苏教版高一数学必修一 函数模型及其应用

合集下载

年高中数学苏教版必修一2.6《函数模型及其应用》ppt学案课件

年高中数学苏教版必修一2.6《函数模型及其应用》ppt学案课件
栏 目 链 接
学习目标 预习导学 典例精析
(1)若应纳税额为 f(x),试用分段函数表示 1~3 级纳税额 f(x)
的计算公式;
(2)某人 2011 年 10 月份工资为 8 200 元,试计算这个人 10 月份
应缴纳个人所得税多少元. 解析:(1)1 级:f(x)=x·3%; 2 级:f(x)=1 500·3%+(x-1 500)·10%; 3 级:f(x)=1 500·3%+3 000·10%+(x-4 500)·20%.
学习目标 预习导学 典例精析
月的用水量和水费.
解析:(1)当甲的用水量不超过 4 吨时,即 5x≤4,乙的用水量也
不超过 4 吨时,
y=(5x+3x)×1.8=14.4x;
当甲的用水量超过 4 吨,乙的用水量不超过 4 吨时,即 3x≤4 且
学习目标
5x>4, y=4×1.8+3x×1.8+3(5x-4)=20.4x-4.8; 当乙的用水量超过 4 吨时,即 3x>4,y=24x-9.6.
学习目标 预习பைடு நூலகம்学 典例精析
当 0≤x≤20 时,f(x)为增函数,当 x=20 时,f(x)取得最大值,最
大值为 60×20=1 200;
当 20<x≤200 时,f(x)=13x(200-x)=-13(x-100)2+103000,当 x
学习目标

=100∈(20,200]时,f(x)取得最大值,最大值为10

当 x∈43,+∞时,
目 链 接
令 24x-9.6=26.4,解得 x=1.5.
所以甲户用水量为 5x=7.5 吨,
付费 S1=4×1.8+3.5×3=17.70(元);
乙户用水量为 3x=4.5 吨,

苏教版高中数学必修一第课时——函数模型

苏教版高中数学必修一第课时——函数模型

第三十三课时函数模型及其应用(1)【学习导航】知识网络学习要求1.了解解实际应用题的一般步骤;2.初步学会根据已知条件建立函数关系式的方法;3.渗透建模思想,初步具有建模的能力.自学评价1.数学模型就是把用数学语言抽象概括,再从数学角度来反映或近似地反映实际问题,得出关于实际问题的数学描述.2. 数学建模就是把实际问题加以建立相应的的过程,是数学地解决问题的关键.3. 实际应用问题建立函数关系式后一般都要考察.【精典范例】例1.写出等腰三角形顶角y(单位:度)与底角x的函数关系.点评:函数的定义域是函数关系的重要组成部分.实际问题中的函数的定义域,不仅要使函数表达式有意义,而且要使实际问题有意义.例2.某计算机集团公司生产某种型号计算机的固定成本为200万元,生产每台计算机的可变成本为3000元,每台计算机的售价为5000元.分别写出总成本C(万元)、单位成本P(万元)、销售收入R(万元)以及利润L(万元)关于总产量x(台)的函数关系式. 分析:销售利润()L x=销售收入()R x-成本()C x,其中成本()C x=(固定成本+可变成本).例3.大气温度()y C o随着离开地面的高度()x km增大而降低,到上空11km为止,大约每上升1km,气温降低6C o,而在更高的上空气温却几乎没变(设地面温度为22C o).求:(1)y与x的函数关系式;(2) 3.5x km=以及12x km=处的气温.点评:由于自变量在不同的范围中函数的表达式不同,因此本例第1小题得到的是关于自变量的分段函数;第2小题是已知自变量的值,求函数值的问题.听课随笔追踪训练一1.生产一定数量的商品时的全部支出称为生产成本,可表示为商品数量的函数,现知道一企业生产某种产品的数量为x 件时的成本函数是()21200102C x x x =++(元),若每售出一件这种商品的收入是200元,那么生产并销售这种商品的数量是200件时,该企业所得的利润可达到多少?2.某医药研究所开发一种新药,如果成年人按规定的剂量服用,据监测,服药后每毫升血液中的含药量y (微克)与时间t (小时)之间近似满足如图所示的曲线.(OA 为线段,AB 为某二次函数图象的一部分,O 为原点).(1)写出服药后y 与t 之间的函数关系式()y f x =;(2)据进一步测定:每毫升血液中含药量不少于49微克时,对治疗有效,求服药一次治疗疾病有效的时间.【选修延伸】一、函数与图象高考热点1: (2002年高考上海文,理16)一般地,家庭用电量(千瓦时)与气温(℃)有一定的关系,如图所示,图(1)表示某年12个月中每月的平均气温.图(2)表示某家庭在这年12个月中每个月的用电量.根据这些信息,以下关于该家庭用电量与其气温间关系的叙述中,正确的是( )A.气温最高时,用电量最多B.气温最低时,用电量最少C.当气温大于某一值时,用电量随气温增高而增加D.当气温小于某一值时,用电量随气温渐低而增加听课随笔答案:C分析:该题考查对图表的识别和理解能力.【解】经比较可发现,2月份用电量最多,而2月份气温明显不是最高.因此A 项错误.同理可判断出B 项错误.由5、6、7三个月的气温和用电量可得出C项正确.思维点拔:数学应用题的一般求解程序(1)审题:弄清题目意,分清条件和结论,理顺数量关系;(2)建模:将题目条件的文字语言转化成数学语言,用数学知识建立相应的数学模型;(3)解模:求解数学模型,得到数学结论; (4)结论:将用数学方法得到的结论还原为实际问题的意义,并根据题意下结论.追踪训练二1. 有一块半径为R 的半圆形钢板,计划剪裁成等腰梯形ABCD 的形状,它的下底AB 是⊙O 的直径,上底CD 的端点在圆周上,写出这个梯形周长y 和腰长x 间的函数关系式,并求出它的定义域.分析:关键是用半径R 与腰长x 表示上底,由对称性:2CD AB AE =-,故只要求出AE .本节学习疑点:如何根据题意建立恰当的函数模型来解决实际问题.【师生互动】学生质疑教师释疑。

