EDA数字钟设计

合集下载

eda数字时钟课程设计论文

eda数字时钟课程设计论文

eda数字时钟课程设计论文一、课程目标知识目标:1. 理解数字时钟的基本原理,掌握EDA工具的使用方法。

2. 学习数字时钟设计的基本流程,包括时钟信号生成、分频、计数等模块的设计与实现。

3. 了解数字时钟的显示原理,掌握七段显示译码器的应用。

技能目标:1. 培养学生运用所学知识进行数字电路设计的能力。

2. 培养学生运用EDA工具进行电路仿真、调试的能力。

3. 培养学生团队协作、沟通表达的能力。

情感态度价值观目标:1. 激发学生对电子设计的兴趣,培养创新意识和动手能力。

2. 培养学生严谨的科学态度,注重实验数据的真实性。

3. 增强学生的自信心,勇于面对和解决问题。

本课程针对高年级学生,结合学科特点和教学要求,将目标分解为具体的学习成果。

课程性质为实践性较强的设计课,注重培养学生的实际操作能力和团队合作精神。

通过本课程的学习,学生能够掌握数字时钟设计的基本方法,提高电子设计能力,培养良好的情感态度价值观。

二、教学内容本课程教学内容主要包括以下三个方面:1. 数字时钟原理及设计流程- 了解数字时钟的基本原理,包括时钟信号、分频器、计数器等组成部分。

- 学习数字时钟设计的基本流程,结合教材相关章节,进行实例分析。

2. EDA工具的使用- 介绍EDA工具的基本功能,如原理图绘制、仿真、PCB设计等。

- 结合教材,学习使用EDA工具进行数字时钟电路的设计与仿真。

3. 数字时钟电路设计与实现- 分析并设计数字时钟的各个功能模块,如时钟信号生成、分频、计数、显示等。

- 结合教材章节,进行具体电路设计,列举所需元器件及参数。

教学进度安排如下:1. 第一周:数字时钟原理及设计流程学习。

2. 第二周:EDA工具的使用方法及操作练习。

3. 第三周:数字时钟电路设计与实现,包括各功能模块设计和整体调试。

教学内容注重科学性和系统性,结合教材章节,使学生能够循序渐进地掌握数字时钟的设计方法。

同时,通过实践操作,提高学生的动手能力和实际应用能力。

(2023)EDA课程数字钟设计报告(一)

(2023)EDA课程数字钟设计报告(一)

(2023)EDA课程数字钟设计报告(一)EDA课程数字钟设计报告设计目的本次设计的目的是通过使用EDA software,设计一个能够正常运行的数字钟,使其能够满足一定的时间显示功能。

设计思路本设计主要使用Verilog HDL编程语言,利用EDA software提供的仿真功能,模拟数字钟的运行过程。

具体实现过程如下:1.首先,设置时钟频率,并利用counter计数器进行计数,产生时间基准信号。

2.利用BCD编码对时间进行编码,分别将时、分、秒的数据传至显示器。

3.设计逻辑电路计算秒钟、分针、时钟转动角度。

4.在EDA software上进行仿真,观察数字钟是否正常工作。

设计图样以下为数字钟方案的部分设计图样。

image textimage text实现结果通过复杂的编程训练和模拟,数字钟设计的功能已经被确认。

数字钟电路能够准确地显示当前时间。

同时,数字钟的设计也具有较高的可靠性、稳定性和精度。

并且,数字钟的主板设计紧凑、易于集成。

这些优点使得本次设计非常适合应用于智能仪器、家庭用品和其他数字显示电子设备中。

总结数字钟设计是一项有挑战性的工程,需要设计人员具有充分的编程功底和深入的EDA工具熟练度。

本设计的成功,体现了设计团队的技术实力和团队协作能力,为未来的科技产品发展提供了有力的技术支撑。

改进方案虽然本设计实现了数字钟正常工作的功能,但是我们仍然可以从以下几个方面进行改进:1.在原有电路基础上增加闹钟功能,方便用户定时提醒。

2.增加显示背光,使数字钟更方便在夜间环境下使用。

3.将数字钟设计进行微小的改动使其更小巧便携,方便携带和使用。

参考文献1.微机原理与接口技术(第四版) 教材2.EDA Software (Xilinx ISE) 许可证书致谢在本次数字钟的设计过程中,我们向来自各地的优秀工程师团队表示感谢,感谢他们在繁忙的工作中,准确地指导我们的设计工作。

同时也感谢电子设计自动化(EDA) company提供的软件支持,使得我们能够顺利完成该设计。

eda数字钟的设计课程设计

eda数字钟的设计课程设计

eda数字钟的设计课程设计一、课程目标知识目标:1. 让学生掌握EDA技术的基本原理和应用;2. 使学生了解数字时钟的工作原理,掌握其设计方法;3. 帮助学生理解数字电路的基本组成,掌握常用数字电路元件的功能和使用方法。

