现代航空发动机整体叶盘及其制造技术

合集下载

浅谈航空发动机整体叶轮的加工方法

浅谈航空发动机整体叶轮的加工方法
第2 期( 总第 1 3 2 期)
N o . 2 ( S U M N o . 1 3 2 )
机 械 管 理 开 发
ME CHANI CAL MANAGEME NT AND DE VEL 0P ME NT
2 0 1 3 年4 月
Ap r . 2 0 1 3
浅谈航 空发动机整体 叶轮 的加工方法
加 工工艺。
关键词 : 整体叶轮 ; 数控铣 削 ; 电解加 工 中图分 类号 : V 2 3 2 . 4 文献标识码 : A 文章编号 :1 0 0 3 — 7 7 3 X( 2 0 1 3 ) 0 2 — 0 0 0 3 — 0 3
O 引 言
n a l , H o w me t , F o r d Mo t o r , A l l i s o n E n g i n e , R o l l s R o y c e 等
航 空 发 动 机 叶 片是 发 动 机 的核 心 部 件 之一 , 随 着 发动机性能要求 的提高 , 整体 叶轮的形状也更趋复杂 , 其特点是 : 叶片薄 , 扭曲大 , 叶片间隔小 。这给整体叶 轮 的制 造 加工 带来 了极 大 的 困难 。2 O 世纪 8 0 年 代后
期 以来 , 美 国、 欧洲按照 I H P T E T 、 U E E T 、 A C M E 等航空 发动机采用整体叶盘结构就是在开发新结构方面取得 的成 果 。整 体 叶轮结 构 与常 规 的机械 连 接式 叶轮 相 比 具 有 以下 优 点 : 1 ) 可 以 省掉 由 叶片 榫 头 、 锁 片 和榫 槽 连 接 结 构 所 带 来 的额 外 重 量 。2 ) 整 体 叶 轮 可 消 除 常 规 叶轮 中气 流 在 榫 根 与榫 槽 间 缝 隙 中逸 流 造 成 的损 失, 使发 动 机工作 效 率增 加 , 从 而 使整 台发动 机推 重 比 显 著提 高 。 3 ) 省 去 了安 装 用 的螺 柱 、 螺 母 和锁 片 等连 接件 , 极 大减 少 了零 部件 , 也避 免 了榫 槽损 伤 和断 裂等 潜在故障。但是 , 由于整体叶轮结构复杂 , 加工精度要 求高 , 整体 叶轮的机械 制造加 工面 临越 来越 强 的挑 战。 ( 1 ) 整 体 叶轮 加 工 困难 。 除 了叶 型 复杂 外 , 精 度要 求高 , 且 叶 型薄 , 受力 后变 形大 , 同时 叶片 数较 多 , 其加 工量很大。 ( 2 ) 发动机在使用过程 中, 叶片常会遇到外 物 打击 而损 伤或 因振 动疲 劳而 出现裂 纹 。整体 叶 轮要 更换 叶 片非 常 困难 , 有 可 能 因为一 个 叶片损 坏 , 而 报废 整个整体叶轮 , 因此整体叶轮叶片的制造技术 , 是整体 叶 轮扩 大应 用前必 须 解决 的关 键 问题 。 国 内外 已经采 用的加工整体叶轮的方法主要有精密铸造 、 数控铣削 、 电解套料加工 、 仿形电解加工 、 数控 电解加工和数控 电 火花 加工 。下 面简单 介绍几 种 方法 。 1 精 密铸 造 、 锻造 技术 1 . 1 精 密铸 造技 术 采用 精 密铸造 工 艺加 工可 以大大提 高 材料 的利 用 率, 节约大量贵金属材料 。由于精密铸造工艺 的新发 展, 特别 是 采用 定 向凝 固 ( D S ) 、 热 等静 压 ( HI P ) 等 先 进 铸造 技术 后 , 使得 铸造 合金 组 织和性 能 大大 改善 , 尤 其 是解 决 了叶 片疲 劳断 裂 的裂纹 沿垂 直 于 叶片主应 力 方 向的晶粒边界发生 、 熔模铸造内部存在疏松缺陷等问 题n , 使 叶片 的抗疲劳性 、 应力断裂寿命大为提高 , 同 时, 铸 造工 艺 也有 利 于大量 成批 生产 , 满 足 现代工 业 对 各种叶片 的大量需求 。国外 G e n e r a l Mo t o r s , A l l i e d S i g —

