河北省2011年数学中考试题及答案
2011河北中考数学试卷及答案解析.doc

2011年河北省中考数学试卷一、选择题(共12小题,1-6小题每小题2分,7-12小题,每题3分,满分30分)1、(2011•河北)计算30的结果是()A、3B、30C、1D、0考点:零指数幂。
专题:计算题。
分析:根据零指数幂:a0=1(a≠0)计算即可.解答:解:30=1,故选C.点评:本题主要考查了零指数幂,任何非0数的0次幂等于1.2、(2011•河北)如图,∠1+∠2等于()A、60°B、90°C、110°D、180°考点:余角和补角。
专题:计算题。
分析:根据平角的定义得到∠1+90°+∠2=180°,即由∠1+∠2=90°.解答:解:∵∠1+90°+∠2=180°,∴∠1+∠2=90°.故选B.点评:本题考查了平角的定义:180°的角叫平角.3、(2011•河北)下列分解因式正确的是()A、﹣a+a3=﹣a(1+a2)B、2a﹣4b+2=2(a﹣2b)C、a2﹣4=(a﹣2)2D、a2﹣2a+1=(a﹣1)2考点:提公因式法与公式法的综合运用。
专题:因式分解。
分析:根据提公因式法,平方差公式,完全平方公式求解即可求得答案.解答:解:A、﹣a+a3=﹣a(1﹣a2)=﹣a(1+a)(1﹣a),故本选项错误;B、2a﹣4b+2=2(a﹣2b+1),故本选项错误;C、a2﹣4=(a﹣2)(a+2),故本选项错误;D、a2﹣2a+1=(a﹣1)2,故本选项正确.故选D.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,理解因式分解与整式的乘法是互逆运算是解题的关键.4、(2011•河北)下列运算中,正确的是()A、2x﹣x=1B、x+x4=x5C、(﹣2x)3=﹣6x3D、x2y÷y=x2考点:整式的除法;合并同类项;幂的乘方与积的乘方。
2011年河北省中考数学试卷答案

2011年河北省初中毕业生升学文化课考试数学试题参考答案二、填空题13、π.14、5 .15、1 .16、27°.17、2 .18、3.三、解答题(共8小题,满分72分)19、解:∵是关于x,y的二元一次方程的解,∴2=+a,a=,∴(a+1)(a﹣1)+7=a2﹣1+7=3﹣1+7=9.20、解:(1)如图所示:(2)AA′=CC′=2.在Rt△OA′C′中,OA′=OC′=2,得A′C′=2;同理可得AC=4.∴四边形AA′C′C的周长=4+6.21、解:(1)∵转盘被等分成三个扇形,上面分别标有﹣1,1,2,∴小静转动转盘一次,得到负数的概率为:;(2)列表得:∴一共有9种等可能的结果,两人得到的数相同的有3种情况,∴两人“不谋而合”的概率为=.22解:(1)设乙单独整理x分钟完工,根据题意得:解得x=80,经检验x=80是原分式方程的解.答:乙单独整理80分钟完工.(2)设甲整理y分钟完工,根据题意,得解得:y≥25答:甲至少整理25分钟完工.23、解答:(1)证明:∵四边形ABCD是正方形,∴DC=DA,∠DCE=∠DAG=90°.又∵CE=AG,∴△DCE≌△GDA,∴DE=DG,∠EDC=∠GDA,又∵∠ADE+∠EDC=90°,∴∠ADE+∠GDA=90°,∴DE⊥DG.(2)如图.(3)四边形CEFK为平行四边形.证明:设CK、DE相交于M点,∵四边形ABCD和四边形DEFG都是正方形,∴AB∥CD,AB=CD,EF=DG,EF∥DG,∵BK=AG,∴KG=AB=CD,∴四边形CKGD是平行四边形,∴CK=DG=EF,CK∥DG,∴∠KME=∠GDE=∠DEF=90°,∴∠KME+∠DEF=180°,∴CK∥EF,∴四边形CEFK为平行四边形.(4)=.24、解:(1)根据图表上点的坐标为:(2,120),(2,200),∴汽车的速度为 60千米/时,火车的速度为 100千米/时,故答案为:60,100;(2)依据题意得出:y汽=240×2x+×5x+200,=500x+200;y火=240×1.6x+×5x+2280,=396x+2280.若y汽>y火,得出500x+200>396x+2280.∴x>20;(3)上周货运量=(17+20+19+22+22+23+24)÷7=21>20,从平均数分析,建议预定火车费用较省.从折线图走势分析,上周货运量周四(含周四)后大于20且呈上升趋势,建议预订火车费用较省.25、解:思考:根据两平行线之间垂线段最短,直接得出答案,当α=90度时,点P到CD 的距离最小,∵MN=8,∴OP=4,∴点P到CD的距离最小值为:6﹣4=2.