技能目标:1. 培养学生运用EDA软件进行数字电路设计的能力;2. 提高学生动手实践能力,能够独立完成数字钟的搭建和调试;3. 培养学生分析问题和解决问题的能力,学会运用所学知识解决实际工程问题。

情感态度价值观目标:1. 激发学生对电子工程领域的兴趣,培养其探索精神和创新意识;2. 培养学生良好的团队合作精神和沟通能力,学会在团队中发挥个人作用;3. 培养学生具备严谨的科学态度,注重实践操作的安全性和环保意识。

分析课程性质、学生特点和教学要求,本课程旨在通过数字钟的设计与实现,使学生在掌握基本理论知识的基础上,提高实践操作能力和创新设计能力。

课程目标具体、可衡量,便于学生和教师在教学过程中明确预期成果,为后续的教学设计和评估提供依据。

二、教学内容本课程教学内容主要包括以下三个方面:1. EDA技术基本原理:- EDA软件的使用方法与操作流程;- 常用数字电路元件的原理与功能;- 数字电路设计的基本步骤和技巧。

2. 数字时钟工作原理与设计方法:- 数字时钟的基本组成和各部分功能;- 时钟信号的产生、分频和计数原理;- 数字钟电路图设计及仿真分析。

3. 实践操作与调试:- 数字钟电路的搭建与连接;- 调试过程中故障分析与解决;- 数字钟功能测试与性能优化。

教学内容根据课程目标制定,具有科学性和系统性。

教学大纲明确,教学内容安排和进度如下:1. EDA技术基本原理(2课时)2. 数字时钟工作原理与设计方法(3课时)3. 实践操作与调试(4课时)教学内容与教材章节关联紧密,确保学生能够将所学理论知识与实际操作相结合,提高综合运用能力。

三、教学方法针对本课程的教学目标和学生特点,采用以下多样化的教学方法:1. 讲授法:教师通过PPT、板书等形式,系统讲解EDA技术基本原理、数字时钟工作原理与设计方法等理论知识。

eda课程设计数字钟实验

eda课程设计数字钟实验

eda课程设计数字钟实验一、课程目标知识目标:1. 学生能够理解数字时钟的基本原理,掌握EDA工具的使用方法,并能够运用Verilog HDL语言描述数字时钟的基本功能。

2. 学生能够掌握数字时钟设计中涉及的计数器、分频器等基本模块的工作原理和设计方法。

3. 学生了解数字时钟系统的层次化设计方法,并能够根据设计需求进行模块划分。

技能目标:1. 学生能够运用所学知识,使用EDA工具设计并实现一个简单的数字时钟,培养动手实践能力。

2. 学生能够通过分析问题、解决问题,培养逻辑思维能力和团队协作能力。

情感态度价值观目标:1. 学生通过实际操作,体验数字电路设计的乐趣,激发对电子信息技术学习的兴趣。

2. 学生在课程学习过程中,培养严谨的科学态度和良好的工程意识,提高对电子产品质量的追求。

3. 学生通过团队合作,培养沟通协作能力,增强团队意识和集体荣誉感。

课程性质:本课程为电子设计自动化(EDA)的实践课程,结合数字电路设计原理,让学生通过实际操作,掌握数字时钟的设计与实现。

学生特点:学生已经具备一定的电子信息技术基础,对数字电路有一定的了解,具备基本的编程能力。

教学要求:注重理论与实践相结合,强调学生的动手实践能力,鼓励学生独立思考和团队协作,培养解决实际问题的能力。

通过本课程的学习,使学生能够将所学知识应用于实际工程项目中,提高学生的综合素质。

二、教学内容本课程教学内容主要包括以下三个方面:1. 数字时钟原理及设计方法- 理解数字时钟的基本原理,包括计时原理、分频原理等。

- 学习数字时钟的模块化设计方法,掌握计数器、分频器等基本模块的设计与实现。

关联教材章节:第五章《数字时钟的设计与应用》2. EDA工具及Verilog HDL语言- 学习EDA工具的使用方法,如Quartus II等。

- 掌握Verilog HDL语言的基本语法和编程技巧,能够使用Verilog描述数字电路。

关联教材章节:第四章《EDA工具与Verilog HDL编程》3. 数字时钟设计与实现- 学习数字时钟的整体设计流程,包括模块划分、代码编写、仿真验证等。

EDA数字钟毕业设计

EDA数字钟毕业设计

EDA数字钟毕业设计第一篇:EDA数字钟毕业设计[ 标签:数字钟, eda ]1、设计一个能显示1/10秒、秒、分、时的12小时数字钟。

2、时钟源使用频率为0.1Hz的连续脉冲。

3、设置两个按钮,一个供“开始”及“停止”用,一个供系统“复位”用。

4、时钟显示使用数码管显示。

基于VHDL的多功能数字钟的设计EDA课程设计资料类别课程(专业)EDA 适用年级大学文件格式word+DLS 文件大小1725K 上传时间2008-10-10 20:57:00 预览文件无(只能预览文件中的部分内容)下载次数0内容简介:EDA课程设计基于VHDL的多功能数字钟的设计,共11页,6086字,附源程序。

