RH精炼炉工艺
宝钢工程RH精炼炉设备与工艺技术介绍

•宝钢工程RH工艺特点及先进性(续)
多功能顶枪喷吹燃气加热功能,同时可 以保持高槽温,防止冷钢形成;
多功能顶枪供氧与铝粉剂放热反应,实 现钢水化学升温;
采用顶枪的提升,去除真空槽槽壁粘结 的冷钢;
强合金化能力; 吹氩喂丝功能;
•工艺特点及先进性综述
分类
功能 脱 氢
脱碳
加热
自然 强制 二次 化学 去冷 脱碳 脱碳 燃烧 加热 钢
RH简介
• 可实现脱气、脱氧、脱碳、合金化、及调整钢水成 分、调整钢水温度(升温)、去除杂净化钢液、喷 粉脱硫等多重功能。
• 具有大的钢液循环速度,缩短处理时间。 • 具有与炼钢、连铸之间较高的配合率,适应灵活多
变的生产。 • 通过先进的计算机控制系统,实现电气、仪表、计
算机的三电一体化。实现生产计划和生产命令接受 处理、以及与基础自动化通讯、冶金数学模型处理 及状态跟踪等功能。
一.采用转炉-LF/RH-连铸的工艺搭配。 二.采用新型的多功能顶枪,实现吹氧脱碳,化学处理和加 热升温等工艺要求。 三.采用大抽气量的真空泵,为提高抽气速率可在末级并 联水环泵。 四.开发了热弯管技术,提高处理工艺效果和热效率 五.浸渍管采用新型的大规格,大环流量设计,提高钢水循 环速度和工艺效果 六.合理分配环流管的根数,层数和规格,提高钢水循环工 艺效果 七.合理设定合金加料口高度和槽体高度的设计.
• 发展趋势
RH真空精炼设备正在向功能多样化、设备大型化、 操作自动化及可靠连续化方向发展,成为生产超低碳钢、 硅钢、高合金钢等高附加值钢种的主要手段。可以说, 现代工业所需要的几乎所有的超纯、超低C、S钢种,均 可以用RH工艺设备来生产。
BSEE-RH充分考虑了RH精炼中各项先进的设备技术和 工艺技术,满足现代产品对高质量和高附加值的要求。
RH精炼技术

一、BOF(EAF)-(LF)-RH-CC
高洁净特殊钢精炼
关键技术:
(1).RH初始氧含量; (2).真空条件-主要 为抽气能力(所能达 到的真空度)和抽气 速率; (3).搅拌能力(环流 量),吹氩量; (4).钢包渣; (5). 精炼时间。
森辛治公式:
Q 11.4G d
第1阶段 [C]从0.04%降到0.02%,真空度为1-2kPa,3min钟左右。自然脱碳。 第2阶段 [C]从0.02%降到0.003%,真空度为0.1kPa,强制脱碳,补充氧0.030.04%,15-20min钟左右。 第3阶段 [C]从0.003%降到0.002%,真空度为0.05kPa,强化表面脱碳,向钢 液表面加入铁矿石,表面吹氩气,氢气等。
1/ 3
Q: RH环流量,t/min
4/3
ln( p1 / p2 )
G:环流气体流量(m3/min);
d:环流管内径(m); p1,p2分别表示大气和真空室内压力(Pa)
二、BOF-RH
超低碳钢的冶炼
关键技术:
(1).RH初始钢液条件 -[O],[C]。 (2).真空条件-主要 为抽气能力(所能达 到的真空度)和抽气 速率。 (3).搅拌能力(环流 量 )。 (4).少粘钢。
[t]
Kwangyang Works,POSCO实例
提高脱碳效率措施之一:钢液初始碳、氧控制
时间最 短
浦项RH第一阶段初始碳、氧控制
为了控制初始合理的氧位,通常 在出钢时要加入复合脱氧剂
新工艺
旧工艺
控制不同的脱氧剂加入量,来获得RH初 始的合理炉渣氧化性和钢液氧位。
从而进一步获得合理的氧、碳比和高的脱碳速率
研究发现:新工艺虽然渣中较高的全铁,但同样 可以获得低的氧含量。
rh真空精炼的设备与工艺