苏教版高中数学必修一函数模型及其应用教案(3)(2)

苏教版高中数学必修一函数模型及其应用教案(3)(2)

函数模型及其应用教学三维目标、重点、难点、准备。

1.1教学三维目标(1)知识与技能:使学生学会建立恰当的函数模型,并利用所得函数模型解释有关现象或对有关发展趋势进行预测。

(2)过程与方法:通过例题与作业中的具体实例,让学生了解函数模型的广泛应用。

(3)情感态度与价值观:利用函数模型解决问题前,进行拟合检验,培养学生的负责态度。

1.2教学重点:由面临的实际问题建立函数模型,检验函数模型,并利用得到的函数模型解决问题。

1.3教学难点:如何根据面临的实际问题建立函数模型。

1.4教学准备:PPT制作与几何画板制作。

1教学过程。

(学生):(对5种基本初等函数进行回顾)(教师):(打开PPT)函数建模的基本思想与方法:把实际问题用数学语言抽象概括,从数学角度来反映或近似地反映实际问题,得出的关于实际问题的数学描述称为数学建模。

数学建模的形式是多样的。

解应用题的关键是建立数学建模,把实际问题通过分析、联想、抽象转化为数学问题。

函数知识内容丰富、应用广泛,不仅数学问题,而且社会生活、生产和自然科学领域中有许多问题都需要用函数知识来解决,如成本最底、利润最高、用料最省、路程最短等常可归纳为函数的最值问题。

现在同学们来回顾一下以前是如何来解应用题的?它的步骤是怎样的?(打开PPT)运用建模思想解函数应用题的一般步骤是:读(阅读材料,审题,找基本量或关系);建(提取信息,抽象成数学语言,根据相关定义及数学知识建立模型);求(根据数学思想和方法,求解函数模型,得出结论);还(把数学结论还原到实际问题中,通过分析、判断、检验得到实际正确解答,写出答案)。