摘要:介绍了利用VHDL硬件描述语言设计的多功能数字钟的思路和技巧。

在MAX+PLUSII开发环境中编译和仿真了所设计的程序,并在可编程逻辑器件上下栽验证。

仿真和验证结果表明,该设计方法切实可行。

EDA-时钟设计-基于Altera数字钟的实现:EDA课程设计基于VHDL的多功能数字钟的设计:EDA数字钟设计报告:资料包括:论文(12页2036字)图纸说明:中文摘要:数字钟学习的目的是掌握各类计数器及它们相连的设计方法;掌握多个数码管显示的原理与方法;掌握FPGA技术的层次化设计方法;掌握用VHDL语言的设计思想以及整个数字系统的设计。

此数字钟设计具有时,分,秒计数显示功能,以24小时为计数循环;能实现清零,调节小时,分钟以及整点报时的功能。

第二篇:eda数字钟程序LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_ARITH.ALL;USEIEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY clock IS PORT(EN :IN STD_LOGIC;数码管使能CLK:IN STD_LOGIC;时钟信号RST:IN STD_LOGIC;复位信号SEC_1:OUT STD_LOGIC_VECTOR(3 DOWNTO 0);秒高位SEC_01 :OUT STD_LOGIC_VECTOR(3 DOWNTO 0);秒低位MIN_1:OUT STD_LOGIC_VECTOR(3 DOWNTO 0);分高位MIN_01 :OUT STD_LOGIC_VECTOR(3 DOWNTO 0);分低位HOU_1:OUT STD_LOGIC_VECTOR(3 DOWNTO 0);时高位HOU_01 :OUT STD_LOGIC_VECTOR(3 DOWNTO 0);时低位BEE:OUT STD_LOGIC);END clock;ARCHITECTURE behovior OF clock IS SIGNAL SEC_HIGH:STD_LOGIC_VECTOR(3 DOWNTO 0);SIGNAL SEC_LOW:STD_LOGIC_VECTOR(3 DOWNTO 0);SIGNAL MIN_HIGH:STD_LOGIC_VECTOR(3 DOWNTO 0);SIGNAL MIN_LOW:STD_LOGIC_VECTOR(3 DOWNTO 0);SIGNAL HOU_HIGH:STD_LOGIC_VECTOR(3 DOWNTO 0);SIGNAL HOU_LOW:STD_LOGIC_VECTOR(3 DOWNTO 0);SIGNAL CY_MIN:STD_LOGIC;分进位SIGNAL CY_HOU:STD_LOGIC;时进位SIGNAL LOGO_1:STD_LOGIC;标志SIGNAL LOGO_2:STD_LOGIC;SIGNAL LOGO_3:STD_LOGIC;BEGIN MIAOLOW:PROCESS(CLK,RST,EN)BEGINIF(RST = '0')THENSEC_LOW <= “1000”;附给秒低位为8ELSIF(CLK'EVENT AND CLK = '1' AND EN = '1')THEN 检测时钟上升沿及数码管使能端IF(SEC_LOW = “1001”)THENSEC_LOW <= “0000”;ELSESEC_LOW <= SEC_LOW + “0001”;加一END IF;END IF;END PROCESS MIAOLOW;LOGO_1 <= SEC_LOW(3)AND SEC_LOW(0);SEC_01<= SEC_LOW;秒个位放8MIAOHIGH:PROCESS(CLK,RST)BEGINIF(RST = '0')THENSEC_HIGH <= “0101”;ELSIF(CLK'EVENT AND CLK = '1')THEN检测时钟上升沿IF(LOGO_1 = '1')THENIF(SEC_HIGH = “0101”)THENSEC_HIGH <= “0000”;CY_MIN <= '1';ELSESEC_HIGH <= SEC_HIGH + “0001”;加一CY_MIN <= '0';END IF;END IF;END IF;END PROCESS MIAOHIGH;SEC_1 <= SEC_HIGH;秒十位放5FENLOW:PROCESS(CY_MIN,RST,EN)BEGINIF(RST = '0')THEN 若复位位为0MIN_LOW <= “1000”;则分个位为8ELSIF(CY_MIN'EVENT AND CY_MIN = '1' AND EN = '1')THEN 检测时钟上升沿及数码管使能端IF(MIN_LOW = “1001”)THENMIN_LOW <= “0000”;ELSEMIN_LO W <= MIN_LOW + “0001”;加一END IF;END IF;END PROCESS FENLOW;LOGO_2 <= MIN_LOW(3)AND MIN_LOW(0);MIN_01 <= MIN_LOW;分个位放8FENHIGH:PROCESS(CY_MIN,RST)BEGINIF(RST = '0')THENMIN_HIGH <= “0101”;ELSIF(CY_MIN'EVENT AND CY_MIN = '1')THEN检测分进位上升沿IF(LOGO_2 = '1')THENIF(MIN_HIGH = “0101”)THEN若分十位为5MIN_HIGH <= “0000”;CY_HOU <= '1';时进位为1ELSEMIN_HIGH <= MIN_HIGH + “0001”;加一CY_HOU <= '0';END IF;END IF;END IF;END PROCESS FENHIGH;MIN_1 <= MIN_HIGH;分十位放5SHILOW:PROCESS(CY_HOU,RST,EN)BEGINIF(RST = '0')THENHOU_LOW <= “1001”;ELSIF(CY_HOU'EVENT AND CY_HOU = '1'AND EN = '1')THEN检测时进位上升沿及数码管使能端IF(HOU_LOW = “1001”)THEN若时低位为9HOU_LOW <= “0000”;ELSIF(HOU_HIGH = “0010” AND HOU_LOW = “0011”)THEN若时十位为2,个位为3HOU_LOW <= “0000”;ELSEHOU_LOW <= HOU_LOW + “0001”;加一END IF;END IF;END PROCESS SHILOW;LOGO_3 <= HOU_LOW(3)AND HOU_LOW(0);HOU_01 <= HOU_LOW;时个位放3SHIHIGH:PROCESS(CY_HOU,RST)BEGINIF(RST = '0')THENHOU_HIGH <= “0001”;ELSIF(CY_HOU'EVENT AND CY_HOU = '1')THEN检测时进位上升沿IF(HOU_HIGH = “0010” AND HOU_LOW = “0011”)THEN 若时十位为2,时个位为3HOU_HIGH <= “0000”;ELSIF(LOGO_3 = '1')THENHOU_HIGH <= HOU_HIGH + “0001”;加一END IF;END IF;END PROCESS SHIHIGH;BEE_CLOCK:PROCESS(CLK)BEGINIF(CLK'EVENT