rh真空精炼的设备与工艺rh真空精炼是一种常用的材料处理技术,主要用于提高材料的纯度和性能。
该设备和工艺通过在高真空环境下对材料进行加热和处理,去除杂质和气体,从而得到高纯度的材料。
rh真空精炼设备主要由真空炉、真空泵、加热系统和控制系统等组成。
其中,真空炉是整个设备的核心部分,用于提供高真空环境。
真空炉的结构通常由内胆、外壳和隔热层组成,以确保设备在高温下能够保持较高的真空度。
真空泵则用于抽取炉腔中的气体,维持高真空环境。
加热系统负责提供加热源,将材料加热到所需温度。
控制系统用于对整个设备进行参数调节和监控,确保精炼过程的稳定性和安全性。
rh真空精炼的工艺过程主要包括三个步骤:预处理、真空精炼和冷却。
首先,需要对待处理的材料进行预处理,包括清洗、破碎、筛分等步骤,以确保材料表面没有杂质和污染物。
接下来,将预处理后的材料放入真空炉中,通过控制加热系统将其加热到所需温度。
在高温下,材料中的杂质和气体会被挥发出来,同时通过真空泵进行抽取,从而实现材料的精炼。
最后,在精炼完成后,将材料冷却到室温,准备进行后续的加工和应用。
rh真空精炼的设备和工艺在许多领域中得到了广泛的应用。
例如,在金属材料加工中,rh真空精炼可以提高材料的纯度和均匀性,从而提高材料的力学性能和耐腐蚀性能。
在半导体行业中,rh真空精炼可以去除材料中的杂质和气体,提高半导体材料的电子性能和可靠性。
此外,rh真空精炼还可以应用于陶瓷材料、玻璃材料、化工原料等领域,以提高材料的质量和性能。
rh真空精炼设备和工艺是一种重要的材料处理技术,通过在高真空环境下对材料进行加热和处理,可以提高材料的纯度和性能。
该技术在许多领域中得到广泛应用,对提高材料的质量和性能具有重要意义。
随着科学技术的不断进步,rh真空精炼设备和工艺将会得到进一步的改进和应用,为材料科学和工程领域的发展做出更大的贡献。
RH精炼炉工艺

RH精炼炉工艺摘要:介绍了RH的发展历史,对RH中最关键的真空系统原理进行了说明,介绍了莱钢RH的功能、设备及工艺,针对莱钢情况,对莱钢品种开发进行了探讨。
关键词: RH 原理工艺品种1 RH的历史与发展RH精炼全称为RH真空循环脱气精炼法。
于1959年由德国人发明,其中RH为当时德国采用RH精炼技术的两个厂家的第一个字母。
真空技术在炼钢上开始应用起始于1952年,当时人们在生产含硅量在2%左右的硅钢时在浇注过程中经常出现冒渣现象,经过各种试验,终于发现钢水中的氢和氮是产生冒渣无法浇注或轧制后产生废品的主要原因,随之各种真空精炼技术开始出现,如真空铸锭法、钢包滴流脱气法、钢包脱气法等,从而开创了工业规模的钢水真空处理方法,特别是蒸汽喷射泵的出现,更是加速了真空炼钢技术的发展。
随着真空炼钢技术的开发与发展,最终RH和VD因为处理时间短、成本低、可以大量处理钢水等优点而成为真空炼钢技术的主流,70年代开始随着全连铸车间的出现,RH因为采用钢水在真空槽环流的技术从而达到处理时间短、效率高、能够与转炉连铸匹配的优点而被转炉工序大量采用。
RH从开始出现到现在40多年来,有多项关键性技术的出现,从而加速了RH精炼技术的发展。
表1为40多年来RH技术的发展情况。
表1 RH技术发展情况2 RH系统概述RH系统设备是一种用于生产优质钢的钢水二次精炼工艺装备。
整个钢水冶金反应是在砌有耐火衬的真空槽内进行的。
真空槽的下部是两个带耐火衬的浸渍管,上部装有热弯管。
被抽气体由热弯管经气体冷却器至真空泵系统排到厂房外。
钢水处理前,先将浸渍管浸入待处理的钢包钢水中。