故答案为:90,2;探究一:∵以点M为旋转中心,在AB,CD 之间顺时针旋转该半圆形纸片,直到不能再转动为止,如图2,∵MN=8,MO=4,OY=4,∴UO=2,∴得到最大旋转角∠BMO=30度,此时点N到CD的距离是 2;探究二(1)由已知得出M与P的距离为4,∴PM⊥AB时,点MP到AB的最大距离是4,从而点P到CD的最小距离为6﹣4=2,当扇形MOP在AB,CD之间旋转到不能再转时,弧MP与AB相切,此时旋转角最大,∠BMO的最大值为90°;(2)由探究一可知,点P是弧MP与CD的切线时,α大到最大,即OP⊥CD,此时延长PO 交AB于点H,α最大值为∠OMH+∠OHM=30°+90°=120°,如图4,当点P在CD上且与AB距离最小时,MP⊥CD,α达到最小,连接MP,作HO⊥MP于点H,由垂径定理,得出MH=3,在Rt△MOH中,MO=4,∴sin∠MOH==,∴∠MOH=49°,∵α=2∠MOH,∴α最小为98°,∴α的取值范围为:98°≤α≤120°.26、解:(1)把x=0,y=0代入y=x2+bx+c,得c=0,再把x=t,y=0代入y=x2+bx,得t2+bt=0,∵t>0,∴b=﹣t;(2)①不变.如图6,当x=1时,y=1﹣t,故M(1,1﹣t),∵tan∠AMP=1,∴∠AMP=45°;②S=S四边形AMNP﹣S△PAM=S△DPN+S梯形NDAM﹣S△PAM=(t﹣4)(4t﹣16)+[(4t﹣16)+(t﹣1)]×3﹣(t﹣1)(t﹣1)=t2﹣t+6.解t2﹣t+6=,得:t1=,t2=,∵4<t<5,∴t1=舍去,∴t=.(3)<t<.。
2011河北中考数学试卷及答案解析

点评:本题考查了画位似图形.画位似图形的一般步骤为:确定位似中心,分别连接并延长位似中心和能代 表原图的关键点;根据相似比,确定能代表所作的为似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.同
《电力拖动控制线路与技能训练》试卷()
、(河北)甲、乙、丙三个旅行团的游客人数都相等,且毎团游客的平均年龄都是岁,这三个团
游客年龄的方差分别是甲,乙,丙,导游小王最喜欢带游客年龄相近的团队,若
在三个团中选择一个,则他应选( )
《电力拖动控制线路与技能训练》试卷()
、甲团 、乙团 、丙团 、甲或乙团 考点:方差。
专题:应用题。
分析:由甲,乙,丙,得到丙的方差最小,根据方差的意义得到丙旅行团的游 客年龄的波动最小.
设(,),(,), 则﹣,,
《电力拖动控制线路与技能训练》试卷()
的面积是 (﹣) ,正确; 、>时,随的增大而减小,错误; 、﹣,,正确; 、因为也行,正确; 正确的有, 故选.
点评:本题主要考查对反比例函数的性质,反比例函数图象上点的坐标特征,三角形的面积等知识点的理解和掌 握,能根据这些性质进行说理是解此题的关键. 二、填空题(共小题,每小题分,满分分)
《电力拖动控制线路与技能训练》试卷()
、第三象限 、第四象限 考点:一次函数的性质。 专题:存在型;数形结合。
分析:先判断出一次函数中的符号,再根据一次函数的性质进行解答即可. 解答:解:一次函数中>,>, 此函数经过一、二、三象限, 故选. 点评:本题考查的是一次函数的性质,即一次函数()中,当>时,函数图象经过一、 三象限,当>时,函数图象与轴正半轴相交. 、(河北)将图围成图的正方体,则图中的红心 标志所在的正方形是正方体中的( )
2011年河北中考数学试题及答案word版可编辑

(2)设每天用汽车和火车运输的总费用分别为y汽(元)和y火(元),分别求y汽、y火与x的函数关系式(不必写出x的取值范围),及x为何值时y汽>y火;
(总费用=运输费+冷藏费+固定费用)
(3)请你从平均数、折线图走势两个角度分析,建议该经销商应提前为下周预定哪种运输工具,才能使每天的运输总费用较省?
①x<0时,y=
②△OPQ的面积为定值.
③x>0时,y随x的增大而增大
④MQ=2PM
⑤∠POQ可以等于90°.
其中正确的是:
A.①②④B.②④⑤C.③④⑤D.②③⑤
总分
核分人
2011年河北省初中毕业生升学文化课考试
数学试卷
卷II(非选择题,共96分)
注意事项:1.答卷II前,将密封线左侧的项目填写清楚.
现有货运收费项目及收费标准表、行驶路程s(千米)与行驶时间t(时)的函数图象(如图13-1)、上周货运量折线统计图(如图13-2)等信息如下:
货运收费项目及收费标准表
运输工具
运输费单价
元/(吨·千米)
冷藏费单价
元/(吨·时)
固定费用
元/次
汽车
2
5
200
火车
1.6
5
2280
(1)汽车的速度为___________千米/时,
18.如图9,给正五边形的顶点依次编号为1,2,3,4,5.若从某一顶点开始,沿正五边形顺时针方向行走,顶点编号的数字是几,就走几个边长,则称这种走法为一次“移位”.
如:小宇在编号为3的顶点上时,那么他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到达编号为1的顶点;然后从1→2为第二次“移位”.
