数学建模案例分析-- 模糊数学方法建模1模糊综合评判及其应用

合集下载

数学建模-模糊综合评判

数学建模-模糊综合评判

在综合评判中起主导作用时,建议采用模型1; 当模型1失效时可采用模型2,模型3.
模型4 M(●,+)----加权平均模型
n
bj ai • rij
j 1,2,, m
i 1
模型4对所有因素依权重大小均衡兼顾,
适用于考虑各因素起作用的情况
注:有关合成算子以及权值确定可以查阅相关 资料,根据实际情况选择。
值就是 x0对A 的隶属度值。这种方法较直观地反映了 模糊概念中的隶属程度,但其计算量相当大。
(2)专家经验法: 专家经验法是根据专家的实际经验给出模
糊信息的处理算式或相应权系数值来确定隶属 函数的一种方法。在许多情况下,经常是初步 确定粗略的隶属函数,然后再通过“学习”和 实践检验逐步修改和完善,而实际效果正是检 验和调整隶属函数的依据。

设论域X=[0,100],模糊子集A表示“年老”,B 表示“年轻”。Zadeh给出的A、B的隶属度函数 分别为:
0
Ax
1
x
50 5
2
1
1
Bx
1
x
25 5
2
1
0 x 50; 50 x 100.
0 x 25; 25 x 100.
μ(x) 1
年轻
0
25
50
根据定义,我们不难算出 B(30)=0.5,
R=(rij)n×m∈F(X×Y)。
n
(4)确定各因素权重 A=(a1,a2,…,an), ai 1, ai 0 i 1
(5)做综合评判 B A R
注:
(1) 为了更好地理解、解释评判结果,可 以将评判结果归一化。令
B' (b1',b2 ',, bm ')

数学建模方法详解--模糊数学

数学建模方法详解--模糊数学

数学建模方法详解--模糊数学在生产实践、科学实验以及日常生活中,人们经常会遇到模糊概念(或现象)。

例如,大与小、轻与重、快与慢、动与静、深与浅、美与丑等都包含着一定的模糊概念。

随着科学技术的发展,各学科领域对于这些模糊概念有关的实际问题往往都需要给出定量的分析,这就需要利用模糊数学这一工具来解决。

模糊数学是一个较新的现代应用数学学科,它是继经典数学、统计数学之后发展起来的一个新的数学学科。

统计数学是将数学的应用范围从确定性的领域扩大到了不确定性的领域,即从必然现象到偶然现象,而模糊数学则是把数学的应用范围从确定性的领域扩大到了模糊领域,即从精确现象到模糊现象。

在各科学领域中,所涉及的各种量总是可以分为确定性和不确定性两大类。

对于不确定性问题,又可分为随机不确定性和模糊不确定性两类。

模糊数学就是研究属于不确定性,而又具有模糊性的量的变化规律的一种数学方法。

本章对于实际中具有模糊性的问题,利用模糊数学的理论知识建立数学模型解决问题。

1.1 模糊数学的基本概念1.1.1 模糊集与隶属函数 1. 模糊集与隶属函数一般来说,我们对通常集合的概念并不陌生,如果将所讨论的对象限制在一定的范围内,并记所讨论的对象的全体构成的集合为U ,则称之为论域(或称为全域、全集、空间、话题)。

如果U 是论域 ,则U 的所有子集组成的集合称之为U 的幂集,记作)(U F 。

在此,总是假设问题的论域是非空的。

为了与模糊集相区别,在这里称通常的集合为普通集。

对于论域U 的每一个元素U x ∈和某一个子集U A ⊂,有A x ∈或A x ∉,二者有且仅有一个成立。

于是,对于子集A 定义映射}1,0{:→U A μ即⎩⎨⎧∉∈=,0,,1)(A x A x x A ,μ则称之为集合A 的特征函数,集合A 可以由特征函数唯一确定。

