[VIP专享]通信原理 载波同步提取实验
实验十四 同步载波提取实验

实验十四同步载波提取实验一、实验目的1、掌握用科斯塔斯(Costas)环提取相干载波的原理与实现方法。
2、了解相干载波相位模糊现象的产生原因。
二、实验内容1、观察科斯塔斯环提取相干载波的过程。
2、观察科斯塔斯环提取的相干载波,并做分析。
三、实验仪器1、信号源模块2、同步信号提取模块3、数字调制模块4、20M双踪示波器一台5、频率计(选用)一台6、连接线若干四、实验原理本实验是采用科斯塔斯环法提取同步载波,科斯塔斯环又称同相正交环,框图如下:Array乘法器PSK乘法器在实际电路中,我们的乘法器使用模拟乘法器MC1496,其中乘法器1为U01,乘法器2为U02,乘法器3为U03;滤波器为运放及其外围元器件组成的二阶巴特沃斯低通滤波器,其中滤波器1由二运放芯片TL082中的一个运放(U06B)及其外围元器件组成,滤波器2由二运放芯片TL082中的一个运放(U07B)及其外围元器件组成;环路滤波器为L01和R29构成的无源低通滤波器;压控振荡器使用集成数字压控振荡器74S124(U04),其自由振荡频率可由电位器W01(频率调节)调节;90°相移用集成D 触发器芯片74HC74(U05)和集成反相器芯片74HC04(U12)共同完成。
由于数字压控振荡器74S124输出的信号为方波信号,要得到正弦波还需经过滤波,我们使用运放U08B和U08C及其外围元器件构成的两级带通滤波器进行滤波,最后再经过运放U08D构成的同相放大器放大得到恢复后的同步载波。
在实验过程中,由于科斯塔斯环频率锁定范围较小,因此需要调节电位器W01(频率调节),使压控振荡器74S124的自由振荡频率接近62.5KHz。
五、实验步骤及注意事项1、将信号源模块、同步信号提取模块、数字调制模块小心地固定在主机箱中,确保电源接触良好。
2、插上电源线,打开主机箱右侧的交流开关,再分别按下三个模块中的开关POWER1、POWER2,对应的发光二极管LED01、LED02发光,按一下信号源模块的复位键,三个模块均开始工作。
同步载波实验报告

一、实验目的1. 理解同步载波在通信系统中的作用和重要性。
2. 掌握同步载波同步原理和实现方法。
3. 通过实验验证同步载波同步方法的有效性和可行性。
二、实验原理1. 同步载波的定义:同步载波是指接收端与发射端的载波相位保持一致,从而实现信号的正确接收和解调。
2. 同步载波同步原理:同步载波同步是通过调整接收端载波与发射端载波的相位差,使两者保持一致,从而实现信号的正确接收。
3. 同步载波同步方法:主要有插入导频法、相位锁定环法、频率锁定环法等。
三、实验设备与仪器1. 发射端:正弦波发生器、调制器、放大器、天线;2. 接收端:低通滤波器、解调器、示波器、频谱分析仪;3. 实验平台:通信实验箱、计算机。
四、实验步骤1. 设置发射端参数:正弦波发生器输出载波信号,频率为10MHz,幅度为1V。
2. 设置接收端参数:低通滤波器截止频率为10MHz,解调器为相干解调器。
3. 插入导频法同步载波实验:(1)将正弦波发生器输出信号作为导频信号,通过放大器放大后,与发射端载波信号叠加,形成导频信号。
(2)将导频信号传输到接收端,经过低通滤波器、解调器后,得到同步载波信号。
(3)使用示波器观察接收端同步载波信号的波形,并与发射端载波信号进行比较,验证同步效果。
4. 相位锁定环法同步载波实验:(1)将发射端载波信号作为相位参考信号,通过解调器解调后,得到相位信号。
(2)将相位信号与接收端载波信号进行比较,通过相位锁定环调整接收端载波相位,使其与发射端载波相位保持一致。
(3)使用示波器观察接收端同步载波信号的波形,并与发射端载波信号进行比较,验证同步效果。
5. 频率锁定环法同步载波实验:(1)将发射端载波信号作为频率参考信号,通过解调器解调后,得到频率信号。
