如图:根据题意可以作出两种不同的图形,所以答案有两种情况.因为在▱ABCD 中,AD=2,AE平分∠DAB交CD于点E,BF平分∠ABC交CD于点F,所以DE=AD=CF=BC=2;则求得▱ABCD的周长.20/35解答:解:或∵四边形ABCD是平行四边形,∴AB∥CD,BC=AD=2,AB=CD,∴∠EAB=∠AED,∠ABF=∠BFC,∵AE平分∠DAB,BF平分∠ABC,∴∠DAE=∠BAE,∠CBF=∠ABF,∴∠AED=∠DAE,∠BFC=∠CBF,∴AD=DE,BC=FC,∴DE=CF=AD=2,由图①得:CD=DE+CF﹣EF=2+2﹣1=3,∴▱ABCD的周长为10;由图②得:CD=DE+CF+EF=2+2+1=5,∴▱ABCD的周长为14.∴▱ABCD的周长为10或14.故答案为10或14.点评:此题考查了平行四边形的性质:平行四边形的对边平行且相等.还考查了等腰三角形的判定与性质.注意如果有平行线与角平分线,一般会存在等腰三角形.解题时还要注意数形结合思想的应用.17.己知矩形ABCD中,对角线AC、BD交于点O,AE⊥BD于E,OE:ED=1:3,AE=AB:AD=或,考点:矩形的性质;等边三角形的判定与性质.分析:作出图形,分①点E在BO上时,根据OE:ED求出点E为BO的中点,然后根据矩形的对角线互相平分且相等求出ABO是等边三角形,再根据等边三角形的性质求出∠ABO=60°,然后利用60°角的余切值解答;②点E在OD上时,设OE为x,根据比例表示出ED的长,再根据矩形的对角线互相平分且相等表示出BE的长,然后根据相似三角形对应边成比例列出求出x2,再利用勾股定理求出AD、AB的长,即可得解.解答:解:①如图1,点E在BO上时,∵四边形ABCD是矩形,∴OB=OD,∵OE:ED=1:3,∴BE=OB﹣OE=OD﹣OE=(ED﹣OE)﹣OE=3OE﹣OE﹣OE=OE,∴BE=OE,∴AE∥OB且平分OB,∴AO=AB(线段垂直平分线上的点到线段两端点的距离相等),∴△ABO是等边三角形,∴∠ABO=60°,21/35∴AB:AD=t an∠ABO=cot60°=;②如图2,点E在OD上时,设OE为x,∵OE:ED=1:3,∴ED=3x,BE=OE+OB=x+(x+3x)=5x,由直角三角形的性质,ADE∽BAE,∴即==,,解得x2=,在RtADE中,根据勾股定理,AD=在RtABE中,根据勾股定理,AB=所以,AB:AD=综上所述,AB:AD=故答案为:或.:或=..====,,点评:本题考查了矩形的性质,等边三角形的性质,线段垂直平分线上的点到线段两端点的距离相等的性质,相似三角形的对应边成比例,注意要分情况讨论求解.18.已知点P为正方形ABCD所在平面上的一点,且AP=AD,连接AP、BP、DP,则∠BPD的度数等于考点:正方形的性质;三角形内角和定理;等腰三角形的性质;等边三角形的判定与性质.专题:分类讨论.分析:①P在正方形ABCD内时,求出AB=AP=AD,∠BAD=90°,推出∠ABP=∠APB,∠APD=∠ADP,求出2∠APB+2∠APD=180°﹣∠BAP+180°﹣∠DAP=270°,即可求出∠BPD即可;②P在正方形ABCD外时,∠PAD为锐角时,求出AB=AD,∠BAD=90°,AP=AD,推出∠ABP=∠APB,∠ADP=∠APD,推出∠BAD=2∠BPD,求出∠BPD即可;当∠P′AD为钝角时,求出∠AP′D=∠ADP′,∠AP′B=∠ABP′,根据三角形内角和定理求出2(∠AP′D+∠AP′B)+45°+45°=180°,即可求出∠BP′D.解答:解:有两种情况:22/35①P在正方形ABCD内时,如图:∵正方形ABCD,AP=AD,∴AB=AP=AD,∠BAD=90°,∴∠ABP=∠APB,∠APD=∠ADP,∵∠BAP+∠ABP+∠APB=180°,∠ADP+∠APD+∠DAP=180°,∴2∠APB+2∠APD=180°﹣∠BAP+180°﹣∠DAP=180°+180°﹣90°=270°,∴∠BPD=135°;②P在正方形ABCD外时,如图:有2点,∠PAD为锐角时,∵ABCD是正方形,∴AB=AD,∠BAD=90°,AP=AD,∴∠ABP=∠APB,∠ADP=∠APD,∴∠PAD=180°﹣2∠APD=180°﹣2∠APB﹣2∠BPD,∠BAD+∠PAD=∠BAP=180°﹣2∠APB,相减得:∠BAD=2∠BPD,∴∠BPD=45°;当∠P′AD为钝角时,∵由正方形ABCD得出∠ABD=∠ADB=45°,AB=AD=AP,∴∠AP′D=∠ADP′,∠AP′B=∠ABP′,∴∠AP′D+∠AP′B+∠ABP′+∠ABD+∠ADB+∠ADP′=180°,∴2(∠AP′D+∠AP′B)+45°+45°=180°,∴∠BP′D=45°;故答案为:45°或135°.