AND CLK = '1')THEN检测时钟上升沿IF(SEC_HIGH = “0101” AND SEC_LOW = “1001”AND MIN_HIGH = “0101” AND MIN_LOW = “1001”)THENBEE <= '1';ELSEBEE <= '0';END IF;END IF;END PROCESS BEE_CLOCK;HOU_1 <= HOU_HIGH;时十位放2END behovior;LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_ARITH.ALL;USEIEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY clock1 IS PORT(EN :IN STD_LOGIC;CLK:IN STD_LOGIC;RST:IN STD_LOGIC;SEC_1:OUT STD_LOGIC_VECTOR(3 DOWNTO 0);SEC_01 :OUT STD_LOGIC_VECTOR(3 DOWNTO 0);MIN_1:OUT STD_LOGIC_VECTOR(3 DOWNTO 0);MIN_01 :OUT STD_LOGIC_VECTOR(3 DOWNTO 0);HOU_1:OUT STD_LOGIC_VECTOR(3 DOWNTO 0);HOU_01 :OUT STD_LOGIC_VECTOR(3 DOWNTO 0);BEE:OUT STD_LOGIC);END clock1;ARCHITECTURE behovior OF clock1 IS SIGNAL SEC_HIGH:STD_LOGIC_VECTOR(3 DOWNTO 0);SIGNAL SEC_LOW:STD_LOGIC_VECTOR(3 DOWNTO 0);SIGNAL MIN_HIGH:STD_LOGIC_VECTOR(3 DOWNTO 0);SIGNAL MIN_LOW:STD_LOGIC_VECTOR(3 DOWNTO 0);SIGNAL HOU_HIGH:STD_LOGIC_VECTOR(3 DOWNTO 0);SIGNAL HOU_LOW:STD_LOGIC_VECTOR(3 DOWNTO 0);SIGNAL CY_MIN:STD_LOGIC;SIGNAL CY_HOU:STD_LOGIC;SIGNAL LOGO_1:STD_LOGIC;SIGNAL LOGO_2:STD_LOGIC;SIGNAL LOGO_3:STD_LOGIC;BEGIN MIAOLOW:PROCESS(CLK,RST,EN)BEGINIF(RST = '0')THENSEC_LOW <= “1000”;ELSIF(CLK'EVENT AND CLK = '1' AND EN = '1')THEN IF(SEC_LOW = “1001”)THENSEC_LOW <= “0000”;ELSESEC_LOW <= SEC_LOW + “0001”;END IF;END IF;END PROCESS MIAOLOW;LOGO_1 <= SEC_LOW(3)AND SEC_LOW(0);SEC_01<= SEC_LOW;MIAOHIGH:PROCESS(CLK,RST)BEGINIF(RST = '0')THENSEC_HIGH <= “0101”;ELSIF(CLK'EVENT AND CLK = '1')THENIF(LOGO_1 = '1')THENIF(SEC_HIGH = “0101”)THENSEC_HIGH <= “0000”;CY_MIN <= '1';ELSESEC_HIGH <= SEC_HIGH + “0001”;CY_MIN <= '0';END IF;END IF;END IF;END PROCESS MIAOHIGH;SEC_1 <= SEC_HIGH;FENLOW:PROCESS(CY_MIN,RST,EN) BEGINIF(RST = '0')THENMIN_LOW <= “1000”;ELSIF(CY_MIN'EVENT AND CY_MIN = '1' AND EN = '1')THEN IF(MIN_LOW = “1001”)THENMIN_LOW <= “0000”;ELSEMIN_LOW <= MIN_LOW + “0001”;END IF;END IF;END PROCESS FENLOW;LOGO_2 <= MIN_LOW(3)AND MIN_LOW(0);MIN_01 <= MIN_LOW;FENHIGH:PROCESS(CY_MIN,RST)BEGINIF(RST = '0')THENMIN_HIGH <= “0101”;ELSIF(Cy_MIN'EVENT AND CY_MIN = '1')THENIF(LOGO_2 = '1')THENIF(MIN_HIGH = “0101”)THENMIN_HIGH <= “0000”;CY_HOU <= '1';ELSEMIN_HIGH <= MIN_HIGH + “0001”;CY_HOU <= '0';END IF;END IF;END IF;END PROCESS FENHIGH;MIN_1 <= MIN_HIGH;SHILOW:PROCESS(CY_HOU,RST,EN)BEGINIF(RST = '0')THENHOU_LOW <= “1001”;ELSIF(CY_HOU'EVENT AND CY_HOU = '1' AND EN = '1')THEN IF(HOU_LOW = “1001”)THENHOU_LOW <= “0000”;ELSIF(HOU_HIGH = “0010” AND HOU_LOW = “0011”)THENHOU_LOW <= “0000”;ELSEHOU_LOW <= HOU_LOW + “0001”;END IF;END IF;END PROCESS SHILOW;LOGO_3 <= HOU_LOW(3)AND HOU_LOW(0);HOU_01 <= HOU_LOW;SHIHIGH:PROCESS(Cy_HOU,RST)BEGINIF(RST = '0')THENHOU_HIGH <= “0001”;ELSIF(CY_HOU'EVENT AND CY_HOU = '1')THENIF(HOU_HIGH = “0010” AND HOU_LOW = “0011”)THEN HOU_HIGH <= “0000”;ELSIF(LOGO_3 = '1')THENHOU_HIGH <= HOU_HIGH + “0001”;END IF;END IF;END PROCESS SHIHIGH;BEE_CLOCK:PROCESS(CLK)BEGINIF(CLK'EVENT AND CLK = '1')THENIF(SEC_HIGH = “0101” AND SEC_LOW = “1001”AND MIN_HIGH = “0101” AND MIN_LOW = “1001”)THENBEE <= '1';ELSEBEE <= '0';END IF;END IF;END PROCESS BEE_CLOCK;HOU_1 <= HOU_HIGH;END behovior;第三篇:EDA数字钟课程设计课程设计报告设计题目:用VHDL语言实现数字钟的设计班级:电子1002班学号:20102625 姓名:于晓指导教师:李世平、李宁设计时间:2012年12月摘要数字钟是一种用数字电路技术实现时、分、秒计时的钟表。