(2)将频率信号与接收端载波信号进行比较,通过频率锁定环调整接收端载波频率,使其与发射端载波频率保持一致。
(3)使用示波器观察接收端同步载波信号的波形,并与发射端载波信号进行比较,验证同步效果。
载波同步实验报告

一、实习目的通过对专业基础课与专业理论课的学习后,以及同学们都具备了一些有关模拟电路及数字电路分析、设计、调试能力。
本次实习主要是针对整个通信系统而言的。
1.掌握通信系统的整体概念及组成模块。
2.理解每个模块的原理及实现的功能。
3.根据自己所完成的模块载波同步模块:1. 掌握模拟锁相环的工作原理,以及环路的锁定状态、失锁状态、同步带、捕捉带等基本概念。
2. 掌握用平方环法从2DPSK信号中提取相干载波的原理及模拟锁相环的设计方法。
3. 了解相干载波相位模糊现象产生的原因。
二、实习要求在本实习我主要负责完成载波同步单元,该单元采用平方环从2DPSK信号中提取相干载波。
1. 观察模拟锁相环的锁定状态、失锁状态及捕捉过程。
2. 观察环路的捕捉带和同步带。
3. 用平方环法从2DPSK信号中提取载波同步信号,观察相位模糊现象。
三、实习内容(1)实习题目: 数字通信系统---载波同步(2)原理介绍:通信是通过某种媒体进行的信息传递。
在古代,人们通过驿站、飞鸽传书、烽火报警等方式进行信息传递。
到了今天,随着科学水平的飞速发展,相继出现了无线电,固定电话,移动电话,互联网甚至可视电话等各种通信方式。
通信技术拉近了人与人之间的距离,提高了经济的效率,深刻的改变了人类的生活方式和社会面貌。
:通信系统的一般模型如下在本次实验中, 通过动手焊接部分模块最后通过联试来完成整个通信系统的过程.主要目的是让大家更深刻的理解通信系统的整体概念及基本理论。
1.整个系统试验框图如下:TX-3 ͨÐÅÔÀí½ÌѧʳÑéϳͱ °¼¾ÖʾÒâͼ通信系统中常用平方环或同相正交环(科斯塔斯环)从2DPSK信号中提取相干载波。
“通信原理”课程中载波同步的教学方法研究

d e m o d u l a t e t h e R D S( r a d i o d a t a s y s t e m)i n F M r a d i o s i g n a 1 .t h i s p r o c e s s s h o w s h o w t h e c a r r i e r s y n c h r o n i z a t i o n i s
载波同步是“ 通信 原理” 课程教学 中的一个 重 要 内容 。 当在 通信 中采 用 同步 解 调 或 相 干 检测 时 ,
接 收端需 要提 供一 个 与发射 端调 制 载波 同频 同相 的 相干 载波 。这 个相 干载 波 的获 取 就 称 为载 波提 取 , 或称 为载 波 同步 。 提取 载波 的方法 一 般 分 为 两 类 : 一 类 是 在 发送
Te a c h i n g Me t h o d o f Ca r r i e r S y n c h r o n i z a t i o n
i n Co m mu ni c a t i o n Pr i n c i pl e s Co ur s e
W EI Yi - mi n,H UANG Ba o - h u a ,GAO Yu a n - y u a n
的额 外 消耗 , 因此 通 常 选 用 直 接法 。而直 接 法 中 比 较经 典 的是使 用科 斯塔斯 ( C o s t a s ) 环。
1 载波 同步的 C o s t a s 环 法
在实 际 系统 中 , 如 图 1所 示 的 C o s t a s 环 得 到 了
广泛 的应 用 ¨ 。
b a s e o n U S R P( u n i v e r s a l s o f t w a r e r a d i o p e i r p h e r a 1 ) .I n t h i s p a p e r , t h e c o n c e p t a n d c o m mo n l y u s e d m e t h o d s a r e