2011年河北中考数学试题及答案

数学试卷
第 3 页(共 14 页)
三、解答题(本大题共 8 个小题,共 72 分.解答应写出文字说明、证明过程或演算步骤) 得 分 评卷人 19. (本小题满分 8 分)
x=2 已知 是关于 x,y 的二元一次方程 3x=y+a 的解. y= 3
求(a+1) (a–1)+7 的值
得 分
评卷人 20. (本小题满分 8 分)
5.一次函数 y=6x+1 的图象不经过 ... A.第一象限 B.第二象限 C.第三象限 D.第四象限
6.将图 2-1 围成图 2–2 的正方体,则图 2-1 中 的红心“ ”标志所在的正方形的是正方形 是下文体中的 A.面 CDHE C.面 ABFG B.面 BCEF D.面 ADHG
7.甲、乙、丙三个旅行团的游客人数相等,且每团游客的平均年龄都是 32 岁,这三个团
11.如图 4,在矩形中截取两个相同的圆作为圆柱的上、 下底面,剩余的矩形作为圆柱的侧面,刚好能组合成 圆柱.设矩形的长和宽分别为 y 和 x,则 y 与 x 的函 数图象大致是
12.根据图 5-1 所示的程序,得到了 y 与 x 的函数图象,如图 5-2.若点 M 是 y 轴正半轴上 任意一点, 过点 M 作 PQ∥x 轴交图象于点 P, Q,连接 OP,OQ.则以下结论: ①x<0 时,y=x
数学试卷
第 8 页(共 14 页)
得 分
评卷人 25. (本小题满分 10 分)
如图 14-1 至 14-4 中,两平行线 AB,CD 间的距离均为 6,点 M 为 AB 上一定点. 思考 如图 14-1,圆心为 O 的半圆形纸片在 AB,CD 之间 (包括 AB,CD) ,其直径 MN 在 AB 上,MN=8, .. 点 P 为半圆上一点,设∠MOP=α. 当 α=_____度时,点 P 到 CD 的距离最小,最小 值为_______ 探究一 在图 14-1 的基础上, 以点 M 为旋转中心, 在 AB, CD 之间顺时针旋转该半圆形纸片,直到不能再转动 为止,如图 14-2,得到最大旋转角∠BMO=_____度, 此时点 N 到 CD 的距离是_______. 探究二 将图 14-1 中的扇形纸片 NOP 按下面对 α 的要求 剪掉,使户型纸片 MOP 绕点 M 在 AB,CD 之间 顺时 .. 外旋转. (1)如图 14-3,当 α=60° 时,求在旋转过程中, 点 P 到 CD 的最小距离, 并请指出旋转角∠ BMO 的最大值 (2)如图 14-4,在扇形纸片 MOP 旋转过程中, 要保证点 P 能落在直线 CD 上, 请确定 α 的 取值范围. (参考数据:sin49° =4,cos41° =4,tan37° =4)
初中2011年河北省中考数学试卷及答案(WORD版)修正

索思——个性化思维教学中心SOSY Personalized Education Development Center索思教育2011河北省初中毕业生升学文化课考试数 学 试 卷卷Ⅰ(选择题,共30分)一、选择题(本大题共12个小题.1-6小题,每小题2分,7-12小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的1.计算300的结果是的结果是<1101<110133>A .3B .30C .1D .02.如图1,∠,∠11+∠+∠22等于等于 <1102 <1102 <110222>A .6060°°B .9090°°C .110110°°D .180180°°3.下列分解因式正确的是下列分解因式正确的是 <1103<1103 <110344> A .-a +a 3=-a (1(1++a 2)B .2a -4b +2=2(a -2b )C .a 22-4=(a -2)22D .a 22-2a +1=(a -1)224.下列运算中,正确的是下列运算中,正确的是 <1104 <1104 <110444>A .2x -x =1B .x +x 44=x 55C .(-2x )3=-6x 3D .x 22y ÷y =x 225.一次函数y =6x +1的图象不经过...<1105<11054>4> A .第一象限第一象限 B .第二象限第二象限 C .第三象限 D .第四象限第四象限6.将图2①围成图2②的正方体,则图②中的红心“”标志所在的正方形是正方体中的②的正方体,则图②中的红心“”标志所在的正方形是正方体中的 <1106 <1106 <110611>A .面CDHEB .面BCEFC .面ABFGD .面ADHG7.甲、乙、丙三个旅行团的游客人数都相等,且每团游客的平均年龄都是32岁,这三个团游客年龄的方并有分别是并有分别是 ,导游小王最喜欢带游客年龄相近的团队,若在这三个,导游小王最喜欢带游客年龄相近的团队,若在这三个团中选择一个,则他应选团中选择一个,则他应选, ,<1107<110733>A .甲团甲团B .乙团乙团C .丙团丙团D .甲或乙团甲或乙团8.一小球被抛出后,距离地面的高度h (米)和飞行时间t (秒)满足下面的函数关系式:h =-5(t -1)22+6,则小球距离地面的最大高度是,则小球距离地面的最大高度是<1108<110833>A .1米B .5米C .6米D .7米9.如图3,在△ABC 中,∠C =90=90°,°,BC =6=6,,D ,E 分别在AB ,AC 上,将△ABC 沿DE 折叠,使点A 落在A ′处,若A ′为CE 的中点,则折痕DE 的长为的长为 <1109<110922>A.12 515.若︱x -3︱+︱y +2︱=0=0,则,则x +y 的值为的值为_____________. <1115-_____________. <1115-_____________. <1115-11>16.如图7,点O 为优弧ACB 所在圆的心,∠AOC =108=108°,°,点D 在AB 的延长线上,BD =BC ,则∠D =____________. <1116-<1116-2727°>17.