Hadoop大数据平台的搭建与测试-论文

合集下载

Hadoop大数据平台的搭建与测试

Hadoop大数据平台的搭建与测试

自2 0 0 8 年( N a t u r e ) 发表有关大数据( B i g D a t a ) 的专刊以来 , 大数据 的处理 和分析已经成为人们关注
的焦点。大数据具有 四个特点 ( 4 V ) : 多样化( V a r i e t y ) , 海量性( V o l u m e ) , 快速性 ( V e l o c i t y ) 和灵活性( V i - t a l i t y )…。这 四个特点要求我们对当前分布式架构的理念做出新 的理解 , 在数据处理和数据整合上使用 新的方法。H a d o o p 就是在此环境下成功应用于大数据处理和分析的一个分布式架构平 台, 它具有方便、 健壮性、 可扩展性 、 搭建对硬件要求较低等优点【 2 J , 在大数据领域内的分布式处理上 占有较大的优势。
C U I We n— b i n ,M U S h a o—m i n,WA N G Y u n—c h e n g , H A O Q i n g—b o , C H A N G I . e n g— t e n g
( A g r i c u l t u r a l B i g—D a t a R e s e a r c h C e n t e r , S h a n d o n g A g i r c u l t u r a l Un i v e r s i t y , T a i a n 2 7 1 0 1 8 , C h i n a )
代H a d o o p有着 良好的发展前景 。本文简要介 绍了 H a d o o p的发 展史 , 分析了 H a d o o p集群 的构造模块 和组件 , 搭
建了H a d o o p集群并进行 了测试 。 关键词 : 大数 据 ; H a d o o p ; 分布 式应用程序 : 分布式 系统

Hadoop平台搭建及实例运行-(自测版)

Hadoop平台搭建及实例运行-(自测版)

Hadoop平台搭建及实例运行本文搭建hadoop平台的硬件环境是虚拟机上安装2个ubuntu系统,具体信息如下:表1.平台硬件环境名字操作系统IP地址内存ubuntu2Ubuntu 8.04192.168.28.13020Gubuntu3Ubuntu 8.04192.168.28.13120G一、平台搭建1.安装必需软件(1)安装java$ sudo apt-get install SUN-java5-jdk系统会自动分析软件的依赖关系,并推荐安装下列相关软件:java-common odbcinst1debian1 sun-java5-bin sun-java5-demo sun-java5-jdk sun-java5-jre unixodbc安装过程中需要回答是否同意使用协议,此时按tab键至OK,再按回车即可正常安装。

安装完这三个之后还需要写入系统变量:$ sudo vi /etc/environment写入下面两行内容:CLASSPATH=.:/usr/lib/jvm/java-1.5.0-sun/libJAVA_HOME=/usr/lib/jvm/java-1.5.0-sun还要将系统虚拟机的优先顺序也调整一下:$ sudo vi /etc/jvm将下面一句写在最顶部:/usr/lib/jvm/java-1.5.0-sun测试接下来在终端中输入命令:$java -version终端如果返回以下信息:图1-1.Java版本信息则说明java已经安装好了。

(2)安装其它软件$ sudo apt-get install ssh$ sudo apt-get install rsync注:在每个节点上都要执行以上相同的过程。

2.系统配置(1)修改主机名root@ubuntu3:/hadoop$ sudo vi /etc/hostname把新的主机名写入hostname即可,这里我写入:ubuntu3(2)修改hosts文件root@ubuntu3:/hadoop$ sudo vi /etc/hosts将以下内容添加到该文件中:127.0.1.1 ubuntu3192.168.28.130 ubuntu2192.168.28.131 ubuntu3注:把第一行的127.0.0.1 localhost用#注掉(3)配置sshHadoop启动以后,Namenode通过SSH来启动和停止各个节点上的各种守护进程,需要在节点之间执行指令的时候是不输入密码,所以需要用无密码公钥认证的方式配置SSH。

【精品】基于hadoop的分布式存储平台的搭建与验证毕业论文

【精品】基于hadoop的分布式存储平台的搭建与验证毕业论文

(此文档为word格式,下载后您可任意编辑修改!)毕业设计(论文)中文题目:基于hadoop的分布式存储平台的搭建与验证英文题目:Setuping and verification distributed storage platform based on the principle of Google file system developed and implemented by the greatconcern of the IT industry, and widely used.The thesis aims to set up Hadoop multi-node distributed storage platform and analyze its security mechanisms to be implemented on a separate computer.The thesis first introduces the research background knowledge of the subject, and detailed description of the study and the principle of the of the platform, and its performance were verified, further security mechanisms. First the industry generally accepted user requirements and the architecture of the distributed file system model are introduced。

Then for HDFS architecture to achieve the Hadoop security mechanisms and the corresponding security policy. In addition,the advantages of HDFS in the field of cloud computing applications and the security problem are summarized. At last thedesign and application recommendations are presented.The experimental platform installed virtualbox ubuntu10.10 of application is a the this experiment platform.Keywords: ,HDFS, MapReduce,ZooKeeper,Avro,Chukwa,HBase,Hive,Mahout,Pig 在内的10 个子项目。

