控制工程第3章复习题(答案)
控制工程基础第三章

特征根: 特征方程的根,即D(s)=0的解。
时域分析有关概念----主要概念
3.系统的零点、极点和零极点分布图 Xo(s) = M(s)
闭环零点: 闭环传递函数中M(s)=0的解
Xi (s) D(s)
闭环极点: 闭环传递函数中D(s)=0的解,等价特征根 开环零极点与开环传递函数相对应
f1
稳定性分析 s
s s
n n n
系12 统的特aab征011 方程aba为-223--D -代( s ) a数b a34a 5(0 劳s n 斯a a1 as )76n 稳 1 定 性 a b判n b 121 s 据 a aan 11a a240 aa11aa00aa35
4(s 2) G(s) s2 s
稳定
临界稳定
例 单位反馈系统的开环传递函数如下,判断系统是否稳定?
G(s) s 5 (s 2)
不稳定
稳定性分析----代数(劳斯)稳定性判据
系统的特征方程为 D ( s ) a 0 s n a 1 s n 1 a n 1 s a n 0
时域分析有关概念----典型输入信号
1.阶跃(位置)信号
a,t 0 x(t) 0,t 0
a为常数,a =1时为单位 阶跃信号,记为1(t)。
2.斜坡(速度)信号
at,t 0
x(t)
0,t
0
a为常数,a =1时为单位 斜坡信号,记为t·1(t)。
时域分析有关概念----典型输入信号
3.抛物线(加速度)信号
at2,t 0 x(t) 0, t 0
控制工程基础习题解答3

控制工程基础习题解答第三章3-1.已知二阶系统的闭环传递函数为()()2222nn n s s s R s C ωςωω++=,其中ζ=0.6,ωn =5rad/s ,试求在单位阶跃输入下的瞬态响应指标t r 、t p 、σp %、和t s 。
解:srad radn d /46.0151927.013.536.06.01tan1tan222121=-=-==︒=-=-=--ςωωςςβ 0.55(s)4927.0=-=-=πωβπd r t ()s t d p 79.04===πωπ %5.9%226.016.01===----πςςπσe e p()()s t s t ns ns 33.156.044156.033=⨯===⨯==ςωςω3-2.已知某系统的框图如图3-16所示,要求系统的性能指标为σp%=20%,t p =1s ,试确定系统的K 值和A 值,并计算t r 和t s 之值。
解:()()KAK K Ks AK s Ks n 2112+==+++=ςωφ45.02.0%21===--ςσςςπe p()s rad s t n n d p /52.3145.012==-==ωωπωπ17.039.12145.039.1221239.122=-⨯⨯=-===K K A K n ςωsrad radn d /14.345.0152.311.145.045.01tan1tan222121=-=-==-=-=--ςωωςςβ 0.65(s)14.31.1=-=-=πωβπd r t ()()%252.252.345.044%589.152.345.033±=⨯=±=⨯==, =, s s t nns ςωςω3-3.某系统的开环传递函数为()ss s G n n ςωω222+=,为使单位反馈的闭环系统对单位阶跃输入的瞬态响应具有σp %=5%的超调量和t s =2s 的调整时间,试确定系统的ζ和ωn 的值。
控制工程基础第三章参考答案(供参考)

第三章 习题及答案传递函数描述其特性,现在用温度计测量盛在容器内的水温。
发现需要时间才能指示出实际水温的98%的数值,试问该温度计指示出实际水温从10%变化到90%所需的时间是多少?解: 41min, =0.25min T T =2.已知某系统的微分方程为)(3)(2)(3)(t f t f t y t y +'=+'+'',初始条件2)0( , 1)0(='=--y y ,试求:⑴系统的零输入响应y x (t );⑵激励f (t ) (t )时,系统的零状态响应y f (t )和全响应y (t );⑶激励f (t ) e 3t(t )时,系统的零状态响应y f (t )和全响应y (t )。