载波同步提取方法

载波同步提取方法载波同步提取方法是数字通信中非常重要的一部分,它主要用于接收端对于发送端发出的信号进行恢复。
在数字通信中,载波同步提取方法是非常必要的,因为发送端的信号往往会受到频率偏移、相位噪声等各种干扰,使得接收端很难对信号进行准确的解调和恢复。
因此,载波同步提取方法的研究和应用对于数字通信系统的性能至关重要。
载波同步提取方法主要包括信号检测、频率估计和相位同步三个方面。
首先,信号检测是通过接收端对接收到的信号进行初步处理,识别出信号的存在和基本特征。
接着,频率估计是对信号的频率进行估计和补偿,以纠正由于频率偏移而引起的信号失真。
最后,相位同步是对信号的相位进行调整,以使得接收端的信号与发送端的同步,从而实现准确的解调和信号恢复。
在实际的数字通信系统中,载波同步提取方法有多种实现方式,下面将介绍一些常见的方法:1. 相关估计法:这是一种基于相关函数的频率估计方法。
它通过计算接收信号和本地参考信号的相关函数来估计两者之间的相位差和频率偏移,从而实现相位同步和频率校正。
2. Costas环路:这是一种常用的数字调制解调中采用的相位同步方法。
它通过在接收端引入一个Costas环路来实现相位同步,从而可以在有载波情况下对QAM、PSK等调制信号进行解调。
3. PLL环路:PLL(Phase-Locked Loop)是一种广泛应用于载波同步提取的方法。
它通过不断调整本地振荡器的相位和频率,使得其与接收信号的相位和频率保持同步,从而实现信号的准确解调。
除了上述方法,还有很多其他的载波同步提取方法,如最大似然估计法、瞬时频率估计法、均值估计法等。
这些方法各有特点,可以根据具体的通信系统要求和环境来选择合适的方法。
总的来说,载波同步提取方法是数字通信系统中不可或缺的一部分,它对于系统的性能和可靠性有着重要的影响。
因此,在设计和实现数字通信系统时,需要认真考虑载波同步提取方法的选择和优化,以确保系统能够在各种复杂的通信环境下都能够实现稳定、准确的信号恢复和解调。
载波同步《通信原理》

载波同步1.有辅助导频时的载频提取(1)锁相环的应用为了用相干接收法接收不包含载频分量的信号,在发送信号中加入一个或几个导频信号。
在接收端用锁相环将其从接收信号中滤出,用以辅助产生相干载频。
(2)锁相环的原理框图图13-1 锁相环原理方框图2.无辅助导频时的载波提取采用非线性变换的方法从信号中获取载频。
(1)平方环①原理框图图13-2 平方环原理方框图②原理分析(以2PSK信号模型为例)a.输入信号s(t)(13-1-1)式中:m(t)=±1。
b.将式(13-1-1)平方,得s2(t)(13-1-2)c.由式(13-1-2)可知,接收信号中包含2倍载频的频率分量,将此2倍频分量用窄带滤波器滤出后再作二分频,即可得出所需载频。
③存在问题a.相位含糊产生原因:二分频器的输出电压有相差180°的两种可能相位,即其输出电压的相位决定于分频器的随机初始状态。
解决方法:发送端采用2DPSK体制。
b.错误锁定产生原因:平方后的接收电压中有可能存在其他的离散频率分量,致使锁相环锁定在错误的频率上。
解决方法:降低环路滤波器的带宽。
(2)科斯塔斯环(同相正交环法)①原理框图图13-3 科斯塔斯环法原理方框图②原理分析a.接收信号s(t)(式(13-1-1))送入二路相乘器,两相乘器输入的a点和b点的压控振荡电压分别为b.v a和v b分别和接收信号电压相乘,得到c点和d点的电压,经过低通滤波器,再通过相乘器,得g点的窄带滤波器输入电压,在(φ-θ)很小时,代入m(t)=±1化简v g,得c.电压υg通过环路窄带低通滤波器,控制压控振荡器的振荡频率,这个电压控制压控振荡器的输出电压相位,使(φ-θ)尽可能地小,当φ=0时,υg=0。