如图8中图①,两个等边△ABD ,△CBD 的边长均为1,将△ABD 沿AC 方向向右平移到△A ′B ′D ′的位置得到图②,则阴影部分的周长为位置得到图②,则阴影部分的周长为_________ <1117-_________ <1117-_________ <1117-22>18.如图9,给正五边形的顶点依次编号为1,2,3,4,5.5.若从某一顶点若从某一顶点若从某一顶点开始,沿正五边形的边顺时针行走,顶点编号的数字是几,就走几个开始,沿正五边形的边顺时针行走,顶点编号的数字是几,就走几个 边长,则称这种走法为一次“移位”边长,则称这种走法为一次“移位”. . . 如:小宇在编号为如:小宇在编号为3的顶点时,的顶点时, 那么他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到,这时他到 达编号为1的顶点;然后从1→2为第二次“移位”若小宇从编号为为第二次“移位”若小宇从编号为2的顶点开始,第10次“移位”后,则他所处顶点的编号是次“移位”后,则他所处顶点的编号是____________. <1118-____________. <1118-____________. <1118-33> 三、解答题(本大题共8个小题,共72分,解答应写出文字说明、证明过程 或演算步骤)19.(本小题满分8分)分)已知23x y =ìïí=ïî是关于x ,y 的二元一次方程3x y a =+的解的解. .求(a +1)(a -1)1)++7的值的值20.(本小题满分8分)分)如图1010,在,在6×8的网格图中,每个小正方形边长的网格图中,每个小正方形边长 均为1,点O 和△ABC 的顶点均为小正方形的顶点的顶点均为小正方形的顶点. . ⑴以O 为位似中心,在网格图...中作△A ′B ′C ′, 使△使△A ′B ′C ′和△ABC 位似,且位似比为1:2 ⑵连接⑴中的AA ′,求四边形AA ′C′C 的周长的周长. . (结果保留根号)(结果保留根号)22.(本小题满分8分)分)甲、乙两人准备整理一批新到的实验器材,若甲单独整理需要40分钟完工,若甲、乙共同整理20分钟后,乙需再单独整理20分钟才能完工分钟才能完工. .⑴问乙单独整理多少分钟完工?⑴问乙单独整理多少分钟完工?⑵若乙因式作需要,他的整理时间不超过30分钟,则甲至少整理多少分钟才能完工?分钟,则甲至少整理多少分钟才能完工?23.(本小题满分9分)分)如图1212,四边形,四边形ABCD是正方形,点E,K分别在BC,AB上,点G在BA的延长线上,且CE=BK=AG.求证:①DE=DG;②DE⊥DG;⑵尺规作图:以线段DE,DG为边作出正方形DEFG(要求:只保留作图痕(要求:只保留作图痕迹,不写作法和证明)迹,不写作法和证明);⑶连接⑵中的KF,猜想并写出四边形CEFK是怎样的特殊四边形,并证明是怎样的特殊四边形,并证明你的猜想;你的猜想;⑷当1CECB n=时,衣直接写出ABCDDEFGSS正方形正方形的值的值. .运输工具运输工具运输费单价运输费单价元/(吨•千米)(吨•千米) 冷藏单价冷藏单价元/(吨•时)(吨•时)固定费用固定费用 元/次 汽车汽车 2 5 200 火车火车1.652280(总费用=运输费+冷藏费+固定费用)运输费+冷藏费+固定费用) 3.你从平均数、折线图走势两个角度你从平均数、折线图走势两个角度 分析,建议该经销商应提前下周预定分析,建议该经销商应提前下周预定哪种运输工具,才能使每天的运输总费用较省?哪种运输工具,才能使每天的运输总费用较省?25.(本小题满分10分)分)如图1414①至图①至图1414④中,两平行线④中,两平行线AB 、CD 音的距离均为6,点M为AB 上一定点上一定点. . 思考:思考:如图1414①中,圆心为①中,圆心为O 的半圆形纸片在AB AB、、CD 之间(包括AB AB、、 CD CD)),其直径MN 在AB 上,MN =8=8,点,点P 为半圆上一点,为半圆上一点, 设∠MOP =α,当α=________=________度时,点度时,点P 到CD 的距离最小,最小值为的距离最小,最小值为____________. ____________.探究一探究一在图1414①的基础上,以点①的基础上,以点M 为旋转中心,在AB 、CD 之间顺时针旋转之间顺时针旋转 该半圆形纸片,直到不能再转动为止该半圆形纸片,直到不能再转动为止..如图1414②,得到最大旋转角②,得到最大旋转角②,得到最大旋转角 ∠BMO =_______=_______度,此时点度,此时点N 到CD 的距离是的距离是______________ ______________探究二探究二将图1414①中的扇形纸片①中的扇形纸片NOP 按下面对α的要求剪掉,使扇形纸片的要求剪掉,使扇形纸片 MOP 绕点M 在AB 、CD 之间顺时针旋转之间顺时针旋转. . ⑴如图1414③,当③,当α=60=60°时,求在旋转过程中,点°时,求在旋转过程中,点P 到CD 的最小的最小 距离,并请指出旋转角∠距离,并请指出旋转角∠BMO 的最大值:的最大值: ⑵如图1414④,在扇形纸片④,在扇形纸片MOP 旋转过程中,要保证点P 能落在直能落在直 线线CD 上,请确定α的取值范围的取值范围. . (参考数据:sin 4949°°=34,cos 4141°°=34,tan 3737°°=34)S=21 8;。
2011年河北省中考数学试卷及答案解析

2011年河北省中考数学试卷及答案解析一、选择题(共12小题,1-6小题每小题2分,7-12小题,每题3分,满分30分)1、(2011•河北)计算30的结果是()A、3B、30C、1D、0考点:零指数幂。
专题:计算题。