所谓论域U 上的模糊集A 是指:对于任意U x ∈总以某个程度)]1,0[(∈A A μμ属于A ,而不能用A x ∈或A x ∉描述。

模糊综合评价模型的研究及应用

模糊综合评价模型的研究及应用

四、实验结果及分析
在实验过程中,我们得到了以下结果并进行以下分析:
1、模型的拟合度:通过比较模型预测结果与实际结果之间的差异,可以得 出模型的拟合度。实验结果表明,我们的模糊综合评价模型具有较高的拟合度, 能够较为准确地预测评价结果。
2、置信区间:通过计算模型预测结果的置信区间,可以评估模型的可靠性 和稳定性。实验结果表明,我们的模型的置信区间相对较小,说明模型较为稳定 可靠。
四、应用实例
为了验证基于云模型的模糊综合评价方法的有效性,我们将其应用于一个水 利工程项目的风险评估中。首先,我们确定了风险评估的主要因素,如技术风险、 市场风险、政策风险等。然后,我们利用云模型确定了各因素的权重。接着,我 们建立了评价集,将风险等级分为五级:低风险、较低风险、中等风险、较高风 险和高风险。最后,我们进行了单因素评价和多因素综合评价,得到了该项目的 风险评估结果。
4、计算综合评价结果
通过将权重向量和评价矩阵进行模糊运算,可以得出审计风险的综合评价结 果。该结果可以反映审计风险的总体水平,为审计师提供参考。
三、应用实例
假设某公司财务报表存在一定的不确定性、不完整性和不准确性,同时审计 师的执业能力和职业道德水平也存在一定的问题。通过应用基于动态模糊评价的 审计风险综合评价模型,我们可以得出该公司的审计风险较高。因此,审计师应 谨慎发表意见,充分披露相关信息,以降低审计风险。
三、模型建立与评价
在模糊综合评价模型的建立和评价过程中,我们需要以下几方面的考虑:
1、数据集的选择:为了建立有效的模糊综合评价模型,需要选择适当的数 据集。数据集应该具有一定的代表性,能够涵盖多种情况和情境,以便于我们更 好地训练模型并进行验证。
2、评价指标的选择:评价指标的选择对于模糊综合评价模型的建立至关重 要。我们应该根据评价对象的特征和评价目标,选择恰当的评价指标,并对评价 指标进行分类和权重分配。

模糊数学方法在数学建模中的应用

模糊数学方法在数学建模中的应用
鲁棒控制
鲁棒控制是控制理论的一个重要分支,它主要研究如程中具有广泛的应用价值。
03
模糊数学方法在数学建模中的具体应用案例
基于模糊逻辑的决策支持系统设计
总结词
模糊逻辑是一种处理不确定性、不完全性信息的数学工具,通过引入模糊集合 和模糊逻辑运算,能够更好地描述现实世界中的复杂现象和决策问题。
模糊逻辑在决策分析中的应用
01
模糊逻辑用于处理不确定性
模糊逻辑通过引入模糊集合的概念,能够处理不确定性和不精确性,使
得决策分析更加合理和可靠。
02
模糊推理系统
模糊推理系统是模糊逻辑的重要应用之一,它基于模糊逻辑的原理,通
过模糊集合和模糊规则进行推理,适用于复杂的决策问题。
03
模糊决策分析
模糊决策分析方法能够综合考虑多种因素,包括模糊因素,从而做出更
模糊数学方法的优势
处理不确定性和模糊性
模糊数学方法能够处理不确定性和模糊性,这在许多实际问题中是常见且必要的。
提高建模精度
通过引入模糊集合和隶属函数,模糊数学方法能够更准确地描述事物的模糊性和不确定性 ,从而提高建模精度。
增强模型适应性
模糊数学方法允许模型参数具有一定的模糊范围,增强了模型的适应性和鲁棒性,能够更 好地应对实际问题的复杂性和不确定性。
模糊数学方法在数学建模中的 应用