EDA课程数字钟设计报告-V1

EDA课程数字钟设计报告-V1

EDA课程数字钟设计报告-V1数字钟设计报告数字钟设计是EDA(Electronic Design Automation)课程的一项实验任务。

在本次实验中,我们学习了数字电路设计的基本原理和EDA工具的使用方法,并通过数字钟的设计和实现,进一步加深了对数字电路运作的理解和应用能力。

设计原理在数字钟的设计中,我们需要考虑以下几个方面的原理:1.时钟信号发生器时钟信号发生器是数字钟的核心部件,它需要产生一种能够精确计时的信号,来控制其他部件的运作。

我们使用的时钟信号发生器是基于分频电路的原理,通过将高频信号逐步分频,最终得到1Hz的低频信号作为时钟信号。

2.计数器计数器是用于记录时间的关键部件,它需要能够根据时钟信号的变化而自动计数。

我们使用的计数器是基于JK触发器的原理,通过配置不同的触发器状态和逻辑门电路,实现对秒、分、时位数的分别计数。

3.显示器显示器是将计数器的结果通过人们能够理解的形式进行输出的部件,它需要能够清晰、准确地显示时间信息。

我们使用的显示器是基于七段数码管的原理,通过将计数器的结果转换为七段数码管的相应显示状态,实现对时间的显示。

技术实现在技术实现方面,我们使用了EDA工具Xilinx ISE Design Suite来完成数字钟的设计和编程。

通过该工具,我们可以方便地进行原理图绘制、模拟仿真、逻辑设计和HDL编程等过程,最终得到可供FPGA实现的数字钟设计。

具体实现过程如下:1. 通过原理图绘制工具,建立时钟信号发生器、计数器和显示器等部件的原理图,并进行逻辑连接;2. 在模拟仿真工具中,针对不同的输入信号进行仿真测试,检查各个部件的正常运行情况;3. 在HDL编程工具中,编写相应的代码实现数字钟的各项功能,并进行综合和优化;4. 在下载工具中,将编译后的数字钟设计文件下载到FPGA芯片中,完成数字钟的实际实现。