分析:根据零指数幂:a0=1(a≠0)计算即可.解答:解:30=1,故选C.点评:本题主要考查了零指数幂,任何非0数的0次幂等于1.2、(2011•河北)如图,∠1+∠2等于()A、60°B、90°C、110°D、180°考点:余角和补角。
专题:计算题。
分析:根据平角的定义得到∠1+90°+∠2=180°,即由∠1+∠2=90°.解答:解:∵∠1+90°+∠2=180°,∴∠1+∠2=90°.故选B.点评:本题考查了平角的定义:180°的角叫平角.3、(2011•河北)下列分解因式正确的是()A、﹣a+a3=﹣a(1+a2)B、2a﹣4b+2=2(a﹣2b)C、a2﹣4=(a﹣2)2D、a2﹣2a+1=(a﹣1)2考点:提公因式法与公式法的综合运用。
专题:因式分解。
分析:根据提公因式法,平方差公式,完全平方公式求解即可求得答案.解答:解:A、﹣a+a3=﹣a(1﹣a2)=﹣a(1+a)(1﹣a),故本选项错误;B、2a﹣4b+2=2(a﹣2b+1),故本选项错误;C、a2﹣4=(a﹣2)(a+2),故本选项错误;D、a2﹣2a+1=(a﹣1)2,故本选项正确.故选D.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,理解因式分解与整式的乘法是互逆运算是解题的关键.4、(2011•河北)下列运算中,正确的是()A、2x﹣x=1B、x+x4=x5C、(﹣2x)3=﹣6x3D、x2y÷y=x2考点:整式的除法;合并同类项;幂的乘方与积的乘方。
初中 2011年河北省中考数学试卷及答案(WORD版)修正

2011河北省初中毕业生升学文化课考试数学试卷卷Ⅰ(选择题,共30分)一、选择题(本大题共12个小题.1-6小题,每小题2分,7-12小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的1.计算30的结果是<11013> A.3B.30C.1D.02.如图1,∠1+∠2等于 <11022> A.60°B.90°C.110° D.180°3.下列分解因式正确的是 <11034> A.-a+a3=-a(1+a2) B.2a-4b+2=2(a-2b)C.a2-4=(a-2)2 D.a2-2a+1=(a-1)24.下列运算中,正确的是 <11044> A.2x-x=1 B.x+x4=x5C.(-2x)3=-6x3D.x2y÷y=x25.一次函数y=6x+1的图象不经过...<11054> A.第一象限B.第二象限 C.第三象限 D.第四象限6.将图2①围成图2②的正方体,则图②中的红心“”标志所在的正方形是正方体中的 <11061>A.面CDHEB.面BCEFC.面ABFGD.面ADHG7.甲、乙、丙三个旅行团的游客人数都相等,且每团游客的平均年龄都是32岁,这三个团游客年龄的方并有分别是,导游小王最喜欢带游客年龄相近的团队,若在这三个团中选择一个,则他应选, <11073> A.甲团B.乙团C.丙团D.甲或乙团8.一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下面的函数关系式:h=-5(t-1)2+6,则小球距离地面的最大高度是<11083> A.1米B.5米C.6米D.7米9.如图3,在△ABC中,∠C=90°,BC=6,D,E分别在AB,AC上,将△ABC沿DE折叠,使点A落在A′处,若A′为CE的中点,则折痕DE的长为<11092>A .12B .5米C .6米D .7米10.已知三角形三边长分别为2,x ,13,若x 为正整数,则这样的三角形个数为<11102>A .2B .3C .5D .1311.如图4,在长形中截取两个相同的圆作为圆柱的上、下底面,剩余的矩形作为圆住的侧面,刚好能组合成圆住.设矩形的长 和宽分别为y 和x ,则y 与x 的函数图象大致是<11111>12.根据图5中①所示的程序,得到了y 与x 的函数图象,如图5中②,若点M 是y 轴正半轴上任意一点,过点M 作PQ ∥x 轴交图象于 <11122> 点P 、Q ,连接OP 、OQ ,则以下结论:①x <0时,y =2x②△OPQ 的面积为定值③x >0时,y 随x 的增大而增大 ④MQ =2PM⑤∠POQ 可以等于90° 其中正确结论是A .①②④B .②④⑤C .③④⑤D .②③⑤2011年河北省初中毕业生升学文化课考试数 学 试 卷卷Ⅱ(非选择题,共90分)二、填空题(本大题共6个小是,每小题3分,共18分,把答案写在题中横线上)13π,-4,0这四个数中,最大的数是___________. <1113-π>15.若︱x -3︱+︱y +2︱=0,则x +y 的值为_____________. <1115-1>16.如图7,点O 为优弧ACB 所在圆的心,∠AOC =108°,点D 在AB 的延长线上,BD =BC ,则∠D =____________.<1116-27°>17.如图8中图①,两个等边△ABD ,△CBD 的边长均为1,将△ABD 沿AC 方向向右平移到△A ′B ′D ′的位置得到图②,则阴影部分的周长为_________ <1117-2>18.如图9,给正五边形的顶点依次编号为1,2,3,4,5.若从某一顶点开始,沿正五边形的边顺时针行走,顶点编号的数字是几,就走几个 边长,则称这种走法为一次“移位”. 如:小宇在编号为3的顶点时, 那么他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到 达编号为1的顶点;然后从1→2为第二次“移位”若小宇从编号为2的顶点开始,第10次“移位”后,则他所处顶点的编号是____________. <1118-3> 三、解答题(本大题共8个小题,共72分,解答应写出文字说明、证明过程 或演算步骤)19.(本小题满分8分)已知2x y =⎧⎪⎨=⎪⎩x ,yy a =+的解.求(a +1)(a -1)+7的值20.(本小题满分8分)如图10,在6×8的网格图中,每个小正方形边长 均为1,点O 和△ABC 的顶点均为小正方形的顶点. ⑴以O 为位似中心,在网格图...