压控振荡器的输出电压υa就是科斯塔斯环提取出的本地载波。
③特点a.同时兼有提取相干载波和相干解调的功能;b.两路低通滤波器的性能完全相同;c.科斯塔斯环法提取出的载频存在相位含糊性。
载波同步-直接提取法

中提取载波信息。
通信技术专业教学资源库 南京信息职业技术学院
谢谢
主讲: 朱国巍
低通 x(t)
01.平方变换法和平方环法
设调制信号中无直流分量,则抑制载波的 双边带信号为:
经过一个平方律部件后就得到
01.平方变换法和平方环法
输入已调 信号
平方律部件
e(t)
2fc 窄带滤波器
二分频 载波输出
输入已调 信号
平方律部件
锁相环 鉴相器
环路滤 波器
压控振 荡器
二分频 载波输出
二分频电路提取出的载波存在π相位模糊问题。
通信技术专业教学资源库 南京信息职业技术学院
《现代通信技术》课程
载波同步— 直接提取法和平方环法 02 同相正交环法
01.平方变换法和平方环法
2PSK
x(t)cos ωct ni(t)
带通
平方律 部件
×
fc 二分频
e(t) 2fc
2fc
窄带滤波
应用:抑制载波的双 边带信号。模拟调制 中的DSB,数字调制 中的2PSK
02.同相正交环法(科斯塔斯环)
02.同相正交环法(科斯塔斯环)
经低通后的输出分别为 乘法器的输出为:
:
v5
v6
1 mtcos
2
1 mtsin
2
v7
v5
v6
1 4
m2
t sin
cos
上式可以近似地表示为: v7
1
1
8
m
4
m2 t
2 t
sin
2
数字通信中经常使用多相移相信号,这类
信号同样可以利用多次方变换法从已调信号
实验六 载波、时钟提取,锁相环提纯

6 示波器CH1接数字调制模块的相对码,CH2分别接低通 滤波输出(T14)、全波整流输出(T15)、整形输出 (T18)、时钟输出(T19),以CH1的波形为基准,比较并 分别记录时钟提取电路CH2的各点波形。
相对码
低通滤波输出
Company Logo
低通滤波输出
全波整流输出
Company Logo
Company Logo
4 示波器的探头接载波提取模块上的2DPSK输入测试端, 分别测试载波、时钟提取模块平方波形(T3)、整形输出 (T6)、移相输出(P17)、二分频(T8)的波形。
2DPSK输入波形
平方波形
Company Logo
带通滤波前
带通滤波后
Company Logo
整形前
整形输出
滤波前
滤波后
Company Logo
整形前
整形输出
Company Logo
整形输出
时钟输出
Company Logo
实验报告要求
1、CH-1 2DPSK输入端(P1); CH-2 时钟提取模块平方波形(T3) CH-1 2DPSK输入端(P1); CH-2 整形输出(T6) CH-1 2DPSK输入端(P1); CH-2 移相输出(P17) CH-1 2DPSK输入端(P1); CH-2 二分频(T8) 2、CH-1 调制模块相对吗(T7) ; CH-2 相干解调器码元输出(T13) 3、CH-1 调制模块相对吗(T7) ; CH-2 低通滤波输出(T14) CH-1 调制模块相对吗(T7) ; CH-2 全波整流输出(T15) CH-1 调制模块相对吗(T7) ; CH-2 整形输出(T18) CH-1 调制模块相对吗(T7) ; CH-2 时钟输出(T19)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验二 载波同步提取实验
一、实验目的
1、掌握用科斯塔斯(Costas )环提取相干载波的原理与实现方法。
2、了解相干载波相位模糊现象的产生原因。
二、实验内容
1、观察科斯塔斯环提取相干载波的过程。
2、观察科斯塔斯环提取的相干载波,并做分析。
三、实验器材
1、信号源模块
一块2、③号模块
一块3、⑦号模块
一块4、20M 双踪示波器
一台5、频率计(选用) 一台
四、实验原理
(一)基本原理