实验结果经过以上的设计和实现,我们最终完成了一款具有完整计数与显示功能的数字钟,能够自动计时、定时报时、清零等各项操作。

eda课程设计数字钟设计

eda课程设计数字钟设计

eda课程设计数字钟设计一、课程目标知识目标:1. 学生能理解EDA(电子设计自动化)的基本概念,掌握数字钟的基本原理和设计流程。

2. 学生能描述数字钟的各个模块功能,如计时、显示、调整等,并理解它们之间的协同工作方式。

3. 学生掌握Verilog等硬件描述语言的基本语法,能够利用EDA工具进行基本的数字电路设计和仿真。

技能目标:1. 学生能够运用所学知识,使用EDA工具设计简单的数字时钟电路,并进行功能仿真。

2. 学生通过小组合作,培养团队协作能力和问题解决能力,提高工程实践和项目管理的初步技能。

3. 学生能够运用批判性思维分析设计过程中的问题,提出优化方案,并对设计方案进行改进。

情感态度价值观目标:1. 学生通过数字钟的设计实践,培养对电子工程领域的兴趣和探究精神,激发创新意识和创造潜能。

2. 学生在学习过程中,形成严谨的科学态度和良好的工程意识,认识到技术对日常生活的影响。

3. 学生在小组合作中,学会相互尊重和沟通,培养积极向上的团队精神,增强集体荣誉感。

课程性质分析:本课程为实践性较强的电子设计课程,要求学生将理论知识与实际操作相结合,通过动手实践,深化对电子设计自动化原理的理解。

学生特点分析:针对高中年级学生,已有一定的电子基础和逻辑思维能力,对新鲜事物充满好奇心,具备自主学习的能力。

教学要求:课程要求教师通过引导和启发,帮助学生将抽象的理论具体化,通过项目式的教学方法,使学生能够将所学知识应用于实际问题的解决中。

二、教学内容本课程教学内容围绕数字钟设计的全过程,分为以下三个部分:1. 理论知识学习:- 电子设计自动化(EDA)基本概念与原理;- 数字时钟的组成、工作原理及各模块功能;- Verilog硬件描述语言的基本语法及使用方法;- 相关电子元器件的特性和应用。

2. 实践操作部分:- 使用EDA工具(如ModelSim、Quartus等)进行基本操作;- 设计数字钟的各个模块,并进行功能仿真;- 对设计过程中出现的问题进行分析,提出优化方案;- 完成数字钟整体设计与调试。