CONTENCT

• 模糊数学方法简介 • 模糊数学方法在数学建模中的应用
领域 • 模糊数学方法在数学建模中的具体
应用案例 • 模糊数学方法在数学建模中的优势
和局限性 • 结论
01
模糊数学方法简介
模糊数学方法的起源和发展
起源
模糊数学方法起源于20世纪60年代,由L.A.Zadeh教授提出,旨 在解决传统数学方法无法处理的模糊性问题。

模糊数学在数学建模中的应用

模糊数学在数学建模中的应用

则称R为U上的等价关系 。
特殊的等价关系
例10: 设U={u1,u2,u3}, 则 U×U={(u1, u1),(u1, u2),(u1, u3),(u2, u1),(u2, u2),(u2, u3) ,(u3, u1),(u3, u2),(u3, u3)}全称关系; I ={(u1, u1),(u2, u2), (u3, u3)}恒等关系。 用方阵表示如下:
模糊集合的表示方法
Zadeh 表示法
(1)
若论域U 为有限集,即U ={u1 , u2 , … , un},
则 A F ( U ) 可表示为
Au1 u1 Au2 u2 Aun un
A



例4:设U ={u1 , u2 , u3 , u4 , u5 },
A 0.87 u1 0.75 u2 0.96 u3 0.78 u4 0.56 u5
(2)如果RT= R;则称R为对称的;
(3) 如果R ◦ R R ,则称 R 为传递的。 自反的,对称的,传递的模糊关系称为模糊等价关系。
模糊等价关系
例17: 设U={u1,u2,u3,u4,u5}, 如下R为模糊等价关系
1 0.80 R 0.80 0.20 0.85
1、模糊聚类分析
(1)、模糊数学的基本思想; (2)、普通关系与布尔矩阵;
(3)、模糊关系与模糊矩阵;
(4)、模糊聚类分析原理。
模糊数学的基本思想
经典 集合:是指具有某种特定属性的对象集体。
例1:“延大09级的学生”; 模糊集合: 例2:“延大09级个子高的学生”。 区别: 是否满足排中率。
经典集合与特征函数
若记 P ( U )和 F ( U )分别为 U 上的所有经典集合和所有模糊集合

模糊数学综合评判方法在评标中的应用

模糊数学综合评判方法在评标中的应用

模糊数学综合评判方法在评标中的应用模糊数学综合评判方法是一种基于模糊集合理论的评判方法,通过引入隶属度的概念,将不确定性与模糊性考虑在内,对评价对象的综合评判进行量化分析。