点评:本题考查了正方形性质,等腰三角形性质,三角形的内角和定理等知识点的应用,主要考查学生运用性质进行推理的能力,用了分类讨论思想,本题有一定的难度,对学生提出了较高的要求.23/3519.如图,所示,将五个边长都为1cm的正方形按如图所示摆放,其中点A、B、C、D 分别是正方形对角线的交点、如果有n个这样大小的正方形这样摆放,则阴影面积的总和是cm2.考点:正方形的性质.专题:计算题.分析:求面积问题,因为点A、B、C、D分别是正方形对角线的交点,所以两个正方形之间的阴影面积为正方形总面积的,由此便可求解.解答:解:∵点A、B、C、D分别是正方形对角线的交点∴两个正方形之间的阴影面积为正方形总面积的,即×1×1=,当有三个正方形时,其面积为当有四个时,其面积为所以当n个正方形时,其面积为故答案为.==.点评:熟练掌握正方形的性质,会运用正方形的性质进行一些简单的计算问题.20.如图,将矩形ABCD沿直线EF对折,点D恰好与BC边上的点H重合,∠GFP=62°,那么∠E HF的度数等于56°.考点:矩形的性质.专题:计算题.分析:易得∠CFG=2∠GFP,根据平角定义易得∠HFG的度数,由HE∥GF可得∠EHF=∠HFG.24/35解答:解:∵矩形ABCD沿直线EF对折,点D恰好与BC边上的点H重合,∴∠CFP=∠GFP,HE∥GF∴∠CFG=2∠GFP=124°,∴∠HFG=180°﹣∠CFG=56°,∴∠EHF=∠HFG=56°.故答案为56.点评:用到的知识点为:翻折前后得到的对应角相等;矩形的对边平行;两直线平行,内错角相等.21.如图,已知AB=CD,AD=CB,则∠ABC+∠BAD=考点:全等三角形的判定与性质;平行四边形的判定与性质.分析:根据已知可得ABCD为平行四边形,然后根据平行四边形的性质解答即可.解答:解:依题意得ABCD是平行四边形,∴AD∥BC,∴∠ABC+∠BAD=180°.点评:本题考查了平行四边形的判定和性质,本题的难点在于作辅助线构造三角形全等,易错点在于找到相应的边平行.运用平行四边形的判定和性质就很简单.22.如图,用9个全等的等边三角形,按图拼成一个几何图案,从该图案中可以找出平行四边形.考点:平行四边形的判定.分析:根据全等三角形的性质及平行四边形的判定,可找出现15个平行四边形.解答:解:两个全等的等边三角形,以一边为对角线构成的四边形是平行四边形,这样的两个平行四边形又可组成较大的平行四边形,从该图案中可以找出15个平行四边形.故答案为:15.点评:此题主要考查学生对平行四边形的判定的掌握情况和读图能力,注意找图过程中,要做到不重不漏.223.如图,若正方体的边长为a,M是AB的中点,则图中阴影部分的面积为.25/35考点:正方形的性质;三角形的面积.分析:AC,DM交于点O,连接BO,可以证明OAD≌△OAB,又∵△OAD和OCM面积相等,∴图中阴影部分面积可以转化为OAD和OAB的面积.解答:解:找到CD的中点N,连接BN.正方形ABCD中,AC为BD的垂直平分线,∴OB=OD,∵在OAD和OAB中,AB=AD,OA=OA∴△OAD≌△OAB,又∵,所以阴影部分面积为OAD和OAB的面积和.根据中位线定理M、N分别为AB、CD的中点,∴CE=EO=OA,∴O到AD的距离为CD长度的.∴SADO+SABO=2SADO=2××a×=.故答案为.点评:本题考查中位线定理的灵活应用,以及正方形对角线垂直平分,本题证明CE=EO=OA是解题的关键.24.如图,正方形ABCD的边长为1,点P为边BC上任意一点(可与B点或C点重合),分别过B、C、D作射线AP的垂线,垂足分别是B′、C′、D′,则BB′+CC′+DD′的最大值为2,最小值为.。

