微积分B总复习题(带答案)

合集下载

数学微积分复习题集及答案

数学微积分复习题集及答案

数学微积分复习题集及答案导言微积分是数学的一个重要分支,广泛应用于物理、工程、经济等领域。

为了帮助学生复习微积分知识,本文提供了一套包括复习题和答案的微积分复习题集。

通过解答这些问题,学生可以巩固对微积分的理解,提高解题能力和应用能力。

一、求导篇1. 求函数f(x) = 3x^2 + 2x + 1的导函数f'(x)。

答案:f'(x) = 6x + 2。

2. 求函数g(x) = sin(x) + cos(x)的导函数g'(x)。

答案:g'(x) = cos(x) - sin(x)。

3. 求函数h(x) = ln(x^2)的导函数h'(x)。

答案:h'(x) = 2/x。

二、定积分篇4. 求函数f(x) = 2x^2 + 3x + 1在区间[1, 3]上的定积分∫[1,3] f(x) dx。

答案:∫[1,3] f(x) dx = 26/3。

5. 求函数g(x) = e^x的不定积分F(x)。

答案:F(x) = e^x + C,其中C为任意常数。

6. 求函数h(x) = sin(x)在区间[0, π]上的定积分∫[0,π] sin(x) dx。

答案:∫[0,π] sin(x) dx = 2。

三、微分方程篇7. 求微分方程y' = 2x的通解。

答案:y = x^2 + C,其中C为任意常数。

8. 求微分方程y' = y的通解。

答案:y = Ce^x,其中C为任意常数。

9. 求微分方程y'' + y = 0的通解。

答案:y = A*sin(x) + B*cos(x),其中A和B为任意常数。

四、面积与体积篇10. 求曲线y = x^2和直线y = 2x的交点坐标,并求由该曲线、直线以及x轴所围成的面积。

答案:交点坐标为(0, 0)和(2, 4),所围成的面积为8/3。

11. 求曲线y = sin(x)在区间[0, π]上绕x轴旋转一周所形成的体积。

《微积分》课程期末考试试卷(B)及参考答案

《微积分》课程期末考试试卷(B)及参考答案

二.
单项选择题 (每题 2 分,共 12 分) 2. A 3. B 4. A 5. C 6C .
1. B 三. 1. 2.
求偏导数 (每题 6 分,共 24 分)
z 1 z 1 ; (6 分) ; x x y y z x 2z x 2y ln x y (6分) (3 分) ; 2 x x y x ( x y) 2 y x2 y2
六、求方程 y
y 1 的通解.(6 分) x
七、判别级数 2 n sin
n 1


33
的收敛性.(6 分)
《微积分》课程期末考试试卷(B)参考答案 一. 填空题. (每题 3 分,共 36 分) 1. x y 2 x y 2 2. 0 3. 2 4. 1 5. 1,1,2 6. x, y x y 2 0 7. 1 8. 2 9. e xy y 2 xy dx e xy x x 2 dy 10. 1 11. 发散 12. 10
1 1 ,则 f ( ,0) ______. cos xy 2
3. y '' ( y ' ) 3 2 xy 是______阶微分方程. 4. 方程 F ( x, y, y ' ) 0 的通解中含______个任意常数. 5. 点 (1,1,2) 关于 xoy 平面的对称点是______. 6. 函数 Z lnx y 2 的定义域是______. 7. 设 f ( x, y ) x 2 y 2 ,则 f x1 2,0 ______. 8. 设 f x, y x 2 y 2 ,则 f y1 1,1 ______. 9. 设 Z e xy yx 2 ,则 dz ______. 10. 11. 12. 设积分区域 D : 1 x 2,2 y 3 ,则 d ______.