在评标中,模糊数学综合评判方法被广泛应用于不确定性较高的决策问题,可提高决策结果的准确性和可靠性。

本文将从模糊数学综合评判方法的原理、应用步骤和实例等方面进行研究。

模糊数学综合评判方法的原理是基于模糊关系的数学模型,其中包括三个重要的基本概念:隶属度函数、模糊数和模糊关系。

隶属度函数描述了一个事物或概念对一些模糊集合的属性的适应程度,其取值范围在[0,1]之间。

模糊数是对现实世界中模糊变量的表示,它由隶属度函数组成的向量表示。

模糊关系是对两个或多个模糊集合之间的关系进行建模,其中包括模糊度、相似度和包容度等概念。

在模糊数学综合评判方法中,评价对象通常是以指标体系的形式呈现,指标体系由若干指标构成,每个指标都有一定的权重。

评价过程主要包括建立模糊综合评价模型、隶属度函数的确定、指标权重的确定、隶属度矩阵的求解和评价对象的排序等步骤。

首先,建立模糊综合评价模型是模糊数学综合评判方法的基本步骤。

根据评价对象的实际情况和要求,选择适当的评价模型,确定模型的输入和输出变量。

常用的模型包括模糊综合评价、模糊决策和模糊优化等。

其次,确定隶属度函数是模糊数学综合评判方法的重要步骤。

隶属度函数的选择关系到模型的准确性和可靠性。

常用的隶属度函数包括三角隶属度函数、梯形隶属度函数和高斯隶属度函数等。

然后,确定指标权重是模糊数学综合评判方法的核心步骤。

指标权重的确定可以通过主观判断、专家调查和统计分析等方法来实现。

常用的权重分配方法有层次分析法、主成分分析法和熵权法等。

随后,求解隶属度矩阵是模糊数学综合评判方法的关键步骤。

隶属度矩阵反映了评价对象在各个指标上的适应程度。

通过计算指标与评价对象之间的隶属度函数,可以得到隶属度矩阵。

最后,进行评价对象的排序是模糊数学综合评判方法的结果展示步骤。

模糊综合评价模型的研究及应用

模糊综合评价模型的研究及应用

模糊综合评价模型的研究及应用模糊综合评价模型是一种基于模糊数学理论的决策分析方法,它可以解决具有模糊性问题的综合评价和决策问题。

模糊综合评价模型主要通过建立模糊评价矩阵,利用模糊数学的运算规则计算出各个评价指标的权重和综合评价值,从而对评价对象进行排序和决策。

在模糊数学的基本理论中,包括模糊集合的定义、模糊关系的建立和运算等内容。

模糊集合是对现实事物或现象的模糊描述,可以用来表示评价指标的隶属度程度。

模糊关系是一种模糊数值之间的映射关系,它可以用来描述评价指标之间的相互关系。

模糊数学的运算规则包括模糊矩阵的加法、减法、乘法和除法等运算,在模糊综合评价模型中起到了关键作用。

在模糊综合评价方法的建模和计算中,常用的方法包括模糊层次分析法、模糊敏感性分析法和模糊综合评判法等。

模糊层次分析法是一种基于层次结构的模糊评价方法,它通过建立评价指标的层次结构,确定各个层次之间的关系,以及评价指标之间的相对权重。

模糊敏感性分析法是一种基于模糊关系的模糊评价方法,它通过计算评价指标之间的模糊关系矩阵,对各个评价指标进行排序和评价。

模糊综合评判法是一种基于模糊矩阵的模糊评价方法,它通过计算评价指标之间的模糊矩阵,确定各个指标的权重和综合评价值。

在模糊综合评价模型的改进和应用中,主要包括模糊综合评价方法的改进和拓展以及模糊综合评价模型在各个领域的应用。

模糊综合评价方法的改进和拓展包括模糊综合评价模型的模糊数学运算规则的改进和扩展、评价指标的模糊化处理方法的改进和扩展等。

模糊综合评价模型在各个领域的应用包括工业工程、管理科学、经济学、环境科学等领域。

在工业工程中,模糊综合评价模型可以用于产品质量评价、供应链绩效评价等;在管理科学中,模糊综合评价模型可以用于人力资源评价、员工绩效评价等;在经济学中,模糊综合评价模型可以用于产业竞争力评价、金融风险评价等;在环境科学中,模糊综合评价模型可以用于环境污染评价、生态系统评价等。