一.由变量之间的依存关系建立函数关系;(学生):是不是题目中就已经告诉我们几个量之间的函数关系了?(教师):是的。

而且我们以前所接触的基本上就是这样的题目。

二.由所掌握的数据资料,即根据确定性,随机性数据建立函数关系,这种往往要画散点图。

(学生):它是不知道函数关系式的。

高一数学苏教版必修1教学案:第3章13函数模型及其应用

高一数学苏教版必修1教学案:第3章13函数模型及其应用

江苏省泰兴中学高一数学教学案(35)必修1_02 函数模型及其应用班级姓名目标要求1、能根据实际问题的情境建立函数模型,利用计算工具,结合对函数性质的研究,给出问题的解答.2、培养学生数学地分析问题,探究问题,解决问题的能力.重点难点重点难点:建模;转化的问题;定义域的确定.教学过程一、复习引入:试解决以下问题:某种商品进货单价为40元,按单价每个50元售出,能卖出50个.如果零售价在50元的基础上每上涨1元,其销售量就减少一个,问零售价上涨到多少元时,这批货物能取得最高利润.二、新课讲授:总结解应用题的策略:解决应用题的一般程序是①审题:弄清题意,分清条件和结论,理顺数量关系;②建模:将文字语言转化为数学语言,利用数学知识,建立相应的数学模型;③解模:求解数学模型,得出数学结论;④还原:将用数学知识和方法得出的结论,还原为实际问题的意义.一般思路可表示如下三、典型例题:例1.某计算机集团公司生产某种型号计算机的固定成本为200万元,生产每台计算机的可变成本为3000元,每台计算机的售价为5000元.分别写出总成本C(万元)、单位成本P (万元)、销售收入R (万元)以及利润L (万元)关于总产量x (台)的函数关系式.如果集团公司不亏本,集团公司应该至少生产多少台?例2.某科技公司生产一种产品的固定成本为20000元,每生产一个产品增加投资100元,已知总收益()R x 满足:21400,(0400)()280000,(400)x x x R x x ⎧-≤≤⎪=⎨⎪>⎩,其中x 是产品的月产量,求每月生产多少个产品时该科技公司的利润最大?最大利润是多少?(注:总收益=总成本+利润)例3.某民营企业生产A、B两种产品,根据市场调查与预测,A产品的利润与投资成正比,其关系如图甲,B产品的利润与投资的算术平方根成正比.其关系如图乙(注:利润与投资单位:万元).(Ⅰ)分别将A、B两种产品的利润表示为投资(万元)的函数关系式;(Ⅱ)该企业已筹集到10万元资金,并全部投入A、B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元?课堂练习1、某工厂,今年前五个月每月生产某种产品的总量C (件)关于时间t (月)的函数图象如图所示,则该厂对这种产品来说 ( )A 、 1月至3月每月生产总量逐月增加,4、5两月每月生产总量逐月减少B 、 1月至3月生产总量逐月增加,4、5两月每月生产总量与3月持平C 、 1月至3月每月生产总量逐月增加,4、5两月均停止生产D 、 1月至3月每月生产总量不变,4、5两月均停止生产2、某地高山上温度从山脚起每升高100 m 降低0.7o C .已知山顶的温度是14.1o C ,山脚的温度是26o C ,问:此山有多高?学习反思1、解决函数应用问题的一般过程:①读懂题意,理解实际背景,领悟数学实质; ②理清数量关系,寻找目标函数,构建数学模型; ③运用数学知识,解出模型的数学结果; ④得到实际问题的答案.2、一般来说实际问题中出现的一些有关量的条件或者概念(如总成本=固定成本+生产成本)C3 C2 C1C(¼þ)t等往往是建立函数关系式的基础,同时应用问题在找到函数关系以后的一个重要的注意点是探求自变量的取值范围,即函数的定义域.江苏省泰兴中学高一数学作业(35)班级 姓名 得分1、用活动拉门(总长为a )靠墙围成一矩形场地(一边利用墙),则可以围成的场地的最大面积为 _________________.2、已知镭经过100年剩余质量是原来质量的0.9576,设质量为1的镭经过x 年后剩余量为y ,则y 关于x 的函数关系是 _____________ .3、某汽车运输公司购买了一批豪华大客车投入客运,据市场分析,每辆客车营运的总利润y 万元与客运年数()x x N ∈的关系为21225y x x =-+-,使其营运年平均利润最大,则每辆客车营运_________年.4、某厂生产某种产品的固定成本为200万元,并且生产量每增加一单位产品,成本增加1万元,又知总收入R 是产量Q 的函数:21()4200R Q Q Q =-,则总利润()L Q 的最大值是 万元,这时产品的生产数量为 (总利润=总收入-成本).5、拟定从甲地到乙地通话m 分钟的电话费由[]() 1.06(0.501)f m m =⨯⨯+给出,(话费单位:元)其中0m >,[]m 是大于或等于m 的最小整数(如[][][]33,3.74,5.16===).则从甲地到乙地通话时间为5.5分钟的通话费为________________.6、某店从水果批发市场购得椰子两筐,连同运费总共花了300元,回来后发现有12个是坏的,不能将它们出售,余下的椰子按高出成本价1元/个售出,售完后共赚得78元,则这两筐椰子原来共有___________个.7、 某车站有快、慢两种车,始发站距终点站7.2km ,慢车到终点站需16min ,快车比慢车晚发车3min ,且行驶10min 后到达终点站.试分别写出两车所行路程关于慢车行驶时间的函数关系式.两车在何时相遇?相遇时距始发站多远?8、三个机器人321,,R R R 要沿着流水线在固定位置上执行多种任务,每一个必须从被置于沿流水线的某种地方的一个惟一的供应箱中获取零件(如图),试用函数方法求箱子应放置在什么地方使所有机器人所要行走的路程最短?9、一汽船拖载质量相等的小船若干只,在两港之间来回运送货物.考虑到经济效益与汽船功率,汽船每次最多拖10只小船,至少拖3只小船.若每次拖10只小船,一日能来回4次;xR R R若每次拖3只小船,一日能来回18次,且小船增多的只数与来回减少的次数成正比,设汽船拖小船x只,一日运货总量为S.(1)试把S表示为x的函数,并指出定义域.(2)每次拖小船多少只时,货运量最大?并求一日来回次数.。