【精选资料】微积分期末复习题及答案

【精选资料】微积分期末复习题及答案

数三《微积分》期末复习题一、选择题1. 对于xy x y x f +=2),(,原点(0,0)( C ).(A ) 不是驻点 (B ) 是极大值点 (C ) 是驻点却不是极值点 (D ) 是极小值点 2.下列积分值为0的是___C_A. ⎰+∞+0211dx x ; B. ⎰-1121dx x(利用几何意义去判定); C. 22sin (cos cos )1x x x dx xππ-++⎰; D. ⎰--1121dx x . 解:2arctan 11002π==+∞++∞⎰x dx x C :考察奇偶函数在对称区间上的积分D :利用几何意义:此积分可以看成函数012≥-=x y 在(-1,1)上的面积。

0,11222≥=+⇒-=y y x x y ,即是上半圆的面积2π3. 二元函数2222222,0(,)00,xy x y x y f x y x y ⎧+≠⎪+=⎨+=⎪⎩在点(0,0)处( B ). A. 连续,偏导数存在; B. 不连续,偏导数存在; C. 连续,偏导数不存在; D. 不连续,偏导数不存在. 4. 下列级数收敛的是___D____.A . 21+151n n n n ∞=++∑ B. ∑∞=+11n n n n )(C . ∑∞=⎥⎦⎤⎢⎣⎡-1)32(1n n nD. ∑∞=1!n n n n . 5 . 级数113cos ()n nn n ∞=-∑( B ). (A )条件收敛 (B ) 绝对收敛 (C ) 发散 (D ) 敛散性不能判定解:11333cos cos ()()nn n n n n -=≤,而113()nn ∞=∑收敛,所以绝对收敛。

6 设)(x f 为连续函数,⎰⎰=t tydx x f dy t F 1)()(,则'(2)_____.F =(A) )(2f ; (B) )(22f ; (C) )(2f -; (D) 0. 解:对⎰⎰=tt ydx x f dy t F 1)()(交换积分次序得⎰⎰⎰-==tt x dx x x f dy x f dx t F 111)1)(()()(所以),1)(()(-='t t f t F'(2)(2).F f = 所以选A二、填空题1、若D 为区域2218x y ≤+≤,则3Ddxdy ⎰⎰=( 21π )=⎰⎰Ddxdy 3πππ21)8(33=-=⋅D S2、函数()y zf x=,其中f 可微,则.))((2x y x y f x z -'=∂∂3. 若ln 21()x xF x t dt =⎰,则()F x '=___2411ln x x x +________.所以本题的答案为24ln x x x+4. 已知22(,)y f x y x y xy x+=+-,则222)1()1(),(y y y x y x f ++-=__________.解:令vuv y v u x x y v y x u +=+=⇒=+=11,, 所以22211)()(),(v v v u v u f ++-=,222)1()1(),(y y y x y x f ++-= 5 设arctanxz y =,则=),(|11dz 1122dz dx dy =- . 本题考查全微分,求全微分实质就是两个偏导数z x y ∂∂∂,然后再利用z zdz dx dy x y∂∂=+∂∂ 本题:2222222111(),()1()1()zy z x xx x xy x y y y x y y y∂∂=⋅==⋅-=-∂+∂+++ 在点(1,1)处,有11,22z z x y ∂∂==-∂∂,所以1122dz dx dy =-6.若级数为1111,357-+-+ 则它的一般项__121)1(1--=-n u n n _______.7. 交换积分次序()⎰⎰12xxdy y x f dx ,=1(,)ydy f x y dx ⎰.8. 定积分4121cos ()xx x x dx e -⋅+=⎰______32______. 考查定积分的奇偶性,三、计算题1.求极限(,)limx y →.解:(,)(,)(,)limlimlimx y x y x y →→→==(,)(0,0)lim 1)2x y →==2. 已知方程),(x yxy f x z 3=,f 具有二阶连续偏导数,求222,,,z z z z x y y x y∂∂∂∂∂∂∂∂∂. 分析:本题考察复合函数求导,特别要注意在求二阶偏导数时要注意11(,)yf f xy x''=,22(,)yf f xy x''=。