模糊综合评价的原理及应用

模糊综合评价的原理及应用

模糊综合评价的原理及应用1. 模糊综合评价的概述模糊综合评价是一种基于模糊逻辑理论的评价方法,适用于处理多因素、多指标、多层次的评价问题。

它能够将模糊信息进行数学化处理,从而得到相对准确的评价结果。

模糊综合评价方法在决策分析、工程评估、经济评价等领域得到广泛的应用。

2. 模糊综合评价的原理模糊综合评价的原理基于模糊集合理论和模糊运算。

其主要的思想是将模糊的评价问题通过模糊集合的描述进行建模,然后利用模糊运算对模糊集合进行处理,最终得到评价结果。

3. 模糊综合评价的步骤模糊综合评价一般包括以下步骤: - Step 1:确定评价指标集合。

根据评价目标确定一组能够全面反映评价对象特征的评价指标。

- Step 2:构建模糊集合。

对每个评价指标进行模糊化处理,将确定的评价指标转化为对应的模糊集合。

- Step 3:设定权重。

根据评价指标的重要性,确定每个评价指标的权重。

- Step 4:进行模糊运算。

对于模糊集合进行模糊运算,将不同指标的模糊集合进行组合。

- Step 5:解模糊化。

将模糊的评价结果通过解模糊化方法转化为具体的评价值。

4. 模糊综合评价的应用模糊综合评价方法广泛应用于各个领域,以下是一些典型的应用场景:4.1 工程评估在工程评估过程中,常常需要对多个因素进行综合评价,以确定最优的方案。

模糊综合评价可以将各个因素的模糊信息进行处理,得出一个相对准确的评估结果。

4.2 经济评价在经济决策中,常常需要对多个经济指标进行综合评估,以确定经济效益最大化的策略。

模糊综合评价可以将不确定的经济指标进行数学化处理,得到相对可靠的评估结果。

4.3 城市规划在城市规划过程中,常常需要考虑多个因素,如交通、环境、人口等。

模糊综合评价可以将这些因素进行综合评估,帮助决策者做出合理的规划决策。

4.4 产品质量评价在产品质量评价中,常常需要考虑多个指标,如外观、性能、可靠性等。

模糊综合评价可以将这些指标进行综合评估,给出一个全面的产品质量评价结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章 模糊数学方法建模1965年,美国自动控制学家L.A.Zadch 首先提出了用“模糊集合”描述模糊事物的数学模型。

它的理论和方法从上个世纪七十年代开始受到重视并得到迅速发展,特别是愈来愈广泛地应用于解决生产实际问题。

模糊数学的理论和方法解决了许多经典数学和统计数学难以解决的问题,这里,我们通过几个例子介绍模糊综合评判、模糊模式识别、模糊聚类、模糊控制等最常用方法的应用。

而相应的理论和算法这里不作详细介绍,请参阅有关的书籍。

§1 模糊综合评判及其应用一、模糊综合评判在我们的日常生活和工作中,无论是产品质量的评级,科技成果的鉴定,还是干部、学生的评优等等,都属于评判的范畴。

如果考虑的因素只有一个,评判就很简单,只要给对象一个评价分数,按分数的高低,就可将评判的对象排出优劣的次序。

但是一个事物往往具有多种属性,评价事物必须同时考虑各种因素,这就是综合评判问题。

所谓综合评判,就是对受到多种因素制约的事物或对象,作出一个总的评价。

综合评判最简单的方法有两种方式:一种是总分法,设评判对象有m 个因素,我们对每一个因素给出一个评分i s ,计算出评判对象取得的分数总和∑==mi isS 1按S 的大小给评判对象排出名次。

例如体育比赛中五项全能的评判,就是采用这种方法。

另一种是采用加权的方法,根据不同因素的重要程度,赋以一定的权重,令i a 表示对第i 个因素的权重,并规定∑==mi ia11,于是用∑==mi ii sa S 1按S 的大小给评判对象排出名次。

以上两种方法所得结果都用一个总分值表示,在处理简单问题时容易做到,而多数情况下评判是难以用一个简单的数值表示的,这时就应该采用模糊综合评判。

由于在很多问题上,我们对事物的评价常常带有模糊性,因此,应用模糊数学的方法进行综合评判将会取得更好的实际效果。

模糊综合评判的数学模型可分为一级模型和多级模型两类,这里仅介绍一级模型。

应用一级模型进行综合评判,一般可归纳为以下几个步骤:(1)建立评判对象的因素集},,,{21n u u u U =。

因素就是对象的各种属性或性能,在不同场合,也称为参数指标或质量指标,它们综合地反映出对象的质量,人们就是根据这些因素给对象评价。

(2)建立评判集},,,{21m V V V V =。

例如对工业产品,评判集就是等级的集合。

(3)建立单因素评判。

即建立一个从U 到)(V F 的模糊映射U u V F U f i ∈∀→),(:~mim i i i i V rV r V r u f u +++=→ 2211~~)( )1,1,10(m j n i r ij ≤≤≤≤≤≤ 由~f 可诱导出模糊关系~R ,得到单因素评判矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=nm n n m m r r r r r r r r r R 212222111211~ (4)确定权重。