同步是通信系统中一个重要的实际问题。
当采用同步解调或相干检测时,接收端需要提供一个与发射端调制载波同频同相的相干载波。
这个相干载波的获取方法就称为载波提取,或称为载波同步。
提取载波的方法一般分为两类:一类是在发送有用信号的同时,在适当的频率位置上,插入一个(或多个)称为导频的正弦波,接收端就由导频提取出载波,这类方法称为导频插入法;另一类就是不专门发送导频,而在接收端直接从发送信号中提取载波,这类方法称为直接法。
下面就重点介绍直接法的两种方法。
1、平方变换法和平方环法
设调制信号为,中无直流分量,则抑制载波的双边带信号为
()m t ()m t t
t m t s c ωcos )()(=
接收端将该信号进行平方变换,即经过一个平方律部件后就得到
(17-1)
t t m t m t t m t e c c ωω2cos )(212)(cos )()(2222+==由式(17-1)看出,虽然前面假设了中无直流分量,但中却有直流分量,()m t 2()m t 而表示式的第二项中包含有2ωc 频率的分量。
若用一窄带滤波器将2ωc 频率分量滤出,()e t 再进行二分频,就获得所需的载波。
根据这种分析所得出的平方变换法提取载波的方框图如图17-1所示。
若调制信号=±1,该抑制载波的双边带信号就成为二相移相信号,()m t 这时
(17-
t t t m t e c c ωω2cos 2121]cos )([)(2+=
=2)
图17-1 平方变换提取载波
因而,用图17-1所示的方框图同样可以提取出载波。
由于提取载波的方框图中用了一个二分频电路,故提取出的载波存在180°的相位模糊问题。
对移相信号而言,解决这个问题的常用方法是采用相对移相。
平方交换法提取载波方框图中的窄带滤波器若用锁相环代替,构成如图17-2所示2c f 的方框图,就称为平方环法提取载波。
由于锁相环具有良好的跟踪、窄带滤波和记忆性能,平方环法比一般的平方变换法具有更好的性能。
因此,平方环法提取载波应用较为广泛。
图17-2 平方环法提取载波
2、科斯塔斯环法
科斯塔斯环又称同相正交环,其原理框图如下:
图17-3 科斯塔斯环原理框图
在科斯塔斯环环路中,误差信号V 7是由低通滤波器及两路相乘提供的。
压控振荡器输出信号直接供给一路相乘器,供给另一路的则是压控振荡器输出经90o 移相后的信号。
两路相乘器的输出均包含有调制信号,两者相乘以后可以消除调制信号的影响,经环路滤波器得到仅与压控振荡器输出和理想载波之间相位差有关的控制电压,从而准确地对压控振荡器进行调整,恢复出原始的载波信号。
现在从理论上对科斯塔斯环的工作过程加以说明。
设输入调制信号为,则()cos c m t t ω (17-)]2cos()[cos (2
1)cos(cos )(v 3θωθθωω++=
+=t t m t t t m c c c 3) (17-
)]2sin()[sin (21)sin(cos )(v 4θωθθωω++=
+=t t m t t t m c c c 4)
经低通滤波器后的输出分别为:θcos )(2
1v 5t m =θsin )(2
1v 6t m =将v 5和v 6在相乘器中相乘,得, (17-5)
θ2sin )(81v v v 2657t m ==(17-5)中θ是压控振荡器输出信号与输入信号载波之间的相位误差,当θ较小时,
(17-6)
θ)(41v 27t m ≈(17-6)中的v 7大小与相位误差θ成正比,它就相当于一个鉴相器的输出。
用v 7去调整压控振荡器输出信号的相位,最后使稳定相位误差减小到很小的数值。
这样压控振荡器的输出就是所需提取的载波。
载波同步系统的主要性能指标是高效率和高精度。
所谓高效率就是为了获得载波信号而尽量少消耗发送功率。
用直接法提取载波时,发端不专门发送导频,因而效率高;而用插入导频法时,由于插入导频要消耗一部分功率,因而系统的效率降低。