微积分B2练习2+答案

微积分B2练习2+答案

练 习 卷一、选择题1、微分方程(ln )0y y dx xdy -+=的类型是( ).A .可分离变量方程B .一阶线性齐次方程C .一阶线性非齐次方程D .齐次方程 2、方程222240x y z -+=表示的曲面是( ). A .单叶双曲面B .双叶双曲面C .椭圆抛物面D .锥面3、函数z =sin(x 2+y )在点(0,0)处( ).A .无定义B .无极限C .有极限,但不连续D .连续 4、函数2222z x y x y =+-在点(1,1)处的全微分 (1,1)dz 等于( ). A . 0 B . dx dy + C . 22dx dy + D . 22dx dy - 5、更换积分次序12201(,)(,)xx dx f x y dy dx f x y dy -+⎰⎰⎰⎰等于( ). A .120(,)yy dy f x y dx -⎰⎰B .220(,)yydy f x y dx -⎰⎰C .12201(,)(,)yydy f x y dx dy f x y dx -+⎰⎰⎰⎰D .1201(,)ydy f x y dx -⎰⎰6、设曲线L为下半圆y =22()Lx y ds +⎰=( ).A .0B .2πC .π-D .π 二、填空题1、在xOy 面内过原点,且与直线215321x y z -+-==-垂直的直线方程为 . 2、设函数(,,)()z u x y z xy =,则点(1,2,1)处的u u u xyz∂∂∂++=∂∂∂ . 3、曲面163222=++z y x 在点)3,2,1(--处的切平面方程是 . 4、22222(,arctan )x y xyf x y dxdy x+≤+⎰⎰化为极坐标下的二次积分为 .5、设f 可微,L 是光滑有向闭曲线取正向,则22()()Lf x y xdx ydy ++=⎰ .6、判别级数∑∞=⋅1!2n nnnn 的敛散性 .三、解答题1、求微分方程2(23)0y dx xy dy -+=的通解.2、设方程2223x y z xyz ++=确定了隐函数(,)z z x y =,求,z z x y∂∂∂∂.3、求函数22(,)(2)=++x f x y e x y y 的极值.4、求二重积分2Dxydxdy ⎰⎰,其中D 由曲线2y x =与直线y x =所围成.5、求曲线积分43224(4)(65)Lx xy dx x y y dy ++-⎰,其中L 为35(1)sin12x ye e π-+-=上由点(2,1)A --至点(3,0)B 的一段弧.6、验证2sin 2sin33cos3cos 2x ydx y xdy -在整个xOy 平面内是某一函数u (x , y )的全微分,并求这样的一个函数u (x , y ).7、求幂级数∑∞=-12)1(n nnx 的收敛域.8、设函数f (t )在[0,)+∞上连续,且满足方程:222299()t x y t f t e f dxdy π+≤=+⎰⎰,又f (0)=1,求f (t ).、选择题:1、A ;2、D ;3、D ;4、A ;5、A ;6、D . 、填空题:1、230x y z==; 2、32ln 2+; 3、323160+-+=x y z ;4、2cos 2202(,)d f r rdr πθπθθ-⎰⎰; 5、0; 6、收敛 .、解答题:1、解:将方程化为223dx x dy y y-=,方程是一阶非齐次线性微分方程, 其中223(),()P y x Q y y y=-=,根据其通解公式有: 2223()dydy yy x ee dy C y---⎰⎰=+⎰2ln 2ln 23()y y e e dy C y -=+⎰=243()y dy C y =+⎰231()y C y=-+1Cy y =-. 2、解:两边分别对x , y 求偏导数, 由2233z z x zyz xy x x ∂∂+=+∂∂,得3223z yz xx z xy∂-=∂-, 由2233z z y zxz xy y y ∂∂+=+∂∂,得3223z xz y y z xy∂-=∂-. 3、解:由方程组得222(2241)0(22)0x x xyf e x y y f e y ⎧=+++=⎪⎨=+=⎪⎩得驻点1(,1)2-,又由1(,1)202xx f e -=>,1(,1)0,2xy f -=1(,1)22yy f e -=,所以2240xx yy xy f f f e ⋅-=>,由判断极值的充分条件知,在点1(,1)2-处函数取得极小值,1(,1)22ef -=-.4、解:用区域D 的草图,边界2,y x y x ==与的交点(0,0),(1,1), 由2{(,)|,01}D x y x y x x =≤≤≤≤,22111222222400011[]()22xx x x Dx ydxdy x dx ydy x dx y x x x dx ===-⎰⎰⎰⎰⎰⎰146571001111121()[]225723535x x dx x x =-=-=⋅=⎰. 5、解:432244,65,P x xy Q x y y =+=-212,P Qxy y x∂∂==∂∂ 曲线积分与路径无关,选取A(-2,-1)到C(3,-1)到B(3,0),43224(4)(65)Lx xy dx x y y dy ++-⎰342421(4)(545)x x dx y y dy --=-+-⎰⎰52335021154[2][]6253x x y y --=-+-=. 6、解:在整个xOy 平面内,2sin 2sin3,3cos3cos 2,P x y Q y x ==-具有一阶连续偏导数,且6sin 2cos3,Q Px y x y∂∂==∂∂ 故所给表达式为某一函数u (x , y )的全微分,取(x 0,y 0)=(0,0),则有(,)(0,0)(,)2sin 2sin33cos3cos20(3cos3cos2)x y xyu x y x ydx y xdy dx y x dy =-=+-⎰⎰⎰0[s i n 3c o s 2]c o s 2si n 3yy x x y =-=-. 7、解:令t =x -1, 级数变为∑∞=12n n n nt .21)1(22 ||lim 11=+⋅⋅==++∞→n n a a n n n n n ρ, 所以收敛半径R =2.当t =2时, 级数成为∑∞=11n n , 发散; 当t =-2时, 级数成为∑∞=-1)1(n n, 收敛.因此级数∑∞=12n nnnt 的收敛域为-2≤t <2. 因为-2≤x -1<2, 即-1≤x <3, 所以原级数的收敛域为[-1, 3).8、解:222339900011()()2()33t t t t f t e d f d e f d πππθρρρπρρρ=+=+⎰⎰⎰,2299()1823()31818()t t f t te f t t te tf t ππππππ'=+⋅⋅=+, 即 29()18()18t f t tf t te πππ'-=为一阶线性非齐次微分方程,222218189999()[18][18]tdttdtt t t t f t e te e dt C e te e dt C ππππππππ--⎰⎰=⋅+=⋅+⎰⎰22992[18](9)t t e tdt C e t C ππππ=+=+⎰,而由f (0)=1,得C =1,所以292()(91)t f t e t ππ=+.。