解:(1) 算子方程为:)()3()()2)(1(t f p t y p p +=++3.已知某系统的微分方程为)(3)(')(2)(' 3)(" t f t f t y t y t y +=++,当激励)(t f =)(e 4t tε-时,系统的全响应)()e 61e 27e314()(42t t y t t tε-----=。
试求零输入响应y x (t )与零状态响应y f (t )、自由响应与强迫响应、暂态响应与稳态响应。
解:4. 设系统特征方程为:0310126234=++++s s s s 。
试用劳斯-赫尔维茨稳定判据判别该系统的稳定性。
解:用劳斯-赫尔维茨稳定判据判别,a 4=1,a 3=6,a 2=12,a 1=10,a 0=3均大于零,且有 所以,此系统是稳定的。
5. 试确定下图所示系统的稳定性.解:210110(1)(1)(). ()210(21)1(1)s s s s a G s s s s s s s +++=⋅=⨯+++ 系统稳定。
满足必要条件,故系统稳定。
6.已知单位反馈系统的开环传递函数为)12.001.0()(2++=s s s Ks G ξ,试求系统稳定时,参数K 和ξ的取值关系。
机电控制工程基础考试复习题

1重点题: 1.Nyquist 图 2.Bode 图。
3.稳定性分析及劳斯判据4.稳态误差5.时域性能指标,频率性能指标求取(稳定裕量的指标求取(wc ,r ))第一章习题答案一、简答一、简答1.什么是自动控制? 就是在没有人直接参与的情况下,利用控制装置使生产过程或被控对象的某一物理量(输出量)准确地按照给定的规律(输入量)运行或变化。
运行或变化。
2.控制系统的基本要求有哪些?控制系统的基本要求可归结为稳定性;准确性和快速性。
控制系统的基本要求可归结为稳定性;准确性和快速性。
3.什么是自动控制系统? 指能够对被控制对象的工作状态进行自动控制的系统。
它一般由控制装置和被控制对象组成4.反馈控制系统是指什么反馈?反馈控制系统是指负反馈。
反馈控制系统是指负反馈。
5.什么是反馈?什么是正反馈?什么是负反馈?反馈信号(或称反馈):从系统(或元件)输出端取出信号,经过变换后加到系统(或元件)输入端,这就是反馈信号。
当它与输入信号符号相同,即反馈结果有利于加强输入信号的作用时叫正反馈。
反之,符号相反抵消输入信号作用时叫负反馈。
号的作用时叫正反馈。
反之,符号相反抵消输入信号作用时叫负反馈。
6.什么叫做反馈控制系统 系统输出全部或部分地返回到输入端,此类系统称为反馈控制系统(或闭环控制系统)。
7.控制系统按其结构可分为哪3类?控制系统按其结构可分为开环控制系统、闭环控制系统和复合控制系统。
控制系统按其结构可分为开环控制系统、闭环控制系统和复合控制系统。
8.举例说明什么是随动系统。
这种系统的控制作用是时间的未知函数,即给定量的变化规律是事先不能确定的,而输出量能够准确、迅速的复现给定量(即输入量)的变化,这样的系统称之为随动系统。
随动系统应用极广,如雷达自动跟踪系统,火炮自动瞄准系统,各种电信号笔记录仪等等。
应用极广,如雷达自动跟踪系统,火炮自动瞄准系统,各种电信号笔记录仪等等。
9.自动控制技术具有什么优点?⑴ 极大地提高了劳动生产率;⑵极大地提高了劳动生产率;⑵ 提高了产品的质量;⑶提高了产品的质量;⑶减轻了人们的劳动强度,使人们从繁重的劳动中解放出来,去从事更有效的劳动;⑷人们从繁重的劳动中解放出来,去从事更有效的劳动;⑷ 由于近代科学技术的发展,许多生产过程依靠人们的脑力和体力直接操作是难以实现的,还有许多生产过程则因人的生理所限而不能由人工操作,如原子能生产,深水作业以及火箭或导弹的制导等等。
控制工程期末试题 (3)

第3章补充习题一、填空题1.系统分析是指对系统的___稳定性____、____误差_____和___动态特性______三方面的性能指标进行分析。
2.控制系统分析的目的是确定系统的___稳定性____、___误差______和___动态特性______。
3.在控制系统分析时,人们经常选用的典型信号有__阶跃信号___、__速度信号___、___加速度信号___、__脉冲信号___和__正弦信号_____。