四上数学,平行四边形和梯形易错题

四上数学,平行四边形和梯形易错题

1.两个完全一样的三角形都能拼成一个(平行四边)形。

2.两条直线相交,可以组成(四)个角,如果其中一个角是直角,那
么其他三个角都是(直角)。

3.两条平行线之间可以画(无数)条垂线,所有垂线的长度都(相等)。

4.两条直线相交,组成(4)个角,如果其中一个角是90°,另外三个
角都是(90)°。

5.平行四边形有两组对边分别(平行),梯形只有(一组)对边平行。

6.(等腰)梯形是轴对称图形,有(1)条对称轴。

7.平行四边形和梯形都是(四边)形。

8.从直线外一点到这条直线所画的垂直线段的长度叫作(直线外一点)到(直线)的距离。

★判断题
1.在同一平面内,两条不相交的线是平行线。

(×)
2.两条直线相交,我们就说这两条直线互相垂直。

(×)
3.有一组对边平行的四边形叫做梯形。

(√)
4.梯形的四条边都相等。

(×)
5.梯形和平行四边形都具有稳定性。

(×)
6.有一组对边平行的四边形叫做梯形。

(√)
7.过平行四边形的一个顶点向一对边能画无数条高。

(×)
8.长方形是特殊的平行四边形,正方形又是特殊的长方形。

(√)
9.两个一样的梯形可以拼成一个平行四边形。

(√)。

五年级上册平行四边形面积易错题

五年级上册平行四边形面积易错题

五年级上册平行四边形面积易错题一、计算平行四边形面积公式1. 问题:平行四边形ABCD的底边长为8厘米,高为5厘米,求其面积。

解答:根据平行四边形的面积公式,面积等于底边长乘以高,所以平行四边形ABCD的面积为8厘米乘以5厘米,即40平方厘米。

2. 问题:平行四边形EFGH的底边长为12厘米,高为4厘米,求其面积。

解答:同样根据平行四边形的面积公式,面积等于底边长乘以高,所以平行四边形EFGH的面积为12厘米乘以4厘米,即48平方厘米。

二、平行四边形面积的应用1. 问题:一个平行四边形的面积为30平方米,其中底边长为6米,求其高。

解答:根据平行四边形的面积公式,面积等于底边长乘以高,已知底边长为6米,所以30平方米等于6米乘以高,解方程得到高为5米。

2. 问题:一个平行四边形的面积为18平方米,其中高为3米,求其底边长。

解答:同样根据平行四边形的面积公式,面积等于底边长乘以高,已知高为3米,所以18平方米等于底边长乘以3米,解方程得到底边长为6米。

三、综合运用1. 问题:一个平行四边形的面积是24平方厘米,如果将其底边长扩大到原来的2倍,面积会发生什么变化?解答:根据平行四边形的面积公式,面积等于底边长乘以高,已知面积为24平方厘米,所以24平方厘米等于底边长乘以高。

当底边长扩大为原来的2倍时,那么高也需要扩大为原来的1/2,这样才能保持面积不变。

所以面积不会发生变化。

2. 问题:一个平行四边形的面积是36平方米,如果将其高减少为原来的1/3,面积会发生什么变化?解答:同样根据平行四边形的面积公式,面积等于底边长乘以高,已知面积为36平方米,所以36平方米等于底边长乘以高。