微积分总复习题及答案

微积分总复习题及答案

化为悉分部积分公式以后, 没有必要明确的引入符号 u,v ,而可以像下面那样先凑微分, 接用分部积分公式计算:xdcosx (xcosx cosxdx) xcosx sinx C第五章一元函数积分学 例1 :求不定积分 sin 3xdx 解:被积函数sin3x 是一个复合函数,它是由 f(u) sinu 和u (x) 3x 复合而成,因 一 1 ' 此,为了利用第一换兀积分公式,我们将 sin3x 变形为sin3x sin3x(3x), 1 sin 3xd(3x) 3x u ( cosu) C ----------------- 3 故有 1 ' 1 sin 3xdx si n3x(3x)dx - 3 3 1 c C cos3x C 3 u 3x例2:求不定积分 .a 2 x 2 dx(a 0) 解:为了消去根式,利用三解恒等式 sin 212cos t 1,可令 x asint(—t -),则_2 2~2 2 2T丄a x . a a sin t a cost ,dxacosdt , 因此,由第二换元积分法,所以积分由于x出 costx 2dxa cost acostdt a 2 cos 2 tdtdo^dt2dt 2 2a a cos2td (2t) t422a sin 2t C 42a (t sin t cost) C2asi nt( 邻边 斜边例3:求不定积分x2),所以 si nt — , tarcsin(x/a),利用直角三角形直接写 xsin xdx分析:如果被积函数 f(x) xs in X 中没有 可以考虑用分部积分求此不定积分,如果令 x 2dxa 1 ~22arcs in (x/a) x 、. a x22x 或sinx ,那么这个积分很容易计算出来, u=x ,那么利用分部积分公式就可以消去所以 x (因为u 1)解令 u x, dv sin xdx ,贝U du dx ,v cosx .是 xsin xdx udv uv vdu x( cosx) ( cosx)dx xcosx sinx C 。