先进航空发动机关键制造技术发展现状与趋势

先进航空发动机关键制造技术发展现状与趋势

先进航空发动机关键制造技术发展现状与趋势一、轻量化、整体化新型冷却结构件制造技术1 整体叶盘制造技术整体叶盘是新一代航空发动机实现结构创新与技术跨越的关键部件,通过将传统结构的叶片和轮盘设计成整体结构,省去传统连接方式采用的榫头、榫槽和锁紧装置,结构重量减轻、零件数减少,避免了榫头的气流损失,使发动机整体结构大为简化,推重比和可靠性明显提高。

在第四代战斗机的动力装置推重比10 发动机F119 和EJ200上,风扇、压气机和涡轮采用整体叶盘结构,使发动机重量减轻20%~30%,效率提高5%~10%,零件数量减少50% 以上。

目前,整体叶盘的制造方法主要有:电子束焊接法;扩散连接法;线性摩擦焊接法;五坐标数控铣削加工或电解加工法;锻接法;热等静压法等。

在未来推重比15~20 的高性能发动机上,如欧洲未来推重比15~20 的发动机和美国的IHPTET 计划中的推重比20的发动机,将采用效果更好的SiC 陶瓷基复合材料或抗氧化的C/C 复合材料制造整体涡轮叶盘。

2 整体叶环(无盘转子)制造技术如果将整体叶盘中的轮盘部分去掉,就成为整体叶环,零件的重量将进一步降低。

在推重比15~20 高性能发动机上的压气机拟采用整体叶环,由于采用密度较小的复合材料制造,叶片减轻,可以直接固定在承力环上,从而取消了轮盘,使结构质量减轻70%。

目前正在研制的整体叶环是用连续单根碳化硅长纤维增强的钛基复合材料制造的。

推重比15~20 高性能发动机,如美国XTX16/1A 变循环发动机的核心机第3、4 级压气机为整体叶环转子结构。

该整体叶环转子及其间的隔环采用TiMC 金属基复合材料制造。

英、法、德研制了TiMMC 叶环,用于改进EJ200的3级风扇、高压压气机和涡轮。

3 大小叶片转子制造技术大小叶片转子技术是整体叶盘的特例,即在整体叶盘全弦长叶片通道后部中间增加一组分流小叶片,此分流小叶片具有大大提高轴流压气机叶片级增压比和减少气流引起的振动等特点,是使轴流压气机级增压比达到3 或3 以上的有发展潜力的技术。

最新-航空发动机整体叶盘加工工艺探析 精品

最新-航空发动机整体叶盘加工工艺探析 精品

航空发动机整体叶盘加工工艺探析摘要航空发动机制造是一个国家高端制造业的集中体现,当前我国航空产业高速发展对于航空发动机的需求大幅增加,积极研发与应用航空发动机机械加工新技术,在保障航空发动机机械加工质量的同时有效地提高航空发动机机械加工效率对于保障航空发动机的供应有着极为重要的意义。

叶盘是航空发动机中的重要组件,整体叶盘机械加工能够有效地避免榫头、榫槽间的微动磨损、微观裂纹等缺陷,对于提高航空发动机的使用性能和使用寿命有着极为重要的意义。

本文在分析航空发动机整体叶盘机械加工特点的基础上对航空发动机整体叶盘常用的加工技术进行分析阐述。

关键词航空发动机;整体叶盘;机械加工0前言整体叶盘应用于航空发动机中能够有效地提高航空发动机的使用性能和使用的可靠性。

但是相对的航空发动机整体叶盘机械加工也面临着较大的困难和挑战,航空发动机整体叶盘结构复杂,尤其是航空发动机整体叶盘的叶片型面为自由曲面,叶片厚度薄带来的是航空发动机整体叶盘叶片的整体刚性较差,航空发动机整体叶盘叶片容易在机械加工中产生变形进而影响航空发动机整体叶盘的机械加工质量。