苏教版数学高一-数学苏教版必修一学案 函数模型及其应用(2)

苏教版数学高一-数学苏教版必修一学案 函数模型及其应用(2)

第19课时函数模型及其应用(2)教学过程一、问题情境在实际问题中,常常遇到有关平均增长率的问题.例如:如果原来产值的基础数为N,平均增长率为p,则关于时间x的总产值y可以用公式y=N(1+p)x表示.二、数学建构问题1某公司拟投资1000万元,有两种获利的方案可供选择:一种是年利率为10%,按单利计算,5年后收回本金和利息;另一种是年利率为9%,按每年复利一次计算,5年后收回本金和利息.哪一种投资更有利?这种投资比另一种投资5年可多得利息多少元?(参考数据:1.094≈1.4116, 1.095≈1.5386, 1.096≈1.6771)题目中涉及两种投资方式回报的比较,生活中常常出现.两种投资方式一种涉及单利,一种涉及复利(即利滚利),可分别根据单利与复利的计算方法计算出本息和,再进行比较,判断优劣.具体解答如下:本金1000万元,年利率为10%,按单利计算,5年后收回的本息和是1000×(1+10%×5)=1500(万元);本金1000万元,年利率为9%,按每年复利一次计算,5年后收回的本息和是1000×(1+9%)5=1538.6(万元).因此,按年利率为9%的每年复利一次计算要比按年利率为10%的单利计算更有利,5年后多得利息38.6万元.三、数学运用【例1】(教材P98例2)物体在常温下的温度变化可以用牛顿冷却规律来描述:设物体的初始温度是T0,经过一定时间t后的温度是T,则T-T a=(T0-T a)·,其中T a表示环境温度,h称为半衰期.现有一杯用88℃热水冲的速溶咖啡,放在24℃的房间中,如果咖啡降温到40℃需要20min,那么降温到35℃时,需要多长时间?(结果精确到0.1)(见学生用书课堂本P69) [处理建议]题目中给出了一个关系式,同时给出了若干个变量之间的关系,看似有点复杂,但用后面给出的具体数据对号入座后,并不难得到答案.[规范板书]解由题意知40-24=(88-24)·,即=,解得h=10.故T-24=(88-24)·.当T=35时,代入上式,得35-24=(88-24)·,即=,两边取对数,用计算器求得t≈25.4.因此,约需要25.4min,可降温到35℃.[题后反思]本题是利用已知的函数模型来解决物理问题,需由已知条件先确定函数关系式,然后再求解.本题的实质为已知自变量的值,求对应的函数值的数学问题.由于运算比较复杂,要求学生能够借助计算器进行计算.【例2】现有某种细胞100个,其中有占总数的细胞每小时分裂一次,即由1个细胞分裂成2个细胞,按这种规律发展下去,经过多少小时,细胞总数可以超过1010?(参考数据:lg3≈0.477, lg2≈0.301)(见学生用书课堂本P70) [处理建议]现有细胞100个,可以先逐个研究1h、2h、3h、4h后的细胞总数,找到规律后寻找出相应的函数关系式.[规范板书]解1h后,细胞总数为×100+×100×2=×100;2h后,细胞总数为××100+××100×2=×100;3h后,细胞总数为××100+××100×2=×100;4h后,细胞总数为××100+××100×2=×100;可见,细胞总数y与时间x(h)之间的函数关系式为y=100×,x∈N*.由100×>1010,得>108,两边取以10为底的对数,得x lg>8,∴x>.∵=≈45.45,∴x>45.45.答:约经过46h,细胞总数将超过1010.[题后反思]本例用归纳猜想的方法得出了细胞总数y与时间x(h)之间的函数关系式;解类似a x>b这类不等式,通常在不等式的两边同时取对数,然后利用对数函数的单调性求解.这种通过观察几个特殊值的特征,从而归纳出函数一般表达式的方法叫做“不完全归纳法”,在数学中会经常用到.【例3】(教材P99例3)在经济学中,函数f(x)的边际函数Mf(x)定义为Mf(x)=f(x+1)-f(x).某公司每月最多生产100台报警系统装置,生产x台(x∈N*)的收入函数为R(x)=3000x-20x2(单位:元),其成本函数为C(x)=500x+4000(单位:元),利润是收入与成本之差.