eda数字电子钟课程设计

eda数字电子钟课程设计

eda数字电子钟课程设计一、课程目标知识目标:1. 让学生理解数字电子时钟的基本原理,掌握EDA技术及其在数字电子时钟中的应用。

2. 使学生掌握数字电子时钟的设计流程,包括硬件设计、软件编程及系统调试。

3. 让学生掌握时钟信号的产生、计数、显示等模块的工作原理和电路设计。

技能目标:1. 培养学生运用EDA工具(如Protel、Multisim等)进行电路设计与仿真测试的能力。

2. 培养学生具备编程和调试数字电子时钟程序的基本技能,提高实际动手操作能力。

3. 培养学生团队协作、沟通表达、问题分析和解决的能力。

情感态度价值观目标:1. 培养学生对电子工程学科的兴趣,激发学生学习热情,形成积极的学习态度。

2. 培养学生具有创新意识和实践精神,鼓励学生勇于尝试,不断优化设计方案。

3. 培养学生关注社会发展,了解电子产品在生活中的应用,提高社会责任感和使命感。

分析课程性质、学生特点和教学要求,本课程目标将分解为以下具体学习成果:1. 学生能够独立完成数字电子时钟的电路设计和程序编写。

2. 学生能够运用EDA工具进行电路仿真测试,分析并解决设计中出现的问题。

3. 学生能够以团队形式进行项目汇报,展示设计成果,接受提问并给予解答。

4. 学生通过课程学习,提升对电子工程的兴趣,树立正确的价值观和人生观。

二、教学内容根据课程目标,本章节教学内容主要包括以下三个方面:1. 数字电子时钟原理及EDA技术概述- 时钟信号的产生与计数原理- 数字电子时钟的组成与工作原理- EDA技术简介及其在数字电子时钟设计中的应用2. 数字电子时钟设计与实现- 硬件设计:时钟信号电路、计数器电路、显示电路等- 软件编程:基于单片机的程序编写,实现时钟功能- 系统调试:电路测试、程序调试及优化3. 教学实践与项目汇报- 实践操作:运用EDA工具进行电路设计与仿真测试- 项目实施:分组进行数字电子时钟设计,培养学生的团队协作能力- 项目汇报:展示设计成果,锻炼学生的沟通表达和问题分析解决能力教学内容安排和进度如下:1. 第一周:数字电子时钟原理及EDA技术概述2. 第二周:硬件设计与软件编程基础3. 第三周:系统调试与优化4. 第四周:实践操作与项目实施5. 第五周:项目汇报与评价教学内容与教材章节关联如下:1. 《电子技术基础》第三章:数字电路基础2. 《单片机原理与应用》第四章:单片机程序设计3. 《EDA技术及应用》第二章:EDA工具使用与电路设计实例三、教学方法针对本章节内容,采用以下多样化的教学方法,以激发学生的学习兴趣和主动性:1. 讲授法:用于对基本原理和概念进行系统讲解,如数字电子时钟的工作原理、EDA技术概述等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

EDA数字钟设计报告姓名: xxx学号:xxxxxxx专业:电子与通信工程日期:2014-11-7江苏科技大学电信院2014-11-71 引言数字钟通过数字电路技术实现时、分、秒计时,与机械钟相比具有更高的准确性和直观性,具有更长的使用寿命,已得到广泛的使用。

数字钟的设计方法有许多种,例如可用中小规模集成电路组成电子钟,也可以利用专用的电子钟芯片配以显示电路及其所需要的外围电路组成电子钟,还可以利用单片机来实现电子钟等等。

这些方法都各有其特点,本次电子线路课程设计是在vhdl基础上设计并制作一个可以调控的数字钟。

1.1 实验目的与要求1.1.1 实验目的(1)掌握GW48PK2++实验系统的基本用法以及vhdl语言的使用:(2)巩固元件例化、元件调用的基本方法,以及数码管、按键扫描的相关知识。

1.1.2实验要求(1)采用元件例化、元件调用实现整体设计;(2)利用按键进行调时;(3)能在实验箱进行仿真验证。

2 系统设计2.1 原理图设计数字钟原理图,如图1图1 数字钟原理图如图1所示,该系统主要包含六个模块,分为分频器、计数以及显示模块三大部分,另有按键进行时间控制。

2.2 各模块设计2.2.1分频器library ieee;use ieee.std_logic_1164.all;use ieee.std_logic_unsigned.all;entity div isport(clk0:in std_logic;clk_1Hz,clk_1kHz:out std_logic);end entity;architecture one of div issignal q1Hz:integer range 0 to 10000000-1 ;signal q1kHz:integer range 0 to 10000-1 ;beginprocess(clk0)beginif clk0'event and clk0='1'thenif q1Hz<5000000-1 then clk_1Hz<='0';q1Hz<=q1Hz+1;elsif q1Hz=10000000-1 then q1Hz<=0;else clk_1Hz<='1';q1Hz<=q1Hz+1;end if;if q1kHz<5000-1 then clk_1kHz<='0';q1kHz<=q1kHz+1;elsif q1kHz=10000-1 then q1kHz<=0;else clk_1kHz<='1';q1kHz<=q1kHz+1;end if;end if;end process;end;该模块将10MHz的时钟进行分频,产生1S和1mS的信号传递给计数与显示部分。