此外,受航空发动机整体叶盘结构限制在机械加工中发生干涉现象较为严重,相较于普通的盘片分离结构航空发动机整体叶盘机械加工所面临的困难更大,应当积极做好航空发动机整体叶盘加工技术的研究与应用,提高航空发动机整体叶盘的加工质量与加工效率。

1航空发动机整体叶盘的结构与加工特性航空发动机整体叶盘从结构形式上主要分为整体式和焊接式两大类,焊接式采用的是对叶片进行单独加工并在后期采用电子束焊、线性摩擦焊或是真空固态扩散联结等的焊接技术将前期加工的叶片焊接至叶盘。

采用焊接式加工时对于叶片焊接质量要求较高,其直接影响着航空发动机整体叶盘的使用性能和可靠性。

整体式叶盘是航空发动机整体叶盘的主要结构形式,在对整体式叶盘加工制造主要依靠的是机械加工,加工时采用整体材料或是锻造的毛坯件进行加工,在这一过程中材料去除余量主要是依靠通道粗加工完成的,通道粗加工与航空发动机整体叶盘的加工效率密切相关,应当积极做好航空发动机整体叶盘通道粗加工技术的研究与应用,以便有效地提高航空发动机整体叶盘的加工效率,缩短加工周期。

航空发动机中盘整体加工技术

航空发动机中盘整体加工技术

整体叶盘加工中应用到的特种加工技术1.1绪论现代航空发动机的结构设计和制造技术是发动机研制、发展、使用中的一个重要环节,为满足以FII9、FI20、EJ200为标志的第4 代战斗机用发动机以及未来高推重比新概念发动机的性能要求除采用先进技术、减少飞机机体结构、机载设备的重量外,关键是要求发动机的推重比达到I0 这一级重点突破发动机部件的气动、结构设计、材料、工艺等方面的关键技术。

其中在发动机风扇、压气机、涡轮上采用整体叶盘(Biisk)结构(包括整体叶轮、整体叶环)是重要措施。

1.2整体叶盘结构的特点整体叶盘是航空发动机的一种新型结构部件,它与常规叶盘连接相比有以下特点:(1)不需叶片榫头和榫槽连接的自重和支撑这些重量的结构,减轻了发动机风扇、压气机、涡轮转子的重量。

(2)原轮缘的榫头变为鼓筒;盘变薄,其内孔直径变大;消除了盘与榫头的接触应力,同时也消除了由于榫头安装角引起的力矩产生的挤压应力; 减轻了盘的重量提高了叶片的振动频率。

(3)整体叶盘可消除常规叶盘中气流在榫根与榫槽间缝隙中逸流造成的损失,使发动机工作效率增加,从而使整台发动机推重比显著提高。

(4)由于省去了安装边和螺栓、螺母、锁片等连接件,零件数量大大减少,避免了榫头、榫槽间的微动摩损、微观裂纹、锁片损坏等意外事故,使发动机工作寿命和安全可靠性大大提高。

(5)如整体叶盘叶片损坏,为避免拆换整个转子将整体叶盘与其他级用螺栓相连形成可分解的连接结构。

(6)由于高压压气机叶片短而薄叶片离心力较小,轮缘径向厚度小采用整体叶盘结构减重不显著。

1.3航空发动机整体叶盘结构在研究发展中存在的问题虽然,整体叶盘具有如此多的我优点,但是在整体叶盘的加工和使用过程中,我们也遇到了很多的问题,比如:(1)整体叶盘加工困难,只有制造技术发展到一定水平后,整体叶盘的应用才成为可能。

(2)发动机在使用过程中转子叶片常遇到外物打伤或因振动叶片出现裂纹,整体叶盘要更换叶片非常困难,也有可能因为一个叶片损坏而报废整个整体叶盘,因此风扇的第I\2级一般不用整体叶盘结构。

现代航空发动机整体叶盘及其制造技术_黄春峰

现代航空发动机整体叶盘及其制造技术_黄春峰

束焊, 1994年后用线性摩擦焊) 栓连接
EF2000
第2、3级风扇钛合金焊接式结压压气机前3级为整体式 前后串起, 焊接 成 T/A- 18E/F
结构, 用电化学加工
整体