当高减少为原来的1/3时,底边长需要增加为原来的3倍,这样才能保持面积不变。

所以面积不会发生变化。

以上是五年级上册平行四边形面积易错题的相关内容,希望对您有所帮助。

平行四边形易错题

平行四边形易错题

如图③,过三角形内一点分别作三边的平行线,如果三角形的周长为6cm,则图中三个阴影12.如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF∥BE.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.13.如图,已知△ABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF、BE和CF.(1)请在图中找出一对全等三角形,用符号“≌”表示,并加以证明;(2)判断四边形ABDF是怎样的四边形,并说明理由;(3)若AB=6,BD=2DC,求四边形ABEF的面积.14.已知:如图,在正方形ABCD中,G是CD上一点,延长BC到E,使CE=CG,连接BG 并延长交DE于F.(1)求证:△BCG≌△DCE;(2)将△DCE绕点D顺时针旋转90°得到△DAE′,判断四边形E′BGD是什么特殊四边形,并说明理由.(很简单,自己做)15.如图,在△ABC中,D是BC边的中点,F、E分别是AD及其延长线上的点,CF∥BE.(1)求证:△BDE≌△CDF;(2)请连接BF,CE,试判断四边形BECF是何种特殊四边形,并说明理由.(很简单,自己做)16.如图,在Rt△OAB中,∠OAB=90°,OA=AB=6,将△OAB绕点O沿逆时针方向旋转90°得到△OA1B1(1)线段OA1的长是______,∠AOB1的度数是______;(2)连接AA1,求证:四边形OAA1B1是平行四边形;(3)求四边形OAA1B1的面积.17.如图,在△ABC中,点D,E分别是AB,AC边的中点,若把△ADE绕着点E顺时针旋转180°得到△CFE.(1)请指出图中哪些线段与线段CF相等;(2)试判断四边形DBCF是怎样的四边形,证明你的结论.18.已知点P是矩形ABCD边AB上的任意一点(与点A、B不重合).★★★★(1)如图①,现将△PBC沿PC翻折得到△PEC;再在AD上取一点F,将△PAF沿PF翻折得到△PGF,并使得射线PE、PG重合,试问FG与CE的位置关系如何,请说明理由;(2)在(1)中,如图②,连接FC,取FC的中点H,连接GH、EH,请你探索线段GH和线段EH的大小关系,并说明你的理由;(3)如图③,分别在AD、BC上取点F、C′,使得∠APF=∠BPC′,与(1)中的操作相类似,即将△PAF沿PF翻折得到△PFG,并将△PBC′沿PC′翻折得到△PEC′,连接FC′,取FC′的中点H,连接GH、EH,试问(2)中的结论还成立吗?请说明理由.OC的中点.求证:四边形。

平行四边形、三角形、梯形易错题

平行四边形、三角形、梯形易错题

一、等底等高的平行四边形,面积是三角形,梯形的两倍等底等面积的平行四边形,高是三角形的一半等高等面积的平行四边形,底是三角形的一半1.一个三角形和一个平行四边形等底等高,平行四边形的面积是36平方米,则三角形的面积是()平方米。