4.如果系统的实际输入信号具有突变的性质,可以选用___单位阶跃____信号作为输入信号进行试验。
5.如果系统的实际输入信号具有随时间逐渐变化的性质,可以选用_______信号作为输入信号进行试验。
6.凡能够用一阶微分方程描述的系统称为___一阶系统________。
7.一阶系统的典型环节也称为____惯性环节___________。
8.系统在单位阶跃信号作用下的输出称为__单位阶跃响应_____________。
9.一阶惯性环节的单位阶跃响应的时域数学表达式是___________。
10.一阶惯性环节一定是稳定的和___无__振荡的。
11.一阶惯性环节的时间常数可以用实验测出的单位阶跃响应曲线达到__0.632__高度点时所对应的时间来确定。
12.一阶惯性环节的时间常数越小,系统的惯性_越小_______。
13.一阶惯性环节的时间常数越小,系统的响应___快_____。
14.一阶惯性环节的阶跃响应在半对数坐标纸上是__t 1-x0(t)______。
15.一阶惯性环节的单位速度响应的时域数学表达式是___________。
16.系统在单位速度信号作用下的输出称为____单位速度响应___________。
17.一阶惯性环节在单位速度信号作用下的稳态误差是____T_______。
18. 系统在单位脉冲信号作用下的输出称为_____单位脉冲响应_________。
19.一阶惯性环节的单位脉冲响应的时域数学表达式是___________。
控制工程第3章习题解答

3.5 使用温度计对水温进行测量,若水温为恒定值,该温度计能在1分钟时指示出实际温度值的98%。
假定温度计为一个一阶系统,求该系统的时间常数T 。
解:恒定的水温可以视为一个阶跃输入信号,温度计的测量输出可以视为对该阶跃输入信号的响应。
一阶系统的单位阶跃响应的时间函数为:)0(1)(/>-=-t e t x T t o (P82,3.3.2) 根据题意可知:98.01)(/11=-=-=Tt o e t x→02.0/1=-T e →256.050ln 1==T (min)若测量开始后,实际水温从零度起,以10°C/min 的速度线性升温,求温度计在1分钟时的示值与实际水温的误差是多大?(帮助公式:11111222++-=+⋅Ts T s T sTs s ) 根据题意,实际的温度输入信号为:t t x i ⋅=10)(其拉氏变换为:210)(ss X i =测量误差的时间函数为:]1110[)()]()([)()]([)()()()(2111+⋅⋅-=⋅-=-=-=---s T sL t x s G s X L t x s X L t x t x t x t e i i i o i o i其中:)(10]11[10]111[10]1110[/2212121T t e T T t Ts T s T s L Ts s L s T s L ----⋅+-=++-=+⋅=+⋅⋅所以:)1(56.2)1(10)(1010)(256.0///t T t T t e e T e T T t t t e ----=-=⋅+--=当t=1时,测量误差为:5.2)1(56.2)(256.0/11=-=-=e t e t3.7已知控制系统的微分方程为)(20)()(5.2t x t y t y =+',试用拉氏变换法求该系统的单位脉冲响应)(t w 和单位阶跃响应)(t x ou ,并讨论二者之间的关系解:由传递函数的定义和系统的微分方程(P34,2.2.2~2.2.3),可得系统的传递函数为4.0815.220)()()(+=+==s s s X s Y s G 系统的单位脉冲响应为(P81)t e s L s X s G L t w 4.0118]14.08[)]()([)(---=⋅+==系统的单位阶跃响应为(P82):)1(20]4.011[4.08]14.08[)]()([)(4.0111t ou e s s L s s L s X s G L t x -----=+-=⋅+==比较)(t x ou 和)(t w ,有)(t w =)(t x ou' 即系统的单位脉冲响应等于系统的单位阶跃响应的微分。
现代控制工程基础第三章习题解答

解:
s5
1
2 11
s4
2
4 10
s3 0(ε)
6