当真空槽抽真空时,钢水表面的大气压力迫使钢水从浸渍管流入真空槽内(真空槽内大约0.67mbar时可使钢水上升1.48m高度)。
与真空槽连通的两个浸渍管,一个为上升管,一个为下降管。
由于上升管不断向钢液吹入氩气,相对没有吹氩的下降管产生了一个较高的静压差,使钢水从上升管进入并通过真空槽下部流向下降管,如此不断循环反复。
炉外精炼-RH

炉外精炼的基本原理:(1)吹氩的基本原理:氩气是一种惰性气体,从钢包底部吹入钢液中,形成大量小气泡,其气泡对钢液中的有害气体来说,相当于一个真空室,使钢中[H][N]进入气泡,使其含量降低,并可进一步除去钢中的[O],同时,氩气气泡在钢液中上沲而引起钢液强烈搅拌,提供了气相成核和夹杂物颗粒碰撞的机会,有利于气体和夹杂物的排除,并使钢液的温度和成分均匀。
(2)真空脱气的原理:钢中气体的溶解度与金属液上该气体分压的平方根成正比,只要降低该气体的分压力,则溶解在钢液中气体的含量随着降低。
(3)LF炉脱氧和脱硫的原理:炉外精炼的任务:炉外精炼是把由炼钢炉初炼的钢水倒入钢包或专用容器内进一步精炼的一种方法,即把一步炼钢法变为二步炼钢法。
炉外精炼可以完成下列任务:(1)降低钢中的硫、氧、氢、氮和非金属夹杂物含量,改变夹杂物形态,以提高钢的纯净度,改善钢的机械性能;(2)深脱碳,在特定条件下把碳降到极低含量,满足低碳和超低碳钢的要求;(3)微调合金成分,将成分控制在很窄的范围内,并使其分布均匀,降低合金消耗,提高合金元素收得率;将钢水温度调整到浇铸所需要的范围内,减少包内钢水的温度梯度。
RH真空循环脱气法LF具有加热和搅拌功能的钢包精炼法处理过程:用钢包车将钢包送入处理位,使真空室下降或使钢包提升,以便使吸嘴浸入钢包内的钢液以下500mm。
然后启动真空泵。
由于真空室内压力下降,钢包内钢水被吸入真空室中。
由于吸嘴中的一个喷入氩气,另一个没有,钢水便开始反复循环。
这时就可采取各种处理措施,例如脱气、吹氧、化学成分及温度调整等。
处理结束时使系统破真空。
随后退出吸嘴,将钢包送至后处理位置或交接位置。
冶金效果:在短时间就可达到较低的碳(<15ppm)、氢(<1.5ppm)、氧含量(<40ppm);仅有略微的温度损失;不用采取专门的渣对策;可准确调整化学成分,Al,Si等合金收得率在90~97%。
汽车钢板以及电工钢等是RH钢生产的典型产品。
rh精炼炉的工作原理

rh精炼炉的工作原理Rh精炼炉,又称铑精炼炉,是一种用于提取和纯化铑(Rh)金属的设备。
铑是一种稀有的贵金属,广泛应用于催化剂、电子元件、玻璃制造和医药领域。
Rh精炼炉通过一系列的物理和化学过程,将含有铑的矿石或合金转化为高纯度的铑金属。
Rh精炼炉的工作原理可以分为以下几个步骤:1.矿石破碎和磨矿:首先,将含有铑的矿石经过破碎和磨矿的步骤,使其达到合适的颗粒大小,以便后续处理。
2.酸浸:将磨碎后的矿石放入酸性溶液中进行酸浸。
常用的酸浸剂有浓硝酸(HNO3)和氯化氢(HCl)。
在酸浸过程中,酸性溶液会溶解矿石中的铑成为离子态。
3.沉淀:通过调节酸浸溶液的pH值,可以使铑以沉淀的形式从溶液中析出。
一般来说,将溶液中的铑以氨水(NH3)为沉淀剂,使铑形成氨合铑离子,然后通过加热或添加其他化学试剂,使铑以金属的形式沉淀下来。
4.过滤和洗涤:将沉淀后的铑通过过滤装置进行分离,将溶液和固体分离开。
然后,用纯水对沉淀进行洗涤,以去除其他杂质。
5.干燥和升温:将洗涤后的铑沉淀放入烘箱或其他设备中进行干燥,以去除残留的水分。
然后,将干燥的铑沉淀放入升温炉中进行升温处理,以去除其他有机物和杂质。
6.高温熔炼:将经过升温处理的铑沉淀放入高温熔炼炉中进行熔炼。