如果三角形的面积是是20平方米,那么平行四边形的面积是()平方米。

2.一个平行四边形和一个三角形面积相等,高也相等,平行四边形的底是6米,三角形的底是()米。

3.一个三角形的面积比它等底等高的平行四边形的面积少12平方米,平行四边形的面积是()平方米,三角形的面积是()平方米。

4.三角形和平行四边形的底相等,面积也相等,三角形的高是6厘米,则平时四边形的高是()厘米。

5.一个梯形和一个平行四边形的高相等,梯形的上底和下底的和等于平行四边形底的2倍,梯形的面积()平行四边形的面积。

(填大于、小于或等于)。

6.在一个面积为12平方厘米的平行四边形里画一个最大的三角形,三角形的面积为()平方厘米。

7.一个平行四边形的底是8分米,高是6分米,与它等底等高的三角形面积是()平方分米。

8.把一个三角形的底扩大4倍,面积()。

9.把梯形的高缩小2倍,则面积()。

10.把一个三角形的底扩大8倍,高缩小两倍,则它的面积()。

二、已知三角形和梯形的面积,要先把它们乘以2,而平行四边形则可以直接除。

1.一个占地2平方千米的平行四边形茶园,底为4000米,高为多少米?2.一个梯形西瓜地的面积是42平方米,上底是5米,下底是9米,这块西瓜地的高是多少米?3.快乐农庄的草莓园是一个占地面积为6公顷的三角形,已知底是300米,则高是多少米?4.把一个长20厘米、宽12厘米的长方形拉成一个平行四边形,如果面积减少60平方厘米,那么拉成的平行四边形的高是多少?5.一个梯形的上底是10厘米,如果把上底延长5厘米就成了一个面积为120平方厘米的平行四边形,原来梯形的高是多少?一、在下列方格纸中分别画一个面积为12平方厘米的平行四边形、三角形、梯形二、画一个与下列三角形面积相等的平行四边形和梯形三、在下图中画出与所给三角形面积相等的平行四边形和三角形各一个。

有关平行四边形的易错题

有关平行四边形的易错题

有关平行四边形的易错题1. 平行四边形ABCD中,已知AB = 5cm,AD = 8cm,且角BAD = 60°。

求BC的长。

解析:由于平行四边形的对边长度相等,且对角线互相平分,所以BD = AC = 8cm。

由题目中的角度关系可知角ADC = 180°- 60° = 120°。

利用余弦定理可以求出BC的长度:BC² = AC² + AB² - 2(AC)(AB)cos ADC = 8² + 5² - 2(8)(5)cos 120° = 64 + 25 - 80(-0.5) = 89 + 40 = 129。

所以,BC ≈ √129 ≈ 11.4cm。

2. 平行四边形ABCD中,已知角BAD = 120°,BC = 7cm,且DC = 13cm。

求AD的长。

解析:由于平行四边形的对边长度相等,所以AB = DC =13cm。

由题目中的角度关系可知角ADC = 180° - 120° = 60°。

利用余弦定理可以求出AD的长度:AD² = AB² + DC² -2(AB)(DC)cos ADC = 13² + 13² - 2(13)(13)cos 60° = 169 + 169 - 338(0.5) = 338 - 169 = 169。

所以,AD = √169 = 13cm。

3. 平行四边形ABCD中,已知角BAD = 40°,AD = 6cm,且BC = 5cm。

求平行四边形的面积。

解析:由题目中的角度关系可知角ADC = 180° - 40° = 140°。

利用正弦定理可以求出BD的长度:BD/sin ADC = AD/sin BAD,即BD/sin 140° = 6/sin 40°。

平行四边形易错题精选

平行四边形易错题精选

易1.已知平行四 形的面 是144cm 2,相 两 上的高分8cm 和 9cm , 个平行四形的周 _______2. 分 将以下条件中的哪两个条件 合。

能够判断四 形ABCD 是平行四 形? ① AB ∥ CD ② AD ∥ BC ③ AB=CD④ AD =BC⑤∠ A= ∠ C⑥∠ B=∠ D3. 如 ,在ABCD 中, E , F 分 AD , CD 的中点,分EF , EB , FB ,AC , AF , CE, 中与△ABE面 相等的三角形(不包含△ ABE )共有的个数().A . 3 个B. 4 个C. 5 个D . 6 个 4. 如 7,将 n 个 都 1cm 的正方形按如 7 所示 放,点 A 、 A 、⋯、 A 分 是正方形的 角 的中点,n 个12n的正方形重叠部分的面 和 ( )A . 1 cm 2B . ncm 2C .n 1cm 2D . ( 1) n cm 2444 4A 2A 3 A 1A 4(图第718)5.如 ,矩形 ABCD 中,AB=3 ,BC=4 ,若将矩形折叠, 使 C 点和 A 点重合, 折痕 EF=_____ .6.如 ,以三角形的一条中位 和第三 上的中 角 的四 形是( )A .梯形B .平行四 形C .菱形D .矩形AEFA DEFCBBDC第 5第 6 第 87. 一个等腰梯形的周 是 80cm?,?假如它的中位 与腰 相等, ?它的高是 12cm , 个梯形的面_________。