4ε −12
s2
ε
10
s1
−10ε 2 + 24ε − 72 4ε −12
s0
10
当ε→0+时,第一列变了两次符号,故在右半平面
有两个正根。
10
(5) D(s)=s6+2s5+8s4+12s3+20s2+16s+16=0
解: s6 s5 s4 s3 s2 s1 s0
5
s0 K-8
第一列元素全部大于零,可得
8<K<18
13
3.14 已知单位负反馈的开环传递函数如下,试求系统在
输入信号分别为r(t)=1,t和t2时的稳态误差ess。
(1)
G(s) =
100
(0.1s +1)(0.5s +1)
解:闭环系统特征方程 D(s) = 0.01s2 + 0.6s +101 = 0 稳定的。
Hale Waihona Puke ess=1 1+ Kp
=1 1+ KK1
18
Vr
−
K1
+
K2 s
K Ts +1
Vc
(2) 当K2≠0时,求Vr(t)=1(t)时的稳态误差ess; I型系统,开环传递函数 G(s) = K(K1s + K2)
s(Ts +1)
当Vr(t)=1(t)时,静态位置误差系数
Kp
=
lim G(s)
s→0
=
∞
时速度误差系数为Kv=6?此时的ess为多少?
机械控制工程基础第3章习题解答

由于前述 K h 0.116
101 0.116 s 则系统的传递函数为: G s 2 s 3.16 s 10
输入单位阶跃 X i s
101 0.116 s X o s Gs X i s s 2 3.16 s 10 s 0.42 2.74 1 s 1.58 2.74 X o s s s 1.582 2.742 s 1.582 2.742
单位反馈,开环传递函数为:
Ⅱ 型,开环增益为
an K an 2
an 2 e ss an
3.16
101 K h s G s 2 s 2 10K h s s 10
K h 0.116
n 10 1 / s 3.161 / s 0.5 M p 16.3% 直接代入公式: t s 2.53 s 2% t 1.897 s 5% s
单位阶跃响应:x
ou
t 201 e
t / 2.5
xou t wt
3.8
3.12
微分关系
9 3 G s 2 s s 9 s 2 2 1 3s 32 6 n 31 / s M 58.8% p 0.167
求导,得到最大值
M p 17. 7%
clear all; close all; t=0:0.01:5; y=1-exp(-1.58*t).*cos(2.74.*t) -0.1533.*exp(-1.58*t).*sin(2.74.*t); %output express figure; h=plot(t,y,’r’); set(h,’linewidth’,5) set(gca, ’fontsize’,16) [mp_abs ,tp_space]=max(y(:)); %0.1772 mp= mp_abs–1; %计算最大超调量0.1772 tp= tp_space.*0.01; %计算峰值时间 grid on; i=tp_space; while abs(y(i)-1)>0.02 i=i+1; end ts=i.*0.01; %计算调整时间ts=1.69s
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章复习题一、选择题1、系统方框图如图示,则该系统的开环传递函数为( B ) A 、1051s + B 、2051ss + C 、10251s s ()+ D 、2s2、 某系统的传递函数为2s 5)s (G +=,则该系统的单位脉冲响应函数为(A )A 、52et-B 、5tC 、.52e tD 、5t3、 二阶欠阻尼系统的上升时间t r 定义为( C )A 、单位阶跃响应达到稳态值所需的时间B 、单位阶跃响应从稳态值的10%上升到90%所需的时间C 、.单位阶跃响应从零第一次上升到稳态值时所需的时间D 、单位阶跃响应达到其稳态值的50%所需的时间4、系统类型λ、开环增益K 对系统稳态误差的影响为( A ) A.系统型次λ越高,开环增益K 越大,系统稳态误差越小 B.系统型次λ越低,开环增益K 越大,系统稳态误差越小 C.