所谓高精度,就是提取出的载波应是相位尽量准确的相干载波,也就是相位误差应该尽量小。
相位误差通常由稳态相差和随机相差组成。
稳态相差主要是指载波信号通过同步信号提取电路一后,在稳态下所引起的相差;随机相差是由于随机噪声的影响而引起同步信号的相位误差。
相位误差对双边带信号解调性能的影响只是引起信噪比下降,对残留边带信号和单边带信号来说,相位误差不仅引起信噪比下降,而且还引起信号畸变。
载波同步系统的性能除了高效率、高精度外,还要求同步建立时间快、保持时间长等。
(二)电路组成
本实验是采用科斯塔斯环法提取同步载波的。
由“PSK”输入的PSK 调制信号分两路输出至两模拟乘法器(MC1496)的输入端,乘法器1(U2)与乘法器2(U5)的载波信号输入端的输入信号分别为0相载波信号与π/2相载波信号。
这样经过两乘法器输出的解调信号再通过有源低通滤波器滤掉其高频分量,由乘法器U4(MC1496)构成的相乘器电路,去掉数字基带信号中的数字信息。
得到反映恢复载波与输入载波相位之差的误差电压Ud, Ud 经过压控晶振CRY1(16.384M )后,再进入CPLD (EPM240T )进行128分频,输出 0相载波信号。
该解调环路的优点是:
①该解调环在载波恢复的同时,即可解调出数字信息。
②该解调环电路结构简单,整个载波恢复环路可用模拟和数字集成电路实现。
但该解调环路的缺点是:存在相位模糊。
当解调出的数字信息与发端的数字信息相位反相时,即相干信号相位和载波相位反相,则按一下按键开关S1,迫使CPLD 复位,使相干信号的相位与载波信号相位同频同相,以消除相位误差。
然而,在实际应用中,一般不用绝对移相,而用相对移相,采用相位比较法克服相位模糊。
五、实验结果
1、以信号源输出点“PN”点的波形为内触发源,用示波器双踪同时观察信号源输出点
“PN”与模块7的信号输出点“TH5”的输出波形。
调节电位器W1,使“TH5”点输出清楚稳定的波形。
2、如果示波器两路信号反向,按复位开关S1使其同相。
此时“载波输出”点输出的信
号就是从输入的PSK调制信号中提取出来的0相载波。
3、用示波器观察模块7的信号输出点“载波输出”的频率,可以观察到此时波形的频
率为128KHz。
一个周期大约占四小格,一个大格为10us,故一个周期为大约8us,故频率大约为125KHz,符合。
六、实验思考题
1、简述科斯塔斯环法提取同步载波的工作过程。
答:在科斯塔斯环环路中,误差信号V 7是由低通滤波器及两路相乘提供的。
压控振荡器输出信号直接供给一路相乘器,供给另一路的则是压控振荡器输出经90o 移相后的信号。
两路相乘器的输出均包含有调制信号,两者相乘以后可以消除调制信号的影响,经环路滤波器得到仅与压控振荡器输出和理想载波之间相位差有关的控制电压,从而准确地对压控振荡器进行调整,恢复出原始的载波信号。
2、提取同步载波的方法除了科斯塔斯环法外,还有什么方法?试设计该电路并分析其
工作过程。
答:平方变换法:
设调制信号为,中无直流分量,则抑制载波的双边带信号为
()m t ()m t t
t m t s c ωcos )()(=接收端将该信号进行平方变换,即经过一个平方律部件后就得到
(17-1)
t t m t m t t m t e c c ωω2cos )(212)(cos )()(2222+==由式(17-1)看出,虽然前面假设了中无直流分量,但中却有直流分量,()m t 2()m t 而表示式的第二项中包含有2ωc 频率的分量。
若用一窄带滤波器将2ωc 频率分量()e t 滤出,再进行二分频,就获得所需的载波。
根据这种分析所得出的平方变换法提取载波的方框图如图17-1所示。
若调制信号=±1,该抑制载波的双边带信号就成为()m t 二相移相信号,这时
(17-
t t t m t e c c ωω2cos 2121]cos )([)(2+=
=2)
图17-1 平方变换提取载波。