通过加热至高温,铑沉淀会逐渐熔化并形成液态。
在高温下,铑与其他杂质和非金属元素会发生化学反应,使其转化为气态或固态的残渣,从而实现铑的纯化。
7.冷却和固化:在熔炼后,将炉中的铑溶液冷却至室温,使铑重新固化成为金属块状。
此时,铑的纯度达到了工业要求,可以用于制备各种铑合金或其他应用领域。
Rh精炼炉通过矿石破碎和磨矿、酸浸、沉淀、过滤和洗涤、干燥和升温、高温熔炼、冷却和固化等步骤,将含有铑的矿石或合金转化为高纯度的铑金属。
这种精炼炉在贵金属提取和纯化领域扮演着重要角色,为工业生产和科学研究提供了可靠的技术支持。
RH真空精炼的设备与工艺
RH真空精炼的设备与工艺RH真空精炼是一种常用的精炼方法,主要用于钢铁行业中的不锈钢和合金钢的生产。
该方法通过在真空环境中加入合适的精炼剂,能够有效地去除钢中的杂质和氧化物,并调整钢的成分和性能。
以下将详细介绍RH真空精炼的设备和工艺。
设备方面,RH真空精炼系统主要包括RH倾转炉、真空系统、废气处理系统和渣料处理系统等。
首先是RH倾转炉。
RH倾转炉是RH真空精炼的核心设备。
其主要由中间底吹氧气的底吹装置、底吹气包和真空系统组成。
底吹装置通过底吹氧气将气泡产生在钢水中,增加钢水的搅拌作用,并加快精炼作用。
底吹气包用于调整底吹氧气的流量和压力,以及维持正压状态,防止外界气体进入。
真空系统则保证整个操作过程中的真空环境,确保精炼的有效进行。
其次是废气处理系统。
在RH精炼过程中,废气中会含有大量的有害气体和杂质。
废气处理系统通过一系列的处理设备,如热交换器和吸附装置等,将废气中的有害气体和杂质去除,净化废气,以达到环境保护的要求。
同时,废气处理系统还能回收其中的一些有价值的矿物质和能量,实现资源的循环利用。
最后是渣料处理系统。
在RH精炼过程中,会产生大量的渣料。
渣料处理系统主要将这些渣料进行分类、分离和处理。
其中,一部分渣料可以通过回收再利用,另一部分则需要进行安全的处置。
因此,渣料处理系统的重要任务是实现渣料的无害化处理和资源的最大化利用。
在工艺方面,RH真空精炼的主要流程包括开始吹氩,熔化,通冶炼剂倾吐,混炼和钢水倾出等。
具体流程如下:1.开始吹氩:首先需要对RH倾转炉进行预处理,清除其中的氧气和水蒸气等杂质,以保证真空环境的形成。
然后,通过底吹装置对钢水进行底吹氩处理,将炉中的气体排除。
2.熔化:将预处理后的钢水加热至熔化温度,并通过底吹氩进一步搅拌,以提高炉内的液相搅动作用。
3.通冶炼剂倾吐:在炉内形成真空环境后,通过合适的接口,将精炼剂倾吐入炉中。
精炼剂可以是气体、粉末或液体等形式,用于去除钢中的杂质和氧化物。
RH真空精炼原理及工艺简介
RH真空精炼原理及工艺简介孙利顺(唐山钢铁股份有限公司技术中心唐山邮编063016)摘要:本文简要分析了RH真空处理的钢水循环“气泡泵”原理、真空脱气原理、真空脱氧原理、真空脱碳原理与合金化原理,介绍了本处理、轻处理、深脱碳处理等处理模式。
关键词:真空精炼;气体;夹杂物1 钢中的气体、非金属夹杂物及其对钢质量的影响钢中除了含有各种常规元素和合金元素外,还含有微量的气体(氢、氮和氧)及非金属夹杂物。
由于氧在钢中与合金元素结合成各种类型的氧化物以非金属夹杂物形式存在于钢中,所以钢中的气体通常是指溶解在钢中的氢和氮,其含量大致波动在1—100ppm之间。
虽然钢中气体和非金属夹杂物的含量不高,但对钢的质量和性能会产生较大影响,甚至导致钢材报废。
1.1氢对钢质量的影响钢中含氢有害无利,它对钢的不良影响主要表现在以下几个方面;(1)氢脆。
氢脆是氢对钢的机械性能不良影响的重要表现。