系统型次λ越高,开环增益K 越小,系统稳态误差越小 D.系统型次λ越低,开环增益K 越小,系统稳态误差越小5、一系统的传递函数为G s KTs ()=+1,则该系统时间响应的快速性( C ) A.与K 有关 B.与K 和T 有关C.与T 有关D.与输入信号大小有关6、一闭环系统的开环传递函数为G s s s s s ()()()()=+++83232,则该系统为( C )A.0型系统,开环增益为8B.I 型系统,开环增益为8C.I 型系统,开环增益为4D.0型系统,开环增益为47、瞬态响应的性能指标是根据哪一种输入信号作用下的瞬态响应定义的( B ) A.单位脉冲函数 B.单位阶跃函数 C.单位正弦函数 D.单位斜坡函数8. 二阶系统的极点分别为s s 12054=-=-.,,系统增益为5,则其传递函数为(D ) A.2054(.)()s s --B.2054(.)()s s ++C.5054(.)()s s ++D.10054(.)()s s ++9、二阶系统的传递函数为G s Ks s ()=++2212,当K 增大时,其(C ) A.无阻尼自然频率ωn 增大,阻尼比ξ增大 B.无阻尼自然频率ωn 增大,阻尼比ξ减小 C.无阻尼自然频率ωn 减小,阻尼比ξ减小 D.无阻尼自然频率ωn 减小,阻尼比ξ增大 10、一阶系统KTs1+的单位脉冲响应曲线在t=0处的斜率为( C ) A.K TB. KTC. -K T 2D.K T 211、某系统的传递函数G(s)=1+Ts K,则其单位阶跃响应函数为( C )A.1Te Kt T -/ B.K Te t T -/ C. K(1-e -t/T ) D. (1-e -Kt/T )12、图示系统称为( B )型系统。
A. 0 B. Ⅰ C. Ⅱ D. Ⅲ13、典型二阶振荡环节的峰值时间与( D )有关。
A.增益 B.误差带 C.增益和阻尼比 D.阻尼比和无阻尼固有频率14、某系统的传递函数为G(s)=()()()()s s s s +-+-72413,其零、极点是( D )A.零点s=-0.25,s=3;极点s=-7,s=2B.零点s=7,s=-2;极点s=0.25,s=3C.零点s=-7,s=2;极点s=-1,s=3D.零点s=-7,s=2;极点s=-0.25,s=315、一系统的开环传递函数为32235()()()s s s s +++,则系统的开环增益和型次依次为( A )A. 0.4,ⅠB. 0.4,ⅡC. 3,ⅠD. 3,Ⅱ 16、单位反馈控制系统的开环传递函数为G(s)=45s s ()+,则系统在r(t)=2t 输入作用下,其稳态误差为( A ) A.104B. 54C. 45D. 017、二阶系统的传递函数为4)0.5)(s (s 10++,则系统增益为( D )A.10B.0.5C.4D.518、若系统的单位脉冲响应为e -2t +2e -t ,则系统的传递函数为:( A )A.1s 22s 1+++B.1s 2s 32++ C.s 2e 2s 1-+ D.se 1s 1-+19、某系统的传递函数为2)1)(s (s 5++系统的零极点为( C )A.极点s 1=-1, s 2=-2,零点s 3=5B.极点s 1=1, s 2=2C.极点s 1=-1, s 2=-2D.极点s 1=1, s 2=2,零点s 3=-520、下列信号中,哪个用来定义二阶系统的瞬态响应指标( A )A. 单位阶跃B.单位脉冲C.单位斜坡D.单位正弦 21、系统如图,其稳态误差定义为( C )A.e ss =0s lim →SG(S) B.e ss =∞→s lim te(t)C.e ss =∞→t lim e(t) D.e ss =0t lim →e(t)22、单位反馈系统稳态速度误差的正确含义是: CA 、在 ()1()r t R t =⋅时,输出速度与输入速度的稳态误差;B 、在 ()1()r t R t =⋅时,输出位置与输入位置的稳态误差;C 、在 ()r t V t =⋅时,输出位置与输入位置的稳态误差;D 、在 ()r t V t =⋅时,输出速度与输入速度的稳态误差。