2.2.2计数部分(1)60进制(秒,分——程序相同)entity cnt60s isport(clk,set:in std_logic;CLR:in std_logic:='0';--- d: in std_logic_vector(7 downto 0)co:out std_logic;h,l:buffer std_logic_vector(3 downto 0));end entity;architecture one of cnt60s issignal co1,set1 : std_logic;beginset1 <= set ;co <= (set1 or co1);process(clk,CLR)beginif CLR='1'thenh<="0000";l<="0000"; -----清零elseif clk'event and clk='1'then--if start='1' then-- h<=d(7 downto 4); -----十位为高4位-- l<=d(3 downto 0); -----个位为低4位if(h="0101" and l="1001")thenco1<='1';l<="0000";h<="0000";elseif l<"1001" thenl<=l+1;elsel<="0000";if h<"0101" thenh<=h+1;end if;end if;co1<='0';end if;end if;end if;end process;end;(2)24进制(时)library ieee;use ieee.std_logic_1164.all;use ieee.std_logic_unsigned.all;entity cnt24 isport(clk:in std_logic;CLR:in std_logic:='0';-- d: in std_logic_vector(7 downto 0) --- co:out std_logic;h,l:buffer std_logic_vector(3 downto 0)); end entity;architecture one of cnt24 isbeginprocess(clk,CLR)beginif CLR='1'thenh<="0000";l<="0000"; -----清零elsif clk'event and clk='1'then-- if start='1' then-- h<=d(7 downto 4); -----十位为高4位-- l<=d(3 downto 0); -----个位为低4位if h="0000"or h="0001" thenif l="1001" thenl<="0000";h<=h+1;elsel<=l+1;end if;elseif l="0011" thenl<="0000";if h="0010" thenh<="0000";elseh<=h+1;end if;elsel<=l+1;end if;end if;end if;end process;end;2.2.3显示部分(1)动态扫描library ieee;use ieee.std_logic_1164.all;use ieee.std_logic_unsigned.all;entity auto_cnt isport(clk:in std_logic;cnt: buffer integer range 0 to 7);end entity;architecture one of auto_cnt isbeginprocess(clk)beginif(clk'event and clk='1')thencnt<=cnt+1;end if;end process;end;(2)数码管显示library ieee;use ieee.std_logic_1164.all;use ieee.std_logic_unsigned.all;use ieee.std_logic_arith.all;entity display isport(cnt:in integer range 0 to 7;hh,hl,mh,ml,sh,sl: in std_logic_vector(3 downto 0);sg: out std_logic_vector(6 downto 0);bt: out std_logic_vector(7 downto 0)); end entity;architecture one of display issignal a: integer range 0 to 10;beginP1:process(cnt,hh,hl,mh,ml,sh,sl)begincase cnt iswhen 0 => bt <= "00000001";a <= conv_integer(hh);when 1 => bt <= "00000010";a <= conv_integer(hl);when 2 => bt <= "00000100";a <= 10;----jiangefu"-"when 3 => bt <= "00001000";a <= conv_integer(mh);when 4 => bt <= "00010000";a <= conv_integer(ml);when 5 => bt <= "00100000";a <= 10;----jiangefu"-"when 6 => bt <= "01000000";a <= conv_integer(sh);when 7 => bt <= "10000000";a <= conv_integer(sl);when others => null;end case;end process P1;P2:process(a)begincase a iswhen 0 => sg <= "0111111";when 1 => sg <= "0000110";when 2 => sg <= "1011011";when 3 => sg <= "1001111";when 4 => sg <= "1100110";when 5 => sg <= "1101101";when 6 => sg <= "1111101";when 7 => sg <= "0000111";when 8 => sg <= "1111111";when 9 => sg <= "1101111";when 10 => sg <= "1000000";when others =>sg <= "1000000";end case;end process P2;end;2.2.4顶层文件library ieee;use ieee.std_logic_1164.all;use ieee.std_logic_unsigned.all;use ieee.std_logic_arith.all;entity dclock isport(clk,s1,s0,k0:in std_logic;sg7: out std_logic_vector(6 downto 0);bt8: out std_logic_vector(7 downto 0));end entity;architecture one of dclock iscomponent divport(clk0:in std_logic;clk_1Hz,clk_1kHz:out std_logic);end component;component cnt60sport(clk,set:in std_logic;CLR:in std_logic:='0';--- d: in std_logic_vector(7 downto 0) co:out std_logic;h,l:buffer std_logic_vector(3 downto 0));end component;component cnt60mport(clk,set:in std_logic;CLR:in std_logic:='0';--- d: in std_logic_vector(7 downto 0)co:out std_logic;h,l:buffer std_logic_vector(3 downto 0));end component;component cnt24port(clk:in std_logic;CLR:in std_logic:='0';-- d: in std_logic_vector(7 downto 0)--- co:out std_logic;h,l:buffer std_logic_vector(3 downto 0));end component;component auto_cntport(clk:IN std_logic;cnt: buffer integer range 0 to 7);end component;component displayport(cnt:IN integer range 0 to 7;hh,hl,mh,ml,sh,sl: IN std_logic_vector(3 downto 0);sg: OUT std_logic_vector(6 downto 0);bt: OUT std_logic_vector(7 downto 0));end component;signal d,e,f,g:std_logic;signal m1,m0,n1,n0,p1,p0:std_logic_vector(3 downto 0);signal t:integer range 0 to 7;beginu1:div port map(clk0=>clk,clk_1Hz=>d,clk_1kHz=>e);u2:cnt60s port map(clk=>d,set=>s0,CLR=>k0,co=>f,h=>m1,l=>m0);u3:cnt60m port map(clk=>f,set=>s1,CLR=>k0,co=>g,h=>n1,l=>n0);u4:cnt24 port map(clk=>g,CLR=>k0,h=>p1,l=>p0);u5:auto_cnt port map(clk=>e,cnt=>t);u6:display port map(cnt=>t,hh=>m1,hl=>m0,mh=>n1,ml=>n0,sh=>p1, sl=>p0,sg=>sg7,bt=>bt8);end;3 实验结果与分析按下K2后,分钟加1,如图3所示,时间为00-04-09。

相关文档
最新文档