随着钢中含氢量的增加,钢的强度特别是塑性和韧性将显著下降,使钢变脆,称为氢脆。
氢脆随钢强度的增高而加剧,因此对高强度钢来说,氢脆尤为突出,高强度钢平均含氢量不到1ppm就可能出现氢脆。
(2)白点。
氢以氢原子形式溶解在钢中,在钢液中的溶解度比在固态钢中大得多。
当温度下降时,氢在钢中的溶解度降低,氢原子便扩散到显微孔隙、夹杂物附近或晶界间,结合成氢分子(2[H]={H2})。
氢分子在该处不断地聚集,同时产生巨大的压力,当其聚集压力超过该处钢的强度极限时,产生裂纹,使钢的机械性能(特别是塑性)降低,甚至断裂。
裂纹的部位常呈银白色圆点,称为白点。
(3)钢中含有较多的氢还会使钢锭产生点状偏析,以及使钢锭上涨或产生内部疏松。
1.2氮对钢质量的影响氮对钢质量的影啊表现为不良和有益两个方面。
不良影响主要表现在以下几个方面:(1)氮使钢产生时效硬化。
氮在低温下它是过饱和状态,必然从钢中析出。
但是钢中的氮不是以气体存在,而是呈弥散的固态氮化物缓慢地从钢中析出,逐渐地改变着钢地性能,使钢的强度和硬度增加,塑性和冲击韧性显著降低,这种现象称为老化或时效。
RH真空精炼炉单联生产操作要点
RH真空精炼炉单联生产操作要点(第二版)1、工艺路线:BOF-CAS-RH-CCM2、要求铁水KR处理,钢种成份设计上限[S]≤0.010%,要求KR深脱硫,即处理后[S]≤0.005%;其它钢种按照中脱硫处理,即处理后[S]≤0.010%。
3、转炉工序控制要点3.1 出钢过程加入小颗粒石灰量根据转炉终点S含量确定,参考加入量600-1500kg,萤石200-500kg(原则上石灰和萤石的比例为3:1)。
3.2 出钢过程脱氧铝和合金化铝一次配加合格,CAS不允许补加任何合金和造渣料。
注:上表为脱氧铝与转炉终点氧含量的对应关系,合金化铝在此表基础上相应增加。
3.3出钢过程钢包底吹流量保证在500~600 Nl/min(执行《工艺技术规程》),保证出钢完毕钢包渣不结团不结壳、合金成分均匀。
3.4 CAS出站温度:≥钢种液相线+100℃,确保RH到站温度在钢种液相线温度以上90-105℃。
3.5 CAS处理完毕钢水Alt=0.030-0.060%。
3.6 出钢过程所有成份配加合格(除Ti、Alt、B等易氧化元素)。
CAS站钢水成份([C]、[Si]、[Mn]以CAS出站成份为准)符合成份内控要求的比例为90%。
3.7 CAS站吹氩3-5min,保证成份均匀即可取样。
3.8 CAS站测温取样,确保LAD成分和温度的真实性、准确性。
4、RH控制要点4.1 到站温度:钢种液相线温度以上90-105℃。
4.2 根据钢水Als含量确定真空期间铝粒加入量。
加入时机及加入量控制原则:保证真空处理过程不烧损C、Si和满足成品ALs要求。
4.4 真空纯脱气时间≥6min。
4.5 处理完毕,钢水中Als执行具体钢种操作要点要求。
4.6 处理完毕进行钙处理,要求每炉次喂钙线量不大于300m,如果处理完毕温度低,不具备喂丝条件,可是不进行钙处理(Ⅰ级探伤、管线钢X70及以上级别、油罐钢、耐磨钢、双抗钢必须按照操作要点要求进行钙处理)。
rh工序流程 -回复
rh工序流程-回复工序流程(RH工序流程)是指在钢铁冶炼过程中的一种精炼工艺,它包括了底吹除氧和真空处理两个关键步骤。
下面我将详细介绍RH工序流程的步骤和原理。
一、底吹除氧工序1. 目的和原理底吹除氧工序的主要目的是将钢液中的氧气和杂质去除,以提高钢液的纯度和质量。
该工序使用氧气从底部吹入钢液中,通过与钢液中的氧气发生反应,生成气体和矿石氧化物。