Hadoop大数据平台-测试报告及成功案例

Hadoop大数据平台-测试报告及成功案例
group by his.tran_date, his.branch, his.tran_type, his.cr_dr_maint_ind, y;
select fmc.client_no, acct.base_acct_no, trans.tran_amt, trans.tran_date, acct.internal_key
Hive表数据导出
测试步骤:
1.Hive创建一张与待导出表完全相同的数据表export,并设置对应的数据格式(例如使用‘|’作为分隔符)
2.HiveETL将数据导入到export表中
3.使用“hdfs dfs -get”从HDFS中导出数据
Snappy+Parquet
=> txt
导出txt
到本地磁盘
导出数据
行数
导出数据
文件大小
“Groupby” SQL
13.31s
11s
18336384
837MB
“Join” SQL
38.38s
25s
57152010
3.3GB
HBase表数据导出
测试步骤:
1.Hive中创建一张数据表,映射到HBase
2.Hive中创建一张与HBase映射表完全一致的数据表export,并设置对应的数据格式(例如使用‘|’作为分隔符)
select his.tran_date, his.branch, his.tran_type, sum(his.tran_amt), count(*), count(distinct his.base_acct_no), his.cr_dr_maint_ind, y
from
sym_rb_tran_hist his

基于Hadoop大数据集群的搭建

基于Hadoop大数据集群的搭建

基于Hadoop大数据集群的搭建大数据是当今社会的热门话题,而Hadoop作为大数据处理的主要框架,其在数据存储和处理方面具有重要的作用。

在本文中,我们将探讨如何构建基于Hadoop的大数据集群,以便更有效地管理和分析海量数据。

一、概述在开始之前,让我们先了解一下什么是Hadoop。

Hadoop是一个开源的分布式数据处理框架,主要用于存储和处理大规模数据集。

它由Hadoop分布式文件系统(Hadoop Distributed File System,简称HDFS)和MapReduce计算模型组成。

二、硬件要求在搭建Hadoop大数据集群之前,我们需要一些特定的硬件和设备。

以下是建议的硬件要求:1. 主节点:一台强大的服务器,担任集群管理的角色。

2. 数据节点:多台服务器,用于存储和处理数据。

三、操作系统的选择对于Hadoop集群的搭建,我们推荐使用Linux操作系统。

目前,Ubuntu是常见的选择,因为它具有友好的用户界面和广泛的社区支持。

四、Hadoop安装和配置1. 安装Java:Hadoop是基于Java开发的,因此首先需要在集群中的每台机器上安装Java运行时环境(JRE)。

2. 下载Hadoop:从官方网站下载最新的稳定版本,并解压到各个数据节点上。

3. 配置环境变量:设置JAVA_HOME和HADOOP_HOME环境变量,以便系统可以找到所需的Java和Hadoop安装目录。

4. 编辑配置文件:修改Hadoop的配置文件(如hadoop-env.sh、core-site.xml、hdfs-site.xml等),以适应你的集群环境和需求。

5. 格式化HDFS:在主节点上运行适当的命令,格式化HDFS文件系统,以便开始使用。

五、集群管理通过上述步骤,我们已经成功地搭建了一个基本的Hadoop集群。

但要充分利用它的功能,我们需要学会集群的管理和监控。

1. 启动和停止集群:使用启动和停止脚本,可以方便地管理整个集群的启动和停止过程。

基于Hadoop的大数据处理平台搭建与部署

基于Hadoop的大数据处理平台搭建与部署

基于Hadoop的大数据处理平台搭建与部署一、引言随着互联网和信息技术的快速发展,大数据已经成为当今社会中不可或缺的重要资源。

大数据处理平台的搭建与部署对于企业和组织来说至关重要,而Hadoop作为目前最流行的大数据处理框架之一,其搭建与部署显得尤为重要。

本文将介绍基于Hadoop的大数据处理平台搭建与部署的相关内容。

二、Hadoop简介Hadoop是一个开源的分布式存储和计算框架,能够高效地处理大规模数据。

它由Apache基金会开发,提供了一个可靠、可扩展的分布式系统基础架构,使用户能够在集群中使用简单的编程模型进行计算。

三、大数据处理平台搭建准备工作在搭建基于Hadoop的大数据处理平台之前,需要进行一些准备工作: 1. 硬件准备:选择合适的服务器硬件,包括计算节点、存储节点等。

2. 操作系统选择:通常选择Linux系统作为Hadoop集群的操作系统。

3. Java环境配置:Hadoop是基于Java开发的,需要安装和配置Java环境。

4. 网络配置:确保集群内各节点之间可以相互通信。

四、Hadoop集群搭建步骤1. 下载Hadoop从Apache官网下载最新版本的Hadoop压缩包,并解压到指定目录。

2. 配置Hadoop环境变量设置Hadoop的环境变量,包括JAVA_HOME、HADOOP_HOME等。

3. 配置Hadoop集群编辑Hadoop配置文件,包括core-site.xml、hdfs-site.xml、mapred-site.xml等,配置各个节点的角色和参数。