中作△A ′B ′C ′, 使△A ′B ′C ′和△ABC 位似,且位似比为1:2 ⑵连接⑴中的AA ′,求四边形AA ′C ′C 的周长. (结果保留根号)21.(本小题满分8分)如图11,一转盘被等分成三个扇形,上面分别标有关-1,1,2中的一个数,指针位置固定,转动转盘后任其自由停止,这时,鞭个扇形恰好停在指针所指的位置,并相应得到这个扇形上的数(若指针恰好指在等分线上,当做指向右边的扇形)⑴若小静转动转盘一次,求得到负数的概率;⑵小宇和小静分别转动一次,若两人得到的数相同,则称两人“不谋而合”,用列表法(或画树形图)求两人“不谋而合”的概率.22.(本小题满分8分)甲、乙两人准备整理一批新到的实验器材,若甲单独整理需要40分钟完工,若甲、乙共同整理20分钟后,乙需再单独整理20分钟才能完工.⑴问乙单独整理多少分钟完工?⑵若乙因式作需要,他的整理时间不超过30分钟,则甲至少整理多少分钟才能完工?23.(本小题满分9分)如图12,四边形ABCD是正方形,点E,K分别在BC,AB上,点G在BA的延长线上,且CE=BK=AG.求证:①DE=DG;②DE⊥DG;⑵尺规作图:以线段DE,DG为边作出正方形DEFG(要求:只保留作图痕迹,不写作法和证明);⑶连接⑵中的KF,猜想并写出四边形CEFK是怎样的特殊四边形,并证明你的猜想;⑷当1CECB n时,衣直接写出ABCDDEFGSS正方形正方形的值.24.(本小题满分9分)已知A 、B 两地的路程为240千米,某经销商每天都要用汽车或火车将x 吨保鲜品一次性由A 地运往B 地,受各种因素限制,下一周只能采用汽车和火车中的一种进行运输,且须提前预订.现在有货运收费项目及收费标准表,行驶路程S (千米)与行驶时间t (时)的函数图象(如图13中①),上周货运量折线统计图(如图13中②)等信息如下: 货运收费项目及收费标准表1. 车的速度为__________千米/时, 火车的速度为_________千米/时;2.设每天用汽车和火车运输的总费用分别为 y 汽(元)和y 火(元),分别求y 汽、y 火与x 的函数关系式(不必写出x 的取值范围) 及x 为何值时y 汽>y 火;3.你从平均数、折线图走势两个角度分析,建议该经销商应提前下周预定哪种运输工具,才能使每天的运输总费用较省?25.(本小题满分10分)如图14①至图14④中,两平行线AB、CD音的距离均为6,点M为AB上一定点.思考:如图14①中,圆心为O的半圆形纸片在AB、CD之间(包括AB、CD),其直径MN在AB上,MN=8,点P为半圆上一点,设∠MOP=α,当α=________度时,点P到CD的距离最小,最小值为____________.探究一在图14①的基础上,以点M为旋转中心,在AB、CD之间顺时针旋转该半圆形纸片,直到不能再转动为止.如图14②,得到最大旋转角∠BMO=_______度,此时点N到CD的距离是______________探究二将图14①中的扇形纸片NOP按下面对α的要求剪掉,使扇形纸片MOP绕点M在AB、CD之间顺时针旋转.⑴如图14③,当α=60°时,求在旋转过程中,点P到CD的最小距离,并请指出旋转角∠BMO的最大值:⑵如图14④,在扇形纸片MOP旋转过程中,要保证点P能落在直线CD上,请确定α的取值范围.(参考数据:sin49°=34,cos41°=34,tan37°=34)26.(本小题满分12分)如图15,在平面直角坐标系中,点P 从原点O 出发,沿x 轴向右以每秒1个单位长的速度运动t (t>0)秒,抛物线y =x 2+bx +c 经过点O 和点P .已知矩形ABCD 的三个顶点为A (1,0)、B (1,-5)、D (4,0).⑴求c 、b (用含t 的代数式表示);⑵当4<t <5时,设抛物线分别与线段AB 、CD 交于点M 、N .①在点P 的运动过程中,你认为∠AMP 的大小是否会变化?若变化,说明理由;若不变,求出∠AMP 的值;②求△MPN 的面积S 与t 的函数关系式,并求t 为何值时, S=218; ③在矩形ABCD 的内部(不含边界),把横、纵坐标都是整数 的点称为“好点”.若抛物线将这些“好点”分成数量相等 的两部分,请直接..写出t 的取值范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011河北省初中毕业生升学文化课考试数学试卷本试卷分卷Ⅰ和卷Ⅱ两部分:卷I 为选择题,卷Ⅱ为非选择题.本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共30分)注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡,考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,答在试卷上无效. 一、选择题(本大题共12个小题.1-6小题,每小题2分,7-12小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算30的结果是A .3 B .30C .1D .02.如图1,∠1+∠2等于A .60°B .90°C .110°D .180°3.下列分解因式正确的是A .-a +a 3=-a(1+a 2) B .2a -4b +2=2(a -2b)C .a 2-4=(a -2)2D .a 2-2a +1=(a -1)24.下列运算中,正确的是A .2x -x=1B .x +x 4=x5C .(-2x)3=-6x3D .x 2y ÷y=x25.一次函数y=6x +1的图象不经过...A .第一象限B .第二象限C .第三象限D .第四象限6.将图2①围成图2②的正方体,则图②中的红心“”标志所在的正方形是正方体中的A .面CDHE B .面BCEF C .面ABFG D .面ADHG7.