(1)求利润函数P(x)及边际利润函数MP(x);(2)利润函数P(x)与边际利润函数MP(x)是否具有相同的最大值?(见学生用书课堂本P70)[处理建议]题中提到两个函数,比较直接,带领学生读懂题意后就能写出要研究的函数MP(x);本题涉及两个函数,一个是一次函数,一个是二次函数,处理起来并不困难,关键是读懂题意.[规范板书]解由题意知,x∈[1, 100],且x∈N*.(1)P(x)=R(x)-C(x)=3000x-20x2-(500x+4000)=-20x2+2500x-4000,MP(x)=P(x+1)-P(x)=-20(x+1)2+2500(x+1)-4000-[-20x2+2500x-4000]=2480-40x.(2)P(x)=-20+74125,当x=62或x=63时,P(x)的最大值为74120(元).因为MP(x)=2480-40x是单调减函数,所以当x=1时,MP(x)的最大值为2440(元).因此,利润函数P(x)与边际利润函数MP(x)不具有相同的最大值.[题后反思]本题中边际利润函数MP(x)在x=1时取得最大值,这说明生产第二台与生产第一台的总利润差最大,即第二台报警系统利润最大.MP(x)=2480-40x是单调减函数,这说明随着产量的增加,每台利润与前一台利润相比在减少.通过上述几个例子,我们可以看出,解决实际问题通常按实际问题→建立数学模型→得到数学结果→解决实际问题的步骤进行,其中建立数学模型是关键.*【例4】某公司为帮助尚有26.8万元无息贷款没有偿还的残疾人商店,借出20万元将该商店改建成经营状况良好的某种消费品专卖店,并约定用该店经营的利润逐步偿还债务(所有债务均不计利息).(例4)已知该种消费品的进价为每件40元;该店每月销售q(百件)与销售价p(元/价)之间的关系用右图中的一条折线(实线)表示;职工每人每月工资为600元,该店应交付的其他费用为每月13200元.(1)若当销售价p为52元/件时,该店正好收支平衡,求该店的职工人数;(2)若该店只安排40名职工,则该店最早可在几年后还清所有债务?此时每件消费品的价格定为多少元?[规范板书]解(1)设该店的月利润为S元,有职工m名,则S=q(p-40)×100-600m-13200.又由图可知q=所以,S=由已知,当p=52时,S=0,即(-2p+140)(p-40)×100-600m-13200=0,解得m=50.即此时该店有50名职工.(2)若该店只安排40名职工,则月利润S=当40≤p≤58时,求得p=55时,S取最大值7800元;当58<p≤81时,求得p=61时,S取最大值6900元.综上,当p=55时,S有最大值7800元.设该店最早可在n年后还清债务,依题意有12n×7800-268000-200000≥0.解得n≥5.所以,该店最早可在5年后还清债务,此时消费品的单价定为55元.[题后反思]①本题有效信息必须从图象上去读取,由于给出的图象是两段线段,故建立的函数关系式为分段函数,分段函数应特别注意函数关系与定义域间的对应;②对于分段函数的最值问题,应先在各自的定义域上求出各段的最值,然后加以比较,最后确定出最值.四、课堂练习1.复利就是把前一期的利息和本金加在一起做本金,再计算下一期的利息(就是人们常说的“利滚利”).设本金为p,每期利率为r,存期为x,则到期后本金与利息和为y=p(1+r)x,x∈N*.2.单利就是在计算每一期的利息时,本金还是第一期的本金.设本金为p,每期利率为r,存期为x,则到期后本金与利息和为y=p(1+rx),x∈N*.3.某纯净水制造厂在净化水的过程中,每增加一次过滤可减少水中杂质20%,要使水中杂质减少到原来的5%以下,则至少需要过滤的次数为14.(参考数据:lg2≈0.3010, lg3≈0.4771)(第4题)4.有一批材料可以建成200m的围墙,如果用此批材料在一边靠墙的地方围成一块矩形场地,中间用同样的材料隔成三个面积相等的矩形(如图),则围成的矩形的最大面积为2500m2.(围墙厚度不计)五、课堂小结建立函数模型就是将实际应用问题转化成数学问题,是数学化解决实际应用问题的关键,一般通过对函数性质的研究来解决数学问题,从而达到解决实际应用问题的目的.。