高压压气机。第1、2 级为钛 合金, 第5、6级为粉末高温合金, 6级都是焊接式结构
第1级风扇是空 第四代战
Keywor ds: Engine str uctur e Integr al blisk Nontr aditional machining Manufactur ing technolo- gy
现代航空发动机的结构设计和制造技术是发动机 研制、发展、使用中的一个重要环节, 为满足以 F119、 F120、EJ200 为 标 志 的 第 4 代 战 斗 机 用 发 动 机 以 及 未 来高推比新概念发动机的性能要求, 除采用先进技术 减少飞机机体结构、机载设备的重量外, 关键是要求发 动机的推重比达到 10 这一级, 重点突破发动机部件的 气动、结构设计、材料、工艺等方面的关键技术。其中, 在发动机风扇、压气机、涡轮上采用整体叶盘( Blisk) 结 构( 包括整体叶轮、整体叶环) 是重要措施。
心的
斗机F- 22
BR715
低压压气机。两级均为钛合
两级焊接成一
民 金整体叶盘
整体转子
MD- 95
F110- GE- 129R 军 F100- PW- 229A 军
第 1~3级 风 扇 第 2~3级 风 扇
焊接成整体转
子, 改进型
F- 15/F- 16
推重比 10 9
生产厂家
欧洲喷气涡轮公 司 , 1988年 开 始 研 制 , 1995年 已 生 产 20台
GESFAR

航空发动机为什么要采用整体叶盘?

航空发动机为什么要采用整体叶盘?

1整体叶盘的优势在整体叶盘出现之前,发动机的转子叶片需要通过榫头、榫槽及锁紧装置等连接到轮盘上,但这种结构逐渐无法满足高性能航空发动机的需求。

发动机转子叶片和轮盘一体的整体叶盘随之被设计出来,目前已成为高推重比发动机的必选结构,在军用、民用航空发动机上都得到了广泛应用,主要有以下优点。

1. 减重由于轮盘的轮缘处不需要加工出安装叶片的榫槽,轮缘的径向尺寸可大大减少,从而显著减轻转子质量。

2. 减少零件数目除了因为轮盘和叶片成为一体,锁紧装置的减少也是重要原因。

航空发动机对可靠性的要求极为严苛,简化的转子结构对提高可靠性有很大作用。

3. 减少气流损失消除了传统连接方式中的间隙会造成的逸流损失,提高了发动机工作效率,增加了推力。

既减轻了重量又提高了推力,如此有利于提高推重比的整体叶盘自然也不是容易摘得的“明珠”。

一方面,整体叶盘多使用钛合金、高温合金等难加工材料;另一方面,其叶片薄且叶型复杂,这都对制造技术提出了极高的要求。

另外转子叶片出现损伤时无法单独更换,可能导致整体叶盘报废,修复技术又是另一个难题。

2整体叶盘的制造目前,整体叶盘的制造主要有三大技术。

1. 五轴联动数控铣削加工五轴联动数控铣削加工由于其具有快速反应性、可靠性高、加工柔性好及生产准备周期短等优点,在整体叶盘制造领域得到广泛的应用,主要有侧铣、插铣和摆线铣等铣削方式。

而确保整体叶盘加工成功的关键因素包括:1)具有良好动态特性的五轴联动机床2)优化的专业CAM软件3)专用于钛合金/高温合金加工的刀具和应用知识2. 电化学加工电化学加工法是一种优秀的航空发动机整体叶盘通道加工方法,在电化学加工中主要有电解套料、仿形电解加工以及数控电解加工等几种加工技术。

由于电化学加工主要利用的是金属在电解液中阳极溶解的特性,在应用电化学加工技术时,阴极部分并不会产生损耗,且加工中工件不会受到切削力、加工热等的影响,降低了航空发动机整体叶盘通道加工后的残余应力。