甲、乙、丙三个旅行团的游客人数都相等,且每团游客的平均年龄都是32岁,这三个团游客年龄的方并有分别是227S 甲,219.6S 乙,21.6S 丙,导游小王最喜欢带游客年龄相近的团队,若在这三个团中选择一个,则他应选A .甲团B .乙团C .丙团D .甲或乙团8.一小球被抛出后,距离地面的高度h (米)和飞行时间t (秒)满足下面的函数关系式:h=-5(t-1)2+6,则小球距离地面的最大高度是A.1米B.5米C.6米D.7米9.如图3,在△ABC中,∠C=90°,BC=6,D,E分别在AB,AC上,将△ABC沿DE折叠,使点A落在A′处,若A′为CE的中点,则折痕DE的长为A.12B.5米C.6米D.7米10.已知三角形三边长分别为2,x,13,若x为正整数,则这样的三角形个数为A.2 B.3 C.5 D.1311.如图4,在长形中截取两个相同的圆作为圆柱的上、下底面,剩余的矩形作为圆住的侧面,刚好能组合成圆住.设矩形的长和宽分别为y和x,则y与x的函数图象大致是12.根据图5中①所示的程序,得到了y与x的函数图象,如图5中②,若点M是y轴正半轴上任意一点,过点M作PQ∥x轴交图象于点P、Q,连接OP、OQ,则以下结论:①x<0时,y=2 x②△OPQ的面积为定值③x>0时,y随x的增大而增大④MQ=2PM⑤∠POQ可以等于90°其中正确结论是A.①②④B.②④⑤C.③④⑤D.②③⑤2011年河北省初中毕业生升学文化课考试数学试卷卷Ⅱ(非选择题,共90分)注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚.2.答卷Ⅱ时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上. 二、填空题(本大题共6个小是,每小题3分,共18分,把答案写在题中横线上)13.35,π,-4,0这四个数中,最大的数是___________.14.如图6,已知菱形ABCD ,其顶点A 、B 在数轴上对应的数分别为-4和1,则BC =_____.15.若︱x -3︱+︱y +2︱=0,则x +y 的值为_____________.16.如图7,点O 为优弧ACB 所在圆的心,∠AOC=108°,点D 在AB 的延长线上,BD =BC ,则∠D=____________. 17.如图8中图①,两个等边△ABD ,△CBD 的边长均为1,将△ABD 沿AC 方向向右平移到△A ′B ′D ′的位置得到图②,则阴影部分的周长为_________18.如图9,给正五边形的顶点依次编号为1,2,3,4,5.若从某一顶点开始,沿正五边形的边顺时针行走,顶点编号的数字是几,就走几个边长,则称这种走法为一次“移位”.如:小宇在编号为3的顶点时,那么他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到达编号为1的顶点;然后从1→2为第二次“移位”.若小宇从编号为2的顶点开始,第10次“移位”后,则他所处顶点的编号是____________. 三、解答题(本大题共8个小题,共72分,解答应写出文字说明、证明过程或演算步骤)19.(本小题满分8分)已知23x y是关于x ,y 的二元一次方程3x y a 的解.求(a +1)(a -1)+7的值20.(本小题满分8分)如图10,在6×8的网格图中,每个小正方形边长均为1,点O 和△ABC 的顶点均为小正方形的顶点.⑴以O 为位似中心,在网格图...中作△A ′B ′C ′,使△A ′B ′C ′和△ABC 位似,且位似比为1:2⑵连接⑴中的AA ′,求四边形AA ′C ′C 的周长.(结果保留根号)21.(本小题满分8分)如图11,一转盘被等分成三个扇形,上面分别标有关-1,1,2中的一个数,指针位置固定,转动转盘后任其自由停止,这时,鞭个扇形恰好停在指针所指的位置,并相应得到这个扇形上的数(若指针恰好指在等分线上,当做指向右边的扇形).⑴若小静转动转盘一次,求得到负数的概率;⑵小宇和小静分别转动一次,若两人得到的数相同,则称两人“不谋而合”,用列表法(或画树形图)求两人“不谋而合”的概率.22.(本小题满分8分)甲、乙两人准备整理一批新到的实验器材,若甲单独整理需要40分钟完工,若甲、乙共同整理20分钟后,乙需再单独整理20分钟才能完工.⑴问乙单独整理多少分钟完工?⑵若乙因式作需要,他的整理时间不超过30分钟,则甲至少整理多少分钟才能完工?23.(本小题满分9分)如图12,四边形ABCD是正方形,点E,K分别在BC,AB上,点G在BA的延长线上,且CE=BK=AG.⑴求证:①DE=DG;②DE⊥DG;⑵尺规作图:以线段DE,DG为边作出正方形DEFG(要求:只保留作图痕迹,不写作法和证明);⑶连接⑵中的KF,猜想并写出四边形CEFK是怎样的特殊四边形,并证明你的猜想;⑷当1CECB n时,请直接写出ABCDDEFGSS正方形正方形的值.24.(本小题满分9分)已知A、B两地的路程为240千米,某经销商每天都要用汽车或火车将x吨保鲜品一次性由A地运往B地,受各种因素限制,下一周只能采用汽车和火车中的一种进行运输,且须提前预订.现在有货运收费项目及收费标准表,行驶路程S(千米)与行驶时间t(时)的函数图象(如图13中①),上周货运量折线统计图(如图13中②)等信息如下:货运收费项目及收费标准表运输工具运输费单价元/(吨?千米)冷藏单价元/(吨?时)固定费用元/次汽车 2 5 200火车 1.6 5 2280⑴汽车的速度为__________千米/时,火车的速度为_________千米/时;设每天用汽车和火车运输的总费用分别为y汽(元)和y火(元),分别求y汽、y火与x的函数关系式(不必写出x的取值范围)及x为何值时y汽>y火;(总费用=运输费+冷藏费+固定费用)⑶请你从平均数、折线图走势两个角度分析,建议该经销商应提前下周预定哪种运输工具,才能使每天的运输总费用较省?25.