苏教版高中数学必修一函数模型及其应用教案(8)

苏教版高中数学必修一函数模型及其应用教案(8)

2.6 函数模型及其应用(2)教学目标:1.能根据图形、表格等实际问题的情境建立数学模型,并求解;进一步了解函数模型在解决简单的实际问题中的应用,了解函数模型在社会生活中的广泛应用;2.在解决实际问题的过程中,培养学生数学地分析问题、探索问题、解决问题的能力,培养学生的应用意识,提高学习数学的兴趣.教学重点:在解决以图、表等形式作为问题背景的实际问题中,读懂图表并求解. 教学难点:对图、表的理解.教学方法:讲授法,尝试法.教学过程:一、情境创设已知矩形的长为4,宽为3,如果长增加x ,宽减少0.5x ,所得新矩形的面积为S .(1)将S 表示成x 的函数;(2)求面积S 的最大值,并求此时x 的值. 二、学生活动思考并完成上述问题. 三、例题解析例1 有一块半径为R 的半圆形钢板,计划剪裁成等腰梯形ABCD 的形状,它的下底AB 是⊙O 的直径,上底CD 的端点在圆周上,写出这个梯形周长y 和腰长x 间的函数关系式,并求出它的定义域.A BOCDE例2 一家旅社有100间相同的客房,经过一段时间的经营实践,旅社经理发现每间客房每天的价格与住房率有如下关系: 每间客房定价 20 18 16 14 住房率65%75%85% 95%要使每天收入最高,每间客房定价为多少元? 例3 今年5月,荔枝上市.由历年的市场行情得知,从5月10日起的60天内,荔枝的市场售价与上市时间的关系大致可用如图所示的折线ABCD 表示(市场售价的单位为元/500g).请写出市场售价S (t )(元)与上市时间t (天)的函数关系式,并求出6月20日当天的荔枝市场售价.练习:1.直角梯形OABC 中,AB ∥OC ,AB =1,OC =BC =2,直线l :x =t 截此梯形所得位于l 左方图形的面积为S ,则函数S =f (t )的大致图象为( )2.一个圆柱形容器的底部直径是d cm ,高是h cm ,现在以v cm3/s 的速度向容器内注入某种溶液,求容器内溶液的高度x (cm)与注入溶液的时间t (s)之间的函数关系式,并写出函数的定义域.3.向高为H 的水瓶中注水,注满为止.如果注水量V 与水深h 的函数关系的图象如图所示,那么水瓶的形状可能是( )4.某公司将进货单价为10元一个的商品按13元一个销售,每天可卖200个.若这种商品每涨价1元,销售量则减少26个.x tO ABC y l tSA 1 2 13 C tt S1 2 13 D tS12 13 B S1 22 3hVH A B C D A BCDO57 10 104060t (天) S (元)(1)售价为15元时,销售利润为多少?(2)若销售价必须为整数,要使利润最大,应如何定价?5.根据市场调查,某商品在最近40天内的价格f(t)与时间t满足:f(t)=111(020)241(2040)t t t Nt t t N⎧+<∈⎪⎨⎪-+∈⎩≤,≤≤,,销售量g(t)与时间t满足:g(t)=14333t-+(0≤t≤40,t∈N),求这种商品日销售金额的最大值.四、小结利用图、表建模;分段建模.五、作业课本P93-4,P94-16.。

苏教版高中数学必修一函数模型及其应用教案(3)

苏教版高中数学必修一函数模型及其应用教案(3)

函数模型及其应用一、教学目的1、利用函数图象及数据表格,比较指数函数、对数函数以及幂函数的增长差异;2、结合实例让学生体会直线上升,指数爆炸,对数增长等不同增长的函数模型的意义;3、运用函数的三种表示法(解析式、图象、表格)并结合信息技术解决一些实际问题;4、以一些实际例子,让学生了解社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的广泛应用。