2. 步骤(1)加热:首先,将钢包升至预定温度,并预热底吹氧枪。
(2)吹氧:打开底吹氧气阀门,将氧气从底部喷向钢液中。
同时,通过升降机将底吹枪逐渐降低,以确保氧气顺利进入钢液中。
(3)除渣:底吹氧气会生成气泡,将气泡携带的氧化物和杂质带出钢液表面。
通过打磨钢包边缘的划痕,可以加速气泡的生成和提高除渣效果。
3. 优势和应用底吹除氧工序具有操作简单、除渣效果好、生产效率高等优势。
它主要用于精炼炉、转炉和电炉等钢铁冶炼过程中的氧气解吹和除渣。
二、真空处理工序1. 目的和原理真空处理工序是在钢液中建立真空环境,将气体和杂质从钢液中蒸发和去除的工艺。
真空能够有效地降低钢液中的氧含量,减少钢液中的氧化物形成,提高钢液的纯度。
2. 步骤(1)密封:首先,将精炼炉、转炉或电炉密封,建立真空环境。
同时,启动真空系统,抽取钢包内的气体和杂质。
(2)升温和撤焦:升温至定温并投加适量的钢料,在钢包中产生剧烈的煅烧反应,并发生CO和CO2等气体生成。
(3)去气和除渣:真空系统不断抽取钢包中的气体,使钢液中的气体逐渐达到平衡,进一步提高钢液的纯度。
同时,通过钢包边缘的划痕将浮渣除去。
3. 优势和应用真空处理工序具有除氧效果好、钢液纯度高、能有效降低钢液中的气体含量等优势。
它主要应用于特殊钢种的冶炼和高要求钢材的生产。
综上所述,RH工序流程是一种在钢铁冶炼中广泛应用的精炼工艺,包括底吹除氧和真空处理两个关键步骤。
底吹除氧工序通过从底部吹氧的方式将钢液中的氧气和杂质去除,而真空处理工序则通过建立真空环境将气体和杂质从钢液中蒸发和去除。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
35W230 要求同时降低C、N含量 [C]<24, [S+N]<30
和S含量,精确控制成份 [Si]2.6~2.9%
和析出物形态
[S]<10, [N]<25
409L 严格控制钢中C、N和S的 [C+N]≤120 444 含量,降低晶间腐蚀 [S+N]≤80
LF-RH LF-VD
550
690
• RH的发展简史
DH
=
DH-OB =
RH
=
RH-OB =
RH-KTB =
RH-MFB =
Dortmund Hörde,1956 at the Dortmund-Hörder-Hüttenunion..
Dortmund Hörde with Oxygen Blowing Ruhrstahl Heraeus,RH精练法是德国钢铁公司Ruhrstahl和Heraens 联合于1958年成功开发的真空循环脱气法 Ruhrstahl Heraeus with Oxygen Blowing. 1972年新日铁室兰厂根据VOD 生产不锈钢的原理,开发了RH-OB真空吹氧技术。 Ruhrstahl Heraeus Kawasaki Top Blowing. 1986年日本原川崎钢铁公司( 现已和NKK重组为JEE公司)在传统的RH基础上,成功地开发了RH顶 吹氧(RH KTB)技术,将RH技术的发展推向一个新阶段。 Ruhrstahl Heraeus Multifunctional. 1992年日本新日铁 公司广畑厂在日本 原川崎公司开发RH-KTB精炼技术之后,为降低初炼炉的出钢温度以及脱 碳的需要,开发了多功能喷嘴的RH顶吹氧技术
CAS-OB
板坯连铸
LF
RH/KTB/PB
板坯连铸
产品 热轧钢板 冷轧深冲钢板 镀层板,涂层板 锅炉板、桥梁板 造船板
产品 IF 钢 电工用钢 石油管线钢 低温用钢 超深冲钢
RH炉外精炼概述