8. 如 1,梯形 ABCD 中, AB ∥CD, EF 是中位 , EF 分 交 AC 、 BD 于 M 、 N ,若 AB=8,CD=6,MN = _______.9.三角形的周 a ,分 它的三个 点作其 的平行 , 三条直 成的三角形的周 ________10.如 , 伯家小院子的四棵小E 、F 、G 、H 幸亏其梯形院子 ABCD 各 的中点上,若在四 形 EFGH 种上小草, 草地的形状是() A .平行四 形B .矩形C .正方形D .菱形11、如 ,在 △ ABD 中,∠ ADB = 90°,C 是 BD 上一点,若 E 、 F 分 是 AC 、AB 的中点,△ DEF 的面3.5, △ ABC 的面.A H DE GBCF第 10第 1112.点 P 是矩形 ABCD 的边 AD 上的一个动点,矩形的两条边AB、 BC 的长分别为 3 和 4,那么点 P 到矩形的两条对角线AC 和 BD 的距离之和是 ( )13.在平面直角坐标系中,点 A 、B 、C 的坐标分别是A( - 2,5),B( - 3,- 1),C(1 ,- 1),在第一象限内找一点D,使四边形ABCD 是平行四边形,那么点 D 的坐标是14.(1) 菱形 ABCD的周长为 16cm,∠ ABC=60° ,E 是 AB 的中点 , 点 P 是 BD上的一动点 , 那么AP+PE的最小值等于15.在边长为 2cm 正方形 ABCD中,点 Q为 BC边上的中点,点 P 为对角线 AC上的一动点,连结 PB, PQ,则△ PBQ周长的最小值为 ___________.16. 如图, P 是正方形内一点,假如△ABP 为等边三角形,DP 的延伸线交BC 于 G,那么∠PCD= ________. ∠ BPG =________.第 16 题第18题第20题17.在△ ABC中, D、 E 分别是 AB、 AC的中点, P 是 BC上随意一点,那么△PDE的面积是△ABC面积的()18.如图,在△ ABC中,M是BC边的中点,AD均分∠ BAC,BD⊥ AD于点D,若AB=12,AC=30,则 MD的长为()19.已知菱形ABCD 的边长为4,∠ A = 60°,假如点P 是菱形内一点,且PB=PD= 2那么 AP 的长为.20.如图,点 E 是正方形 ABCD对角线 AC上一点, AF BE 于点 F,交 BD于点 G,则下述结论中不建立的是()B'yA.AG=BEB. △ABG≌△ BCEC.AE=DGD. ∠ AGD=∠ DAG A'D CEOFA BO xCAB第 20 题第 21 题(第 22 题)21. 将矩形纸片ABCD按如图 1-5 所示的方式折叠,获得菱形AECF.若 AB= 6,则 BC的长为_________.22.如图,将△ ABC 绕点 C( 0,-1)旋转 180°获得△ ABC,设点 A 的坐标为( a, b)则点 A 的坐标为()23. 点 A, B,C 的坐标分别为( 0,- 1),( 0,2),( 3,0),从下边四个点 M ( 3,3), N( 3,-3), P(- 3, 1), Q(- 3, 0)中选择一个点,以 A ,B , C 与该点为极点的四边形不是中心对称图形,则该点是()A .M B.N C.P D.Q24.在平行四边形 ABCD中,点 A1、 A2、 A3、A4和 C1、C2、C3、 C4分别 AB和 CD的五均分点 , 点 B1、 B2和 D1、D2分别是 BC和 DA的三均分点 , 已知四边形A4 B 2 C 4 D 2的积为 1, 则平行四边形ABCD面积为()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

易错题测试
1.已知平行四边形的面积是144cm 2,相邻两边上的高分别为8cm 和9cm ,则这个平行四边
形的周长为_______
2. 分别将下列条件中的哪两个条件组合。