B2及答案微积分期末复习卷

B2及答案微积分期末复习卷

扬州大学试题纸经济、管理 学院 09级 课程 微 积 分 ( B )卷班级 学号 姓名一. 填空题(3618''⨯=)1.已知()132,x f ex -=-则()f x =13ln x +且定义域为 x>0 . 2.设2211f x x x x ⎛⎫+=+ ⎪⎝⎭.则1f x x ⎛⎫'+= ⎪⎝⎭12x x ⎛⎫+ ⎪⎝⎭.3.()4f x dx x x c =-+⎰,则()f x =341x -.4.()f x 为连续函数,()g x 为连续的偶函数, 则()()()aaf x f xg x dx +---=⎡⎤⎣⎦⎰0 .5.设函数()2ln z x y =+,则10x y dz ===dx .6.由曲线ln ,0,y x y x e ===围成的平面图形的面积是 1 . 二. 单项选择题(3618''⨯=)1.201sinlimsin x x x x→的值为 ( B )(A) 1 (B) 0 (C) ∞ (D)不存在2.设()lim 1hh x f x h →∞⎛⎫=+ ⎪⎝⎭,则()ln3f = ( D )(A) 0 (B)1 (C) 2 (D)3 3.函数()()012y f x f x '==有,则当0x ∆→时,该函数在0x x =处的 微分dy x ∆是的 ( B )___________ 系____________ 班级_____________ 学号____________ 姓名_____________---------------------------------------装---------------------------------------订-------------------------------------------线-----------------------------------------------(A) 等价无穷小 (B)同阶但不等价的无穷小 (C) 低阶无穷小 (D)高阶无穷小 4.设()f x 是连续函数,且()()xe xF x f t dt -=⎰,则()F x '= ( A )(A)()()xx e f e f x ---- (B) ()()x x e f e f x ---+ (C) ()()xx ef e f x --- (D) ()()x x e f e f x --+5.设方程sin 0yxt e dt tdt +=⎰⎰确定y 为x 的函数 ,则dydx= ( C ) (A) 0 (B) cos y x e -(C) sin yxe - (D) 不存在6.设()f x 是连续的奇函数,()g x 是连续的偶函数,区域{}xy x x y x D ≤≤-≤≤=,10),(,则以下结论正确的是 ( A )(A)⎰⎰=Ddxdy x g y f 0)()( (B) ⎰⎰=Ddxdy y g x f 0)()((C)⎰⎰=+Ddxdy x g y f 0)]()([ (D) ⎰⎰=+Ddxdy y g x f 0)]()([三. 计算题(5630''⨯=) 1. 12lim(1)xx x →∞+.解:原式=x x x e)1ln(lim2+∞→=2lim1x x xe→∞+=0e =12. 设2sin ,xzz e y x y∂=∂∂求 .解:sin xz e y x ∂=∂ 2cos x z e y x y∂=∂∂ 3. (),z z x y =是由方程33330x y z xyz ++-=确定的隐函数,求zx∂∂. 解:设F=3333x y z xyz ++-233F x yz x ∂=-∂ 233Fz xy z∂=-∂ 22223333Fz x yz x yz x F x z xy z xy z∂∂--∂∴=-=-=-∂∂--∂4. 计算2cos x xdx ⎰.解:原式=1cos 22x x dx +⎰=cos 222x x x dx dx +⎰⎰=214x +1sin 24xd x ⎰ =211sin 2sin 244x x x xdx ⎡⎤+-⎣⎦⎰=2111sin 2cos 2448x x x x c +++5. 计算()312201x dx -+⎰.解:令tan x t =,221sec x t +=,x 从01 ,t 从04π,2sec dx tdt =原式=40cos tdt π⎰=40sin x π= 6.计算累次积分11420cos xx dx y dy ⎰⎰.解:=122011sin14cos 102y d y ⎡⎤+⎢⎥⎣⎦⎰=11cos1sin1510-…………………………5分 四.解答题(8324''⨯=,第4题10') 1. 已知函数ln xy x=,试求其单调区间、极值、及其曲线上的拐点和渐近线. 解:).0(∞+=Df2ln 1'x xy -=令0'=y 得驻点e x =。

微积分考试试题及答案

微积分考试试题及答案

微积分考试试题及答案一、选择题1. 下列哪个是微积分的基本定理?A. 韦达定理B. 牛顿-莱布尼兹公式C. 洛必达法则D. 极限定义答案:B. 牛顿-莱布尼兹公式2. 对于函数$f(x) = 3x^2 - 2x + 5$,求其导数$f'(x)$。