23、非单位反馈系统,其前向通道传递函数为G(S),反馈通道传递函数为H(S),则输入端定义的误差E(S)与输出端定义的误差*()E S 之间有如下关系: AA 、 *()()()E S H S E S =⋅B 、*()()()E S H S E S =⋅ C 、*()()()()E S G S H S E S =⋅⋅ D 、*()()()()E S G S H S E S =⋅⋅24、技术指标中的( )表征自动控制系统的稳态性能。
CA .系统误差B .最大误差C .稳态误差D .最大超调量 25、典型二阶系统的单位阶跃响应,在阻尼比为 时为减幅振荡。
DA .ξ=0B .ξ =1C .ξ>1D .0<ξ<126、典型二阶系统的阻尼比ξ=0时,其单位阶跃响应是 ( B )A .单调上升曲线B .等幅振荡曲线C .阻尼衰减振荡曲线D .发散增幅振荡曲线 27、在技术指标中,( B 、C 、D )表征自动控制系统的动态性能。
(多项选择) A .系统误差 B .最大超调量 C .调整时间 D .振荡次数二、填空题(本大题共5小题,每小题2分,共10分)1、瞬态响应是系统受到外加作用激励后,从 初始 状态到 最终 状态的响应过程。
2、系统的稳态误差与系统开环传递函数的增益、_型次_____和__输入函数_____有关。
3、I 型系统G s Ks s ()()=+2在单位阶跃输入下,稳态误差为 0 ,在单位加速度输入下,稳态误差为 ∞ 。
4、一个单位反馈系统的前向传递函数为ss s K4523++,则该闭环系统的特征方程为_04523=+++k s s s ______开环增益为_k/4_____。
5、二阶系统在阶跃信号作用下,其调整时间t s 与阻尼比、_无阻尼固有频率__和__误差带____有关。
6、系统在外加激励作用下,其_输出___随_时间__变化的函数关系称为系统的时间响应。
三、简答题(共16分)1、时域动态性能指标有哪些?它们反映系统哪些方面的性能?上升时间、峰值时间、调整时间、最大超调量 反映快速性:上升时间、峰值时间、调整时间 平稳性:最大超调量2、已知系统的传递函数为2432s s ++,求系统的脉冲响应表达式。
)0()(31113422)()()(3≥-=+-+=++==--t e e t x s s s s s X s G s X tt o i o 3、已知单位反馈系统的开环传递函数为Ks s ()71+,试问该系统为几型系统?系统的单位阶跃响应稳态值为多少?I 型系统0)17(lim111)17(11lim 00=++=++=→→s s kss s k sss s s ε4、已知二阶欠阻尼系统的单位阶跃响应如下,如果将阻尼比ζ增大(但不超过1),请用文字和图形定性说明其单位阶跃响应的变化。
上升时间 变大;超调量减少;调节时间减小(大体上);四、计算题(本大题共6小题,共44分)1、1、系统如图所示,r t t ()[]=1为单位阶跃函数,试求:1)系统的阻尼比ξ和无阻尼自然频率ωn ;2) 动态性能指标:超调量M p 和调节时间t s ()δ=5答案:s ts e Mp s s s G nnn 32*5.033%5.165.0222424)(21/2======⇒==++=--ξωξξωωξξπ3、写出图示系统的传递函数,并写出系统的ωn 和ζ。
答案:11)()(20++=Rcs LCs s U s U i4、某系统如图1) 试求该系统的峰值时间、最大超调量(单位阶跃输入)2)系统结构如图2所示,试求系统的超调量%σ和调节时间s t 。
(本题10分)解答: 1)参照2) 2)%)2(6.15.0*544%)5(2.15.0*533%3.16%100%5.0525525)(21/2=∆====∆====⨯===++=--nn n B ts s ts e s S s G ξωξωσξωξξπ5、已知单位负反馈系统的开环传递函数为 ()(0.11)(0.21)KG S s s s =++,若r(t) = 2t +2时,要求系统的稳态误差为0.25,问K 应取何值。
解答:825.02)12.0)(11.0(22lim 22)12.0)(11.0(11lim )()12.0)(11.0(11lim 0200=⇒==++++=+⨯+++=+++=→→→k k s s k s s s s s s s kss R s s s k sess s s s)5(25+s s。