二、教学重点、难点重点:将实际问题转化为函数模型,比较常数函数、一次函数、指数函数、对数函数模型的增长差异,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。

难点:怎样选择数学模型分析解决实际问题。

三、教学过程第一课时几类不同增长的函数模型1、复习引入师:在我们的生活中,有没有用到函数的例子?生:细胞分裂;银行储蓄;早晨跑步锻炼时速度与时间的关系;……师:很好,生活中,数学无处不在,用好数学,将会给我们带来很大的方便。

今天,我们就来看一个利用数学为我们服务的例子。

2、新课(用幻灯片展示例题)假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下:1)每天回报40元;2)第一天回报10元,以后每天比前一天多回报10元;3)第一天回报0.4元,以后每天的回报比前一天翻一番。

请问:你会选择哪一种投资方案?(让学生充分讨论)教师提示:1)、考虑回报量,除了要考虑每天的回报量之外,还得考虑什么?(回报的累积值)。

2)、本题中涉及哪些数量关系?如何利用函数描述这些数量关系?教师引导学生分析其中的数量关系,思考应当选择怎样的函数模型来描述;由学生自己根据数量关系,归纳概括出相应的函数模型,写出每个方案的函数解析式,教师在数量关系的分析、函数模型的选择上作适当的指导。

设问:根据所列的表格中提供的数据,你对三种方案分别表现出的回报资金的增长差异有什么认识?教师引导学生观察表格中三个方案的数量变化情况,对“增加量”进行比较,体会“直线增长”、“指数爆炸”等;让学生通过观察,说出自己的发现,并进行交流。

苏教版高中数学必修一第二章函数模型及其应用教案

苏教版高中数学必修一第二章函数模型及其应用教案

《函数模型及其应用》教案一.课标要求:1.利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义;2.收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。

二.命题走向函数应用问题是高考的热点,高考对应用题的考察即考小题又考大题,而且分值呈上升的趋势。

高考中重视对环境保护及数学课外的的综合性应用题等的考察。

出于“立意”和创设情景的需要,函数试题设置问题的角度和方式也不断创新,重视函数思想的考察,加大函数应用题、探索题、开放题和信息题的考察力度,从而使高考考题显得新颖、生动和灵活。

预测2009年的高考,将再现其独特的考察作用,而函数类应用题,是考察的重点,因而要认真准备应用题型、探索型和综合题型,加大训练力度,重视关于函数的数学建模问题,学会用数学和方法寻求规律找出解题策略。

(1)题型多以大题出现,以实际问题为背景,通过解决数学问题的过程,解释问题;(2)题目涉及的函数多以基本初等函数为载体,通过它们的性质(单调性、极值和最值等)来解释生活现象,主要涉计经济、环保、能源、健康等社会现象。