A. $3x^2 - 2x$B. $6x - 2$C. $6x - 2x$D. $6x - 2$答案:D. $6x - 2$3. 已知函数$y = 2x^3 + 4x - 1$,求其在点$(1, 5)$处的切线斜率。

A. 6B. 8C. 10D. 12答案:B. 8二、填空题1. 函数$y = \sin x$在$x = \pi/2$处的导数是\_\_\_\_\_\_。

答案:$1$2. 函数$y = e^x$的导数是\_\_\_\_\_\_。

答案:$e^x$3. 函数$y = \ln x$的导数是\_\_\_\_\_\_。

答案:$\frac{1}{x}$三、简答题1. 请解释一下微积分中的基本概念:导数和积分的关系。

答:导数和积分是微积分的两个基本概念,导数表示函数在某一点上的变化率,而积分表示函数在某一区间上的累积效果。

导数和积分互为逆运算,导数可以用来求解函数的斜率和最值,积分可以用来求解函数的面积和定积分。

2. 为什么微积分在物理学和工程学中如此重要?答:微积分在物理学和工程学中具有重要作用,因为微积分提供了一种精确的方法来描述和分析连续变化的过程。

通过微积分,可以求解物体在运动过程中的速度、加速度、轨迹等物理量,以及工程中涉及到的曲线、曲面、体积等问题。

微积分为物理学和工程学提供了丰富的数学工具,可以更准确地描述和解决实际问题。

四、计算题1. 计算定积分$\int_{0}^{1} x^2 dx$。

答:$\frac{1}{3}$2. 求函数$f(x) = 3x^2 - 2x + 5$在区间$[1, 2]$上的定积分。

答:$\frac{19}{3}$以上就是微积分考试的试题及答案,希望对你的复习有所帮助。

微积分b1期末试题及答案

微积分b1期末试题及答案

微积分b1期末试题及答案一、选择题(共30分,每题2分)1. 在平面直角坐标系中,曲线y=ax³+bx²+cx+d (a≠0) 的图象为抛物线,其开口方向为(A) 向上 (B) 向下 (C) 不确定2. 曲线y = |x-2|的图象关于点(3,0)对称的图象是(A) y ≥ 0 (B) y ≤ 0 (C) 不确定3. 函数y=ln(ax+b)在x=0处的导数为(A) a (B) a/b (C) -a/b4. 函数y=3x²ex在x=0处的导数为(A) 3 (B) 0 (C) 15. 函数y=ln(x/ex)的反函数为(A) ey (B) ex (C) ex/y6. 函数y=sin(ax+b)在[a, a+2π]上为奇函数,则b的取值范围是(A) (-∞, -2π] (B) [2π, +∞) (C) (-2π, 2π)7. 设函数f(x) = x²+ax+2,其中a为常数,则f(x)有唯一极值点的条件是(A) a ≠ 0 (B) a = 0 (C) a = 18. 设f(x)=sin(ax+b)在区间[0,2π]上有两个临界点,则b的取值范围是(A) [0, 2π] (B) [0, π) (C) (0, 2π)9. 函数y=ln(kcosx+1),当x∈(0,π)时关于x的导数不存在,其中k 为常数,则k的取值范围是(A) k > 1 (B) k < 1 (C) k ≠ 010. 设y=aₙxⁿ+aₙ₋₁xⁿ⁻¹+...+a₁x+a₀是n次多项式函数,其中a₀≠0,若f(1) = 0,则(A) a₀+a₁+...+aₙ = 0 (B) a₀+a₁+...+aₙ = 1 (C) a₀+a₁+...+aₙ = -111. 函数f(x) = 2x³+bx²+3x的图象经过点(1,11),则b的值为(A) 6 (B) 7 (C) 812. 函数y = aₙxⁿ+aₙ₋₁xⁿ⁻¹+...+a₀的函数值恒为0,则(A) a₀ = 0 (B) a₁ = 0 (C) a₀ = a₁ = ... = aₙ = 013. 若x为函数y = aₙxⁿ+aₙ₋₁xⁿ⁻¹+...+a₀=0的一个解,则(A) a₀≠0 (B) aₙ≠0 (C) a₀ = ... = aₙ = 014. 设直线y=kx+b与曲线y=f(x)相切,其中k是常数,则b可取下列哪一个值?(A) f'(x₀) (B) f(x₀) (C) f''(x₀)15. 设f(x) = aₙxⁿ+aₙ₋₁xⁿ⁻¹+...+a₁x+a₀是n次多项式函数,其中n≥ 2,若存在x₁ ≠ x₂,使得f(x₁) = f(x₂),则(A) a₀ = 0 (B) a₁ = 0 (C) a₀ = a₁ = ... = aₙ = 0二、填空题(共30分,每题2分)1. 若函数f(x)为奇函数,且在区间[-1,1]上可导,则f'(x)[1, 0] =______2. 若函数f(x) = 2x³-3x²+5x-7的图像在点(x₁, f(x₁))处的斜率为3,则x₁的值为______3. 设函数f(x) = x³-2ax²+ax+1的图象与x轴相切,则a的值为______4. 若函数y = ax³+bx²+cx+d有两个互异的极值点,则b的取值范围是______5. 函数y = eˣsinx的极值点个数为______6. 若函数f(x)在区间[a, b]上的某一点x₀处取得最大值和最小值,则在区间(a, b)内至少存在一点x₁,使得f'(x₁) = ______7. 若(fg)'(x) = f'(x)g'(x),则函数f(x)可以是______函数,g(x)可以是______函数8. 函数f(x) = x³+ax²+bx+c的图象在点(1, 3)处的斜率为2,则a、b、c的值分别为______9. 若函数y = (2x-1)eˣ的图象有切线经过点(0, -1),则切线的斜率为______10. 若函数y = sinh(ax+b)在x=0处有一水平切线,则a、b的值分别为______11. 若函数f(x) = 2x³+ax²+3x的导数在x=1处的值为4,则a的值为______12. 函数f(x) = x³-ax²+ax+1在x=0处有一切线,且此切线平行于直线y = x,则a的值为______三、解答题(共40分)1. 设函数f(x) = kx³+3x²+4x-1,其中k为常数,已知f(-1) = 2,求k 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微积分(B)复习题一、 基本题:(一) 微分学:1、函数ln()arccos2x yz y x -=-+的定义域是 {}20),(≤->-=y x x y y x D 且 2、()()(),0,0ln 1limsin(22)cos x y x y x y xy →--=+⋅ 21-3、设22(,)43f x y x xy y =-+,则hf h f h )2,1()2,1(lim-+→= 84、已知函数22(,)f xy x y x y xy +=++,则(,)(,)f x y f x y x y∂∂+∂∂ = )(3y x + 5、设 ln(2)z y x =- 则211x y zx y==∂=∂∂ 26、(1,0,1)(),zu x y du=-=设则 dy dx -22(,),______,______.(2,,),__________,_________,_________.xy x yz u u u f x y e x y u f x xy xyz f f f ∂∂=-==∂∂'''====7、若则若则212f ye xf xy+; 212f xe yf xy+-; 3212yzf yf f ++; 32xzf xf +; 3xyf 。