由于对U 中各因素有不同的侧重,需要对每个因素赋予不同的权重,它可表示为U 上的一个模糊子集},,,{21~n a a a A =,并且规定∑==ni ia11。

(5)综合评判。

在~R 与~A 求出之后,则综合评判为~~~R A B =,记},,,{21~m b b b B =,它是V上的模糊子集。

其中),,2,1()(1m j r a b ij i ni j =∧∨==如果评判结果∑=≠mj jb11,应将它归一化。

在模糊综合评判的上述步骤中,建立单因素评判矩阵~R 和确定权重分配~A ,是两项关键性的工作,没有统一的格式可以遵循,一般采用统计实验或专家评分等方法求出。

二、应用实例例1 对教师教学质量的综合评判。

设因素集 },,,,{54321u u u u u U =这里1u 为教材熟练,2u 为逻辑性强,3u 为启发性强,4u 为语言生动,5u 为板书整齐。

设评价集 },,,{4321V V V V V =这里1V 为很好,2V 为较好,3V 为一般,4V 为不好。

⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=1.01.05.03.01.01.04.04.01.02.04.03.001.04.05.01.02.025.045.0~R假定确定权重分配为 )1.0,2.0,2.0,2.0,3.0(~=A 得出综合评判如下 )1.0,2.0,25.0,3.0(~~~==R A B对结果进行归一化 )12.0,24.0,29.0,35.0(85.01.0,85.02.0,85.025.0,85.03.0~=⎪⎭⎫⎝⎛=B 评判结果表明,对该教师的课堂教学认为“很好”的占35%,“较好”的占29%,“一般”的占24%,“不好”的占12%,根据最大隶属原则,结论是“很好”。

例2 评判某地区是否适宜种植橡胶。

给定三个对橡胶生长影响较大的气候因素作为因素集,即},,{321u u u U =。

这里1u 为年平均气温,2u 为年极端最低气温,3u 为年平均风速。

再给定评价集},,,{4321V V V V V =,这里1V 为很适宜,2V 为较适宜,3V 为适宜,4V 为不适宜。

根据历年的资料和经验,选定类似戒上型的隶属函数,即对于年平均气温1u⎪⎩⎪⎨⎧<≤-+≥=230,)23(1123,1)(1211111u u a u u μ其中1a 为参数,一般取0625.01=a 。

对于年极端最低温度2u⎪⎩⎪⎨⎧<≤--+≥=84,)8(118,1)(2222222u u a u u μ其中2a 为参数,一般取0833.02=a 。

对于年平均风速3u⎪⎩⎪⎨⎧>-+≤=1,)1(111,1)(3233333u u a u u μ其中2a 为参数,一般取82/8.03=a 。

将某地区自1960年至1978年间每年对三个气候因素实测的数据,分别代入上面三个隶属函数公式,求出当年该因素的隶属度列于下表:对隶属度的大小给予分类,即规定 (1)当9.0≥μ时,为“很适宜”; (2)当8.09.0≥>μ时,为“较适宜”; (3)当7.08.0≥>μ时,为“适宜”; (4)当7.0<μ时,为“不适宜”。