可以判定四边形ABCD 是平行四边形?
①AB ∥CD ②AD ∥BC ③AB=CD ④AD =BC
⑤∠A=∠C ⑥∠B=∠D
3.如图,在ABCD 中,E ,F 分别为AD ,CD 的中点,分
别连结EF ,EB ,FB ,AC ,AF ,CE ,则图中与△ABE
面积相等的三角形(不包括△ABE )共有的个数( ).
A .3个
B .4个
C .5个
D .6个
4.如图7,将n 个边长都为1cm 的正方形按如图7所示摆放,
点A 1、A 2、…、A n 分别是正方形的对角线的中点,则n 个这样
的正方形重叠部分的面积和为( ) A .41cm 2 B .4n cm 2 C .41 n cm 2 D .n 4
1( cm 2 5.如图,矩形ABCD 中,AB=3,BC=4,若将矩形折叠,使C 点和6.如图,以三角形的一条中位线和第三边上的中线为对角线的四边形是( )
A .梯形
B .平行四边形
C .菱形
D .矩形
7.
一个等腰梯形的周长是80cm•,•如果它的中位线与腰长相等,•它的高是12cm ,这个梯形
的面积_________。

8.如图1,梯形ABCD 中,AB ∥CD, EF 是中位线,EF 分别交AC 、BD 于M 、N ,若AB=8,CD=6,
则MN =_______.
9.三角形的周长为a ,分别过它的三个顶点作其对边的平行线,这三条直线围成的三角形的
周长为________
10.如图,杨伯家小院子的四棵小E F G H 、、、刚好在其梯形院子ABCD 各边的中点上,
若在四边形EFGH 种上小草,则这块草地的形状是( )A .平行四边形 B .矩形
C .正方形
D .菱形
11、如图,在△ABD 中,∠ADB =90°,C 是BD 上一点,若E 、F 分别是AC 、AB 的中点,
△DEF 的面积为3.5,则△ABC 的面积为 .
F 第10题 第5题 第6题 第8题 第11题
12.点P 是矩形ABCD 的边AD 上的一个动点,矩形的两条边AB 、BC 的长分别为3和4,
那么点P 到矩形的两条对角线AC 和BD 的距离之和是( )
13.在平面直角坐标系中,点A 、B 、C 的坐标分别是A(-2,5),B(-3,-1),C(1,-1),
在第一象限内找一点D ,使四边形ABCD 是平行四边形,那么点D 的坐标是
14.(1)菱形ABCD 的周长为16cm,∠ABC=60°,E 是AB 的中点,点P 是BD 上的一动点,那么
AP+PE 的最小值等于
15.在边长为2cm 正方形ABCD 中,点Q 为BC 边上的中点,点P 为对角线AC 上的一动点,连
接PB ,PQ ,则△PBQ 周长的最小值为___________.
16.如图,P 是正方形内一点,如果△ABP 为等边三角形,DP 的延长线交BC 于G ,那么
∠PCD=________.∠BPG =
________.
第16题 第18题 第20题
17.在△ABC 中,D 、E 分别是AB 、AC 的中点,P 是BC 上任意一点,那么△PDE 的面积是△
ABC 面积的( )
18. 如图,在△ABC 中,M 是BC 边的中点,AD 平分∠BAC ,BD ⊥AD 于点D ,若AB=12,AC=30,
则MD 的长为( )
19.已知菱形ABCD 的边长为4,∠A =60°,如果点P 是菱形内一点,且PB =PD =2
那么AP 的长为 .
20.如图,点E 是正方形ABCD 对角线AC 上一点,AF BE 于点F ,交BD 于点G ,则下述结论中不成立的是( )
A.AG=BE
B.△ABG ≌△BCE
C.AE=DG
D.∠AGD=∠DAG
第20题 第21题 21.将矩形纸片ABCD 按如图1-5所示的方式折叠,得到菱形AECF .若AB =6,则BC 的长为
_________.
22.如图,将△ABC 绕点C (0,-1)旋转180°得到△ABC ,设点A 的坐标为),(b a 则点A
的坐标为( )
23.点A ,B ,C 的坐标分别为(0,-1),(0,2),(3,0),从下面四个点M (3,3),N (3,
-3),P (-3,1),Q (-3,0)中选择一个点,以A ,B ,C 与该点为顶点的四边形不是
中心对称图形,则该点是 ( )
A . M
B . N
C . P
D . Q
24. 在平行四边形ABCD 中,点A 1、A 2、A 3、A 4和C 1、
C 2、C 3、C 4分别AB 和C
D 的五等分点,点B 1、B 2和D 1、
D 2分别是BC 和DA 的三等分点,已知四边形A 4 B 2 C 4 D 2
的积为1,则平行四边形ABCD 面积为( )
(第22题)。

相关文档
最新文档