8、二元函数(,)z f x y =在点00(,)x y 处满足的关系为( B )A ) 可微⇔可导⇒连续B ) 可微⇒ 可导,或可微⇒连续,但可导不一定连续C ) 可微⇒可导⇒连续D ) 可导⇒连续,但可导不一定可微 (二) 积分学:1、{}22(,)14,2_______.DD x y x y d σ=≤+≤=⎰⎰设则 π62、二次积分()11,yedy f x y dx ⎰⎰交换积分次序后为⎰⎰1ln 1),(xe dy y xf dx3、二次积分()222dx f x y dy +⎰化为极坐标形式的二次积分为⎰⎰θπθcos 20220)(rdr r f d(三) 级数:1、级数023nn n ∞=∑的和为32、判定下列级数的敛散性:A ) 15()2n n ∞=∑发B )1n ∞=收C )1(1)n n ∞-=-∑)11(1)23nn n ∞=--∑收(条件收敛)3、若级数121(3)31n n n a n ∞=--+∑收敛,则lim n n a →∞=92.4、若幂级数1n n n a x ∞=∑在3x =-处收敛,则此级数在点2x =处的收敛性为收敛.5、若幂级数1(1)n n n a x ∞=-∑的收敛半径R =2,则此级数在点2x =-处的收敛性为发散.6、幂级数03!n n n x n ∞=∑的和函数为xe 3.7、函数项级数11(21)(1)nn n x n∞-=+-∑的收敛域为]0,1(-. (四)微分方程:1、微分方程30xy y '-=的通解3-=cx y 。

2、微分方程22()xy dx dy y dx x dy -=+是齐次方程(可分离变量方程,齐次,一阶线性) 3、12222+=+'-'''x e y y x y x 是3阶微分方程。