• 特殊钢厂冶炼工艺路线
废钢
UHP
生铁
电炉
DRI/HBI
VD
轴轴承承钢钢
精炼
齿齿轮轮钢钢
优优质质弹弹簧簧钢钢
1) AOD、CLU、VOD、RHOB和 VODC适合冶炼低碳和超低碳钢;
按精炼的主要用途分类
2)桶炉,VAD(VHD)和LF具备加 热搅拌功能对温度控制灵活,可去气、 脱氧、去除夹杂和合金化;
3)DH、RH,不同形式的流滴去气法 和 真 空 吹 Ar 法 , 可 脱 除 钢 中 气 体 、 氧 和夹杂,但无加热设备,适应于普通钢 和中低合金钢的真空脱气处理;
目录
• RH炉外精炼概述 • RH主要设备及功能 • RH耐火材料 • RH工艺参数的选择考虑因素 • RH工艺原理 • RH模型研究 • 国内主要钢企RH情况 • 典型钢种的RH精炼 • RH生产过程事故处理
RH炉外精炼概述
• 钢铁冶联合企业冶炼工艺流程
铁水脱硫 转炉复吹
现代RH ≤15 0.35 <13 ≤1.0 ≤15 40-60 有 1 1.1
传统RH ≤20
0.1~0.15 <15 ≤1.5 ≤25 0 无
0.8-0.9 1.2
VD 0.05-1.0
0 无脱碳功能
≤2.0 ≤10 80-90 无 0.5-0.6 1.0
VOD ≤50 0.20 40-50 ≤2.0 ≤30 80-90 有 0.6-0.7 1.2
LF
大方
硬硬线线钢钢
精炼
坯连
帘帘线线钢钢
RH
铸
石石油油套套管管
精炼
铁水
转炉
脱硅
复吹
脱磷
脱硫
AOD
SS-V OD
RHOB/ KTB
大板 坯连 铸
不锈钢
RH炉外精炼概述
• 短流程钢厂冶炼工艺路线
铁水 脱硫
转炉
废钢
电炉
CASOB
LF 炉
小方坯 连铸
各类建材 普碳钢 普通低合金钢 机械工程用钢 易切削钢
废钢 生铁 DRI/HBI
RH炉外精炼概述
• RH的发展简史
RH-PB法
新日铁名古屋厂于1987年研制成功RHPB法,不仅可以生产出超低硫、极低碳和超 低磷钢来,而且在处理过程中氢含量也是降 低的。它利用原有RH-OB法真空室下部底吹 氧喷嘴,使其具有喷粉功能,依靠载气将粉 剂通过OB喷嘴吹入钢液。RH真空室下部装有 两个喷嘴,可以利用切换阀门来改变吹氧方 式还是喷粉方式。同时通过加铝可使钢水升 温。此法还具有良好的去氢效果,不会影响 传统的RH真空脱气的能力,更不会有吸氮之 忧。
RH炉外精炼概述
• RH的发展简史
RH-IJ法
1982年,徐匡迪发表了RH-IJ技术的实 验室报告,同年,新日铁开始研究此组合技 术,并于1985年开始工业性实验。RH-IJ技术 即RH喷粉技术,图 是RH-IJ技术的示意图, 这项技术可在一次操作中同时完成脱硫、脱 氢、脱碳、减少非金属夹杂和调整成分的目 的。
➢ 以后各国都在真空循环脱气法上开展了研究。其中以日本发展最为迅速。新日铁在 1972年发明了RH-OB法,能起到铝升温的作用。
➢ 80年代中期,大分厂、名古屋厂为了得到低硫钢水,采用喷吹脱硫剂的方法生产出 S≤10ppm的RH钢。80年代后期~90年代初期,日本川崎发明了RH-KTB,实现了 二次燃烧和吹O2脱C,和KPB(MFB)用顶枪喷吹脱S剂。
RH炉外精炼概述
• 炉外精炼的主要手段
各种高品质钢的性能和洁净度要求及其相适应的精炼方法
钢类
超低碳钢
低碳铝镇静 钢 低合金 高强度钢
高级电工钢
超纯铁素体 不锈钢 特殊钢(轴 承钢)
代表 钢种
技术特点
纯净度要求 10-6
IF钢 要求同时降低钢中[C]、 [C]<20, [N]<20,
[N]和T.O
[S]<50, T.O<20,