4. 启动Hadoop集群通过启动脚本启动Hadoop集群,可以使用start-all.sh脚本启动所有节点。

五、大数据处理平台部署1. 数据采集与清洗在搭建好Hadoop集群后,首先需要进行数据采集与清洗工作。

通过Flume等工具实现数据从不同来源的采集,并进行清洗和预处理。

2. 数据存储与管理Hadoop提供了分布式文件系统HDFS用于存储海量数据,同时可以使用HBase等数据库管理工具对数据进行管理。

基于Hadoop的大数据分析平台设计与实现

基于Hadoop的大数据分析平台设计与实现

基于Hadoop的大数据分析平台设计与实现随着数字时代的到来,数据处理和分析成为了各个领域发展的重点。

然而,传统的数据处理方法已经无法满足当前海量数据的需求,因此需要一种新的结构化数据处理平台。

Hadoop作为当前最流行的开源大数据平台,因其可扩展性和容错性,被广泛应用于海量数据的存储和处理领域。

本文将介绍一种基于Hadoop的大数据分析平台的设计和实现。

该平台采用了分布式架构,利用HDFS作为底层存储系统,使用MapReduce作为分布式计算框架。

同时,该平台提供了一个可视化的数据处理界面,方便用户进行大数据分析和处理。

1. 系统架构设计本系统采用分布式架构,由多个节点组成。

其中,HDFS作为系统的底层存储系统,所有的数据都保存在分布式文件系统上。

而MapReduce则作为分布式计算框架,用于处理大规模数据。

系统包含三个主要模块:数据管理模块、计算模块和可视化模块。

数据管理模块负责数据的上传、下载、备份和恢复等操作。

计算模块则利用MapReduce框架进行数据处理和分析。

而可视化模块提供了一个友好的用户界面,方便用户进行数据的查询和分析。

2. 数据管理模块数据管理模块是该平台的核心部分,主要负责数据的上传、下载、备份和恢复等基本操作。

该模块采用了HDFS作为存储系统,支持海量数据存储和分布式管理。

数据上传方面,用户可以通过文件选择或者拖拽文件到界面中,在界面中进行上传操作。

当上传完成后,系统会将文件分块后存储到不同的节点上,以达到数据的分布式存储。

数据下载方面,用户可以通过搜索或者浏览列表等方式找到需要下载的文件。

当用户选择下载时,系统会将文件从不同的节点上读取并合并成一个完整的文件,最后下载到用户本地。

数据备份和恢复方面,系统支持自动备份功能。

当数据上传到系统内后,系统会自动将数据进行备份。

当数据出现故障时,系统可以自动进行数据恢复。

3. 计算模块计算模块是该平台的核心功能,负责海量数据的处理和分析。

基于Hadoop的大数据处理平台设计与实现

基于Hadoop的大数据处理平台设计与实现

基于Hadoop的大数据处理平台设计与实现一、引言随着互联网的快速发展和智能设备的普及,大数据已经成为当今社会中不可忽视的重要资源。

大数据处理平台作为支撑大数据应用的基础设施,扮演着至关重要的角色。

本文将围绕基于Hadoop的大数据处理平台的设计与实现展开讨论,探讨其架构、关键技术和实际应用。

二、Hadoop简介Hadoop是一个开源的分布式计算平台,由Apache基金会开发和维护。

它主要包括Hadoop Distributed File System(HDFS)和MapReduce两个核心模块。

HDFS用于存储大规模数据集,而MapReduce 则用于并行处理这些数据。

Hadoop具有高可靠性、高扩展性和高效率等特点,被广泛应用于大数据领域。

三、大数据处理平台架构设计1. 架构概述基于Hadoop的大数据处理平台通常采用分布式架构,包括数据采集、数据存储、数据处理和数据展示等模块。

其中,数据采集模块负责从各种数据源中收集数据,数据存储模块负责将数据存储到分布式文件系统中,数据处理模块负责对数据进行分析和计算,数据展示模块则负责将处理结果可视化展示给用户。

2. 架构组件数据采集组件:包括日志收集器、消息队列等工具,用于实时或批量地采集各类数据。

数据存储组件:主要使用HDFS作为底层存储,保证数据的可靠性和高可用性。

数据处理组件:使用MapReduce、Spark等计算框架进行数据处理和分析。

数据展示组件:通过BI工具或Web界面展示处理结果,帮助用户理解和分析数据。

四、关键技术探讨1. 数据存储技术在基于Hadoop的大数据处理平台中,HDFS是最常用的分布式文件系统之一。

它通过将大文件切分成多个块,并在集群中多个节点上进行存储,实现了高容错性和高可靠性。

2. 数据处理技术MapReduce是Hadoop中最经典的并行计算框架之一,通过将任务分解成Map和Reduce两个阶段,并在多个节点上并行执行,实现了高效的大规模数据处理能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档