以单因素1u 为例,该地区在19年中“很适宜”的年份有8年,占总数的42%,“较适宜”的年份有11年,占58%,其他两种均无,占0%,于是得到对1u 而言V 上的模糊集 )0,0,58.0,42.0(0058.042.04321~1=+++=V V V V u 同理可得相对其它两个因素的模糊集)74.0,26.0,0,0(~2=u ,)63.0,26.0,11.0,0(~3=u 。

从而建立了单因素评判矩阵⎪⎪⎪⎭⎫ ⎝⎛=63.026.011.0074.026.0000058.042.0~R 根据三个气候因素的作用,给定权重分配为)01.0,80.0,19.0(~=A得出综合评判如下 )74.0,26.0,19.0,19.0(~~~==R A B对结果进行归一化 )53.0,19.0,14.0,14.0(~=B根据最大隶属原则,结论是判定该地区种植橡胶为“不适宜”。

例3 污水处理厂运行管理效果的综合评判。

为了评价污水处理厂经营管理的优劣,给定5个评判因素},,,,{54321u u u u u U =。

这里1u 为每天处理污水量(千吨/日),2u 为五日生化需氧量BOD5去除率(百分比),3u 为浮物SS 去除率(百分比),4u 为气水比(处理一吨污水消耗的空气量)(立方米/吨),5u 为单耗(用去一公斤BOD5所耗电的度数)。

给出评价集},,,,{54321V V V V V V =。

这里1V 为很好,2V 为好,3V 为中等,4V 为差,5V 为很差。

根据实际情况进行定级,以1u 为例,当181>u 时,定为“很好”;17181>≥u 时定为“好”等等,对各因素定级的划分见下表。

对某污水处理厂多年运行的大量实测数据经技术处理后,按每一旬得出各因素的平均值,见下表。

根据上表建立单因素评判矩阵~R ,例如对因素4u 而言,总共36次统计中它属于1V 的次数为10,占总数的28%,因而28.041=r ,其余类似可求,于是得到⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=10.006.014.020.050.0006.017.050.028.003.014.011.028.044.0008.008.020.064.036.019.025.014.006.0~R这是根据以往数据建立的评判矩阵,对今后每旬的运行效果的评价,还须求出权重分配~A ,各个因素对~A 的隶属度,用如下隶属函数公式计算:(1)1u 对~A 的隶属函数⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤<-≤<-->=15,05.1615,)15(92185.16,)18(92118,1)(1121121111u u u u u u u μ(2)2u 对~A 的隶属函数 ⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤<⎪⎭⎫ ⎝⎛-≤<⎪⎭⎫ ⎝⎛-->=80,05.8680,13802935.86,13932193,1)(2222222222u u u u u u u μ (3)3u 对~A 的隶属函数 ⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤<⎪⎭⎫ ⎝⎛-≤<⎪⎭⎫⎝⎛-->=80,05.8680,13802935.86,13932193,1)(3323323333u u u u u u u μ (4)4u 对~A 的隶属函数 ⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤<⎪⎭⎫ ⎝⎛-≤<⎪⎭⎫⎝⎛--≤=10,0105.8,31025.87,37217,1)(4424424444u u u u u u u μ (5)5u 对~A 的隶属函数 ⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤<⎪⎭⎫ ⎝⎛-≤<⎪⎭⎫ ⎝⎛--≤=2.1,02.105.1,3.02.1205.19.0,3.09.0219.0,1)(5525525555u u u u u u u μ 于是权重分配确定为))(,)(,)(,)(,)((5544332211~u u u u u A μμμμμ=。

根据~~~R A B =,即可得出当前运行效果的综合评判。

例如该厂某月上旬的各项因素平均数据为:1u =13.9,2u =96.8%,3u =94.7%,4u =8.2,5u =1.24,将它们分别带入上面五个隶属函数公式,即可求出)0,68.0,1,1,0(~=A 。

从而求出)03.0,14.0,17.0,50.0,64.0(~~~==R A B ,归一化后得)02.0,09.0,11.0,34.0,43.0(~=B 。

相关文档
最新文档