➢ 中国的RH发展是在90年代以后开始的,但近几年来随着低碳钢在市场上所占比例越 来越高,RH的用途越来越广。目前,一般中、大型钢厂都配置有RH炉。
➢ RH新技术的发展:新日铁发明的KPB(MFB)利用外加能源介质,实现了处理位上 的真空槽烘烤,其吹氧脱碳的功能,使生产出C≤20ppm的超低碳钢。
RH炉外精炼概述
dS<50m
TIRP钢 准确控制成份、夹杂物和 [C]≤0.2, [Si]≤0.03, 组织结构,保证表面质量 [Mn]=1.5
精炼 工艺
性能指标 S B r EL/%
RH
105~ 170
280~ 318
2.5
>40
RH 450 800 0.9 26
X80 X100
超低硫精炼,严格控制钢 [S]<10, [P]<80 中夹杂物和钢材组织结构 [O]<20, [N]<50,
目前,RH已成为世界上最主要的炉外精炼设备。其特点是:精炼功能强、处理 能力大、处理周期短、处理后钢水的洁净度水平高,因此在世界上广泛的应用于转炉 炼钢厂,并成为生产低碳冷轧钢板所必须的炉外精炼设施。和其它真空精炼设备相比, RH的处理时间最短,处理后钢水的洁净度最高。从投资成本比较,现代RH比传统 RH略有增加,但和其它真空精炼设备相比,投资成本约高出50%。但其操作成本低 于传统RH,与VD炉大体相当。
RH炉外精炼概述
• RH的发展简史
RH-KTB法
与常规的RH工艺相比,应用RH-KTB的效果主要有 : ➢ 在RH-KTB方法中,有30%的氧用于CO气体的二次燃烧,二次燃烧率达60%,
使RH处理过程中的热损失得以补偿,因此可降低转炉出钢温度约26℃。 ➢ 提高脱碳速率。在不延长RH真空处理时间的条件下,可在较高转炉出钢含碳量
RH炉外精炼概述
• RH的发展简史
RH-KTB法
由于RH操作过程中钢液温降比较大,因 此采用普通的RH真空脱碳工艺,就要要求转 炉较高的出钢温度。1986年,日本川崎钢铁 公司为满足汽车工业的飞速发展,要求努力 降低钢板中的碳含量,以保证冷轧板具有良 好的塑性、拉伸性、非时效性。为改进冷轧 超低碳钢的生产工艺,开发出了RH-KTB真空 吹氧技术,将RH技术发展推向一个新阶段。 第一台RH-KTB真空吹氧设备安装在川崎钢铁 公司千叶厂。 KTB法是用水冷氧枪向真空室 内的钢液供给氧气的工艺方法,如图所示。
RH炉外精炼概述
• RH的发展简史
➢ RH真空精炼技术起源于50年代,1957年阿尔贝德公司申请了钢水真空精炼脱气法 的技术专利,这是真空脱气法发展的开端。
➢ 1958年德国 Rheinstahl(莱茵钢公司)和 Heratus(赫拉乌斯)真空泵厂合作成功 地进行了工业性生产实验,取得了可喜的处理效果,在1959年德国冶金工作者协会 上引起了同行的极大关注,定名RH。
下生产超低碳钢。实践证明,使用RH-KTB工艺时,转炉出钢终点[C]含量可从 0.025%提高到0.05%,因而可以使转炉的负担减轻。 ➢ 应用RH-KTB法,稳定地降低脱气结束时渣中的(%TFe)和钢水中的T[O]。从而 使连铸时由于钢水中的Al2O3造成的浸入式水口的堵塞得到缓解,提高了板坯 的表面质量。
RH炉外精炼概述
• 炉外精炼的分类
渣洗法:合成渣洗、同炉渣洗
按精炼手段分类
常压下处理法
真空精炼法
Ar精炼法:Gazal、CAB、AOD、CLU 脱气为主:钢包除气法、DH、RH
脱C、O、气为主:VOD、RH-OB、RH-PI
真空和加热法: ASEA-SKF、VAD、LF
RH炉外精炼概述
• 炉外精炼的分类
21
P1.5/50
B50
RH (W/kg)
(T)