航空发动机整体叶环结构的研究进展

航空发动机整体叶环结构的研究进展

合材料( TiMMC)[5~7] 制造的,具有强 子的质量大大减轻,如第 3 级整体叶 化硅纤维(SCS-6)增强的钛基(SP-
度高、使用温度高及疲劳和蠕变性能 环转子的质量只有 4.5kg 左右,而常 700)复合材料风扇整体叶环转子。
好的优点,TiMMC 整体叶环如图 1 规镍基合金制造的同样转子的实际
我国与印度开展的国际合作研
所示。TiMMC 整体叶环代替压气机 质量为 25kg。20 世纪 90 年代中期, 究项目中,有一带环箍的单级风扇试
盘,不仅可以扩大压气机的设计范 在 IHPTET 研究计划下,GEAE 公司 验研究,该风扇的设计参数为:增压
围,而且可大幅度ቤተ መጻሕፍቲ ባይዱ轻重量,与常规 开发和验证了 TiMMC 压气机整体 比 3.0,叶尖切向速度 470m/s,有 17
加工制造缺陷对 TiMMC 性能有
表1 一些商用连续纤维的室温性能
纤维名称
SM1040 SCS-6 Trimarc
制造厂商
DEAR-Sigma Textron ARC
密度 /(kg·m-3)
3400 3000 —
在 给 定 纤 维 含 量 的 情 况 下,粗 纤 维 可 以 增 加 其 间 的 距 离,从 而 有 利于降低纤维在高温复合固结过程 中产生径向裂纹倾向和充分发挥钛 基体的韧性作用。目前化学气相沉 积方法(CVD)制备的粗纤维都存在 一 定 的 残 余 应 力,而 且 考 虑 到 经 济 性,增 强 钛 合 金 的 连 续 纤 维 直 径 以 0.12~0.15mm 为宜。
50 航空制造技术·2013 年第 9 期
大飞机发动机关键制造技术 Key Manufacturing Technology of Aeroengine for Large Aircraft

航空发动机用整体叶盘制造技术

航空发动机用整体叶盘制造技术

航空发动机用整体叶盘制造技术作者:王科来源:《新材料产业》 2017年第5期一、引言整体叶盘(B l i s k)是现代航空发动机的一种新型结构,它将发动机转子的叶片与轮盘进行整体设计与制造。

与传统结构相比,由于省去了起连接与固定作用的榫头、榫槽和锁紧装置(如图1),整体叶盘具有如下优点:叶盘的轮缘径向高度、厚度及叶片原榫头部位尺寸均减小,显著减轻了转子的质量;零件数量大量减少,转子结构大为简化,有利于装配和平衡,使发动机的可靠性增加;在传统的叶片和轮盘连接方式中,榫头和榫槽之间的间隙造成了气流的逸流损失,采用整体叶盘后可消除这一损失,提高了发动机工作效率,增加了推力;有效地避免了装配不当带来的榫头-榫槽磨损及锁片损坏,提高了发动机的可靠性[1-3]。

然而,采用整体叶盘的结构与从前的涡轮盘和叶片单独制造技术相比,除具有上述诸多优点外,同时也面临着严峻的技术挑战,整体叶盘的制造技术是未来制备先进航空发动机必需攻克的世界性难题[4-7]。

西方发达国家于20世纪80年代中期开始将整体叶盘技术应用于航空发动机产品上,该技术目前已在诸多高推重比和大涵道比发动机上得到应用,有效推动了当代航空发动机的发展和技术提升[8-11]。

我国紧跟国际技术潮流,在21世纪初也开展了精铸高温合金整体叶盘、精锻钛合金整体叶盘、热等静压粉末高温合金整体叶盘等研制工作,并取得卓越成就。

本文全面系统地论述了国内外航空发动机用整体叶盘综合制造技术的最新进展。

二、近成形制坯技术1. 精密铸造技术铸造数值模拟软件的迅猛发展,使得铸造过程流场、温度场可以实现较为准确的定量表征,从而有力地促进了定向凝固理论和热等静压技术的发展,明显改善精密铸件质量。

近年来,数值模拟技术在预防铸件缺陷形成及尺寸变形、改善铸造合金组织、优化铸造工艺上发挥出越来越大的作用,显著提升了铸件的性能,也减少了叶片表面裂纹,提高了叶片抗疲劳性能。

20世纪70年代,美国广泛开展了高温合金整体叶盘精铸技术的研究,实现了轮盘为等轴晶、叶片为M247、C M681定向凝固材料的双性能整体叶盘的制备。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档