(本小题满分10分)如图14①至图14④中,两平行线AB、CD音的距离均为6,点M为AB上一定点.思考:如图14①中,圆心为O的半圆形纸片在AB、CD之间(包括AB、CD),其直径MN在AB上,MN=8,点P为半圆上一点,设∠MOP=α,当α=________度时,点P到CD的距离最小,最小值为____________.探究一在图14①的基础上,以点M为旋转中心,在AB、CD之间顺时针旋转该半圆形纸片,直到不能再转动为止.如图14②,得到最大旋转角∠BMO=_______度,此时点N到CD的距离是______________.探究二将图14①中的扇形纸片NOP按下面对α的要求剪掉,使扇形纸片MOP绕点M在AB、CD之间顺时针旋转.⑴如图14③,当α=60°时,求在旋转过程中,点P到CD的最小距离,并请指出旋转角∠BMO的最大值:⑵如图14④,在扇形纸片MOP旋转过程中,要保证点P能落在直线CD上,请确定α的取值范围.(参考数据:sin49°=34,cos41°=34,tan37°=34)26.(本小题满分12分)如图15,在平面直角坐标系中,点P从原点O出发,沿x轴向右以每秒1个单位长的速度运动t(t>0)秒,抛物线y=x2+bx+c经过点O和点P.已知矩形ABCD的三个顶点为A(1,0)、B(1,-5)、D(4,0).⑴求c、b(用含t的代数式表示);⑵当4<t<5时,设抛物线分别与线段AB、CD交于点M、N.①在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP的值;②求△MPN的面积S与t的函数关系式,并求t为何值时,S=218;③在矩形ABCD的内部(不含边界),把横、纵坐标都是整数的点称为“好点”.若抛物线将这些“好点”分成数量相等的两部分,请直接..写出t的取值范围.参考答案:1.C2.B3.D4.D5.D6.A7.C8.C 9.B 10.B 11.A12. B.13.14. 5 15. 1 16. 27°17. 218. 319.解:将2,3x y 代入3x y a 中,得3a ∴22(1)(1)7176a a aa=2(3)6920.解:⑴如图 1.⑵''2AACC在Rt ⊿''OA C 中,''OA OC =2,得''22A C ;于是42AC ,∴四边形''AA C C 的周长=46221.解:⑴P (得到负数)=13⑵用下表列举所有的可能结果:从上表可知,一共有九种可能,其中两人得到的数相同的有三种,因此P (两人“不谋而合”)=13(注:画树状图正确也相应给分)22.解:⑴设乙单独整理x 分钟完工,根据题意得:202020140x解得:80x .经检验80x 是原方程的解.答:乙单独整理80分钟完工.⑵设甲整理y 分钟完工,根据题意得:308040y1,解得:y25答:甲至少整理25分钟完工.(注:以下解答也给分.设甲、乙分别整理,y z 分钟,得18040z y .∴802.zy ∵30z,∴80230y ,∴y25.)23.解:⑴证明:∵四边形ABCD 是正方形,∴DCDA ,90DCE DAG °.又∵C EA G,∴⊿D C E ≌⊿D A G .∴EDC GDA ,DE DG .又∵90ADE EDC ,∴90ADE GDA,∴DEDG .⑵如图2(注:图3或其它画法正确的相应给分)⑶四边形CEFK 是平行四边形. 证明:设,CK DE 相交于M 点.∵四边形ABCD 和四边形DEFG 都是正方形,∴AB ∥CD , AB=CD , EF=DG , EF ∥DG , ∵BK=AG , ∴KG=AB=CD ,∴四边形CKGD 为平行四边形. ∴CK=DG=EF , CK ∥DG. ∴90KME GDE DEF .∴180KME DEF .∴CK ∥EF ,∴四边形CEFK 是平行四边形.(注:由CK ∥DG , EF ∥DG 得CK ∥EF 也可) ⑷22=1ABCD DEFGS n S n正方形正方形.24.解:⑴60,100. ⑵依题意,得240=2402520060y xx 汽.=500200y x 汽.240=240 1.652280100y xx火.=3962280y x 火.若y 汽>y 火,得500200x >3962280x ,∴x >20.⑶上周货运量(17201922222324)72120X.从平均数分析,建议预定火车费用较省.从折线图走势分析,上周货运量周四(含周四)后大于20且呈上升趋势,建议预定火车费用较省. 25.解:思考90,2.探究一30,2.探究二、⑴由已知得M 与P 的距离为4,∴当MPAB 时,点P 到AB 的最大距离是4,从而点P 到CD 的最小距离为642.当扇形MOP 在,AB CD 之间旋转到不能再转时,MP 与AB 相切,此时旋转角最大,BMO 的最大值为90°.⑵如图4,由探究一可知,点P 是MP 与CD 的切点时,a 达到最大,即OPCD .此时,延长PO 交AB 于点H ,a 最大值为3090120OMHOHM .如图5,当点P 在CD 上且与AB 距离最小时,MPCD ,a 达到最小,连接MP ,作OHMP 于点H ,由垂径定理,得3MH ,在Rt ⊿MOH 中,MO =4,∴3sin ,4MH MOH OM ∴49MOH ,∵2a MOH ,∴a 最小为98.∴a 的取值范围是98120a .26.解:⑴把0,0x y 代入2y xbx c ,得0c.再把x t ,0y代入2yxbx ,得20t bt,∵0t,∴bt .⑵①不变.如图6,当1x 时,1y t ,故(1,1)M t .∵tan 1AMP .∴45AMP②PAMAMNP -SSS 四边形=DPNPAMNDAM +-S SS 梯形=111(416)(1)3(1)(1)222t t tt(t-4)(4t-16)+=2315622t t 解2315622t t =218,得1219,22t t . ∵45t ,∴112t 舍去,∴92t .⑶71123t。