二、计算题:(一) 微分学:1、设223(32)xz e x y =-,求 2,z zx y x∂∂∂∂∂.解:)646(322x y x e xzx +-=∂∂; )12(222y e yx z x -=∂∂∂2、设2(2)x y z x y +=+,((2)0x y +>),求 ,z zx y∂∂∂∂. 解:())2ln()2()2(22)2()12(y x y x y x y x x zy x y x +++++=∂∂+-+ ())2ln()2(2)2(2)2()12(y x y x y x y x xzy x y x +++++=∂∂+-+ 3、设2sin(2),,cos3,.tdz z x y x e y t dt=-==而求 解:)3sin 62)(3cos cos(22t e t e dtdzt t ++= 4、设函数(,)z f x y =是由方程:2sin(23)x y z +-求 ,z zx y∂∂∂∂. 解:zxy z y x x yz z y x F F x z Z x 21)32cos(621)32cos(2--+--+=-=∂∂zxy z y x y xz z y x F F y z Zy 21)32cos(621)32cos(4--+--+=-=∂∂5、求函数 3322(,,)339f x y z x y x y x =-++-的极值.解:)2,1()0,3(和-无极值;3)2,3()2,3(=--f 极大值;5-)0,1()0,1(=f 极小值。

(二) 积分学: 1、计算二重积分:Dxyd σ⎰⎰,其中D 由直线x =2, y =x 及曲线xy =1所围成的闭区域。

(2ln 21815-) 2、计算二重积分:2110ydx -⎰ (11--e )3、计算二重积分:Dσ,其中{}91),(22≤+≤=y x y x D (π352) (三) 级数:1、判别级数12sin3n nn π∞=∑的敛散性。

(收敛)2、判别级数121(1)23n n nn ∞-=-+∑的敛散性,若收敛,指明是绝对收敛还是条件收敛? (条件收敛)3、求下列幂级数的收敛半径、收敛区间、收敛域.1) 02nn x n ∞=+∑ ( )1,1[),1,1(,1--=R )2)21(1)2nnn n x n ∞=-⋅∑ ( ]2,2[),2,2(,2--=R )3)nn ∞= ( )6,4[),6,4(,1=R )4、求幂级数21(1)2nnn x n ∞=-∑的和函数。

(]11)[1ln(21)(2<<-+-=x x x s )开区间也可以 5、求11n n nx∞-=∑在收敛域(-1,1)上的和函数,并求级数113n n n∞-=∑的和。

()11()1(1)(2<<--=x x x s )6、 将函数2()ln(12)f x x x =+-展开成x 的幂级数, 并指明收敛域。

()2121(112)()(01<<-+--=∑∞=+x x n x f n n n n )7、 将函数21()32f x x x =++展开成(4)x +的幂级数,并指明收敛域。

()26()4)(2131()(011-<<-+--=∑∞=++x x x f n nn n ) (四)微分方程 1、y dxdyx+=1tan 求通解; (1sin -=x c y ) 2、求微分方程022=---'x y y y x 的通解; (cx xyx y =-+1)(2)3、求微分方程sin xy y x '+=的满足初始条件2)(=πy 的特解。

()1cos 2(1--=x xy π) 三、应用题:1、求抛物线2y x =与直线20x y ++=之间的最短距离.(461);45,43();41,21(=--d ) 2、某工厂生产两种产品A 与B ,出售单价分别为10元与9元,生产x 单位的产品A 与 生产y 单位的产品B 的总费用为:22400230.01(33)x y x xy y +++++ (元).求取得最大利润时两种产品的产量。

(80,120==y x ) 3、某公司可通过电台及报纸两种方式做某一商品的广告。

销售收入R (万元)与电台广告费用1x (万元)及报纸广告费用2x (万元)之间的关系为:221212121514328210.R x x x x x x =++---广告总费用为1.5万元。

求最优广告策略。

(5.1,021==x x )四、证明题:221arctan,,,xz x u v y u v yz z u vu v u v==+=-∂∂-+=∂∂+、设其中 证明:2、证明:211()()()()1bxbn n aaadx x y f y dy b y f y dy n ---=--⎰⎰⎰ 3、若级数2211,n nn n a b∞∞==∑∑都收敛,证明:级数21()nn n ab ∞=+∑也收敛.1题求偏导代入即可。

2、用交换积分次序。

3、用几何平均数小于算术平均数比较判别法来证明。

公共答疑时间:每周一周三晚上6:00-8:00地点:综合楼815。

相关文档
最新文档