三.要点精讲1.解决实际问题的解题过程(1)对实际问题进行抽象概括:研究实际问题中量与量之间的关系,确定变量之间的主、被动关系,并用x、y分别表示问题中的变量;(2)建立函数模型:将变量y表示为x的函数,在中学数学内,我们建立的函数模型一般都是函数的解析式;(3)求解函数模型:根据实际问题所需要解决的目标及函数式的结构特点正确选择函数知识求得函数模型的解,并还原为实际问题的解.这些步骤用框图表示:实际问题函数模型实际问题的解函数模型的解抽象概括还原说明2.解决函数应用问题应着重培养下面一些能力:(1)阅读理解、整理数据的能力:通过分析、画图、列表、归类等方法,快速弄清数据之间的关系,数据的单位等等;(2)建立函数模型的能力:关键是正确选择自变量将问题的目标表示为这个变量的函数,建立函数的模型的过程主要是抓住某些量之间的相等关系列出函数式,注意不要忘记考察函数的定义域;(3)求解函数模型的能力:主要是研究函数的单调性,求函数的值域、最大(小)值,计算函数的特殊值等,注意发挥函数图象的作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.4.2函数模型及其应用
一、基础过关
1.已知某食品5 kg价格为40元,则该食品价格与重量之间的函数关系为________,8 kg 食品的价格为________元.
2.某公司市场营销人员的个人月收入与其每月的销售量成一次函
数关系,其图象如右图所示,由图中给出的信息可知,营销人
员没有销售量时的收入是________元.
3.某商品价格前两年每年递增20%,后两年每年递减20%,则四
年后的价格与原来价格比较,变化的情况是________.
4.把长为12 cm的细铁丝截成两段,各自围成一个正三角形,那么这两个正三角形面积之和的最小值是________ cm2.
5.某城市客运公司确定客票价格的方法是:如果行程不超过100 km,票价是0.5元/km,如果超过100 km,超过100 km的部分按0.4元/km定价,则客运票价y(元)与行驶千米数x(km)之间的函数关系式是______________.
6.一个人喝了少量酒后,血液中的酒精含量迅速上升到0.3 mg/mL,在停止喝酒后,血液中的酒精含量以每小时25%的速度减少,为了保障交通安全,某地根据《道路交通安全法》规定:驾驶员血液中的酒精含量不得超过0.09 mg/mL,那么,一个喝了少量酒后的驾驶员,至少经过________小时才能开车.(精确到1小时)
7.某工厂生产一种电脑元件,每月的生产数据如表:
月份123
产量(千件)505253.9
y=ax+b或y=
a x+b(a,b为常数,且a>0)来模拟这种电脑元件的月产量y千件与月份的关系.请问:
用以上哪个模拟函数较好?说明理由.
8.假设国家收购某种农产品的价格是120元/担,其中征税标准为每100元征8元(叫做税率为8个百分点,即8%).计划可收购m万担,为了减轻农民负担,决定税率降低x个百分点,预计收购量可增加2x个百分点.
(1)写出税收y(万元)与x的函数关系式.
(2)要使此项税收在税率调节后不低于原计划的78%,试确定x的范围.
二、能力提升
9.生产一定数量的商品的全部费用称为生产成本,某企业一个月生产某种商品x万件时的
生产成本为C (x )=12
x 2+2x +20(万元).一万件售价是20万元,为获取更大利润,该企业一个月应生产该商品数量为________万件.
10.若镭经过100年后剩留原来质量的95.76%,设质量为1的镭经过x 年后剩留量为y ,则
x ,y 的函数关系是________________.
11.2008年我国人口总数为14亿,如果人口的自然年增长率控制在1.25%,则________年
我国人口将超过20亿.(lg 2≈0.301 0,lg 3≈0.477 1,lg 7≈0.845 1)
12.一片森林原来的面积为a ,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍
伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的14,已知到今年为止,森林剩余面积为原来的22
. (1)求每年砍伐面积的百分比;
(2)到今年为止,该森林已砍伐了多少年?
(3)今后最多还能砍伐多少年?
三、探究与拓展
13.诺贝尔奖发放方式为:每年一发,把奖金总额平均分成6份,奖励给分别在6项(物理、
化学、文学、经济学、生理学和医学、和平)为人类作出最有益贡献的人,每年发放奖金的总金额是基金在该年度所获利息的一半,另一半利息作基金总额,以便保证奖金数逐年增加.假设基金平均年利率为r =6.24%.资料显示:1999年诺贝尔奖发放后基金总额约为19 800万美元.设f (x )表示第x (x ∈N *)年诺贝尔奖发放后的基金总额(1999年记为f (1),2000年记为f (2),…,依次类推)
(1)用f (1)表示f (2)与f (3),并根据所求结果归纳出函数f (x )的表达式;
(2)试根据f (x )的表达式判断网上一则新闻“2009年度诺贝尔奖各项奖金高达150万美元”是否为真,并说明理由.(参考数据:1.031 29=1.32)
答案
1.y =8x 64
2.300
3.减少7.84%
4.23
5.y =⎩⎪⎨⎪⎧
0.5x (0<x ≤100)0.4x +10 (x >100) 6.5
7.解 将(1,50)、(2,52)分别代入两解析式得:
⎩⎪⎨⎪⎧ 50=a +b 52=2a +b 或⎩
⎪⎨⎪⎧
50=a +b ,52=a 2+b .(a >0) 解得⎩⎪⎨⎪⎧ a =2b =48(两方程组的解相同). ∴两函数分别为y =2x +48或y =2x +48.
当x =3时,对于y =2x +48有y =54;
当x =3时,对于y =2x +48有y =56.
由于56与53.9的误差较大,
∴选y =ax +b 较好.
8.解 (1)在收购价格没有改变的前提下,收购量由m 万担增加到m (1+2x %)万担;税率由
8%降低到(8-x )%.
因此,y =120m (1+2x %)(8-x )%
=-3m 125
(x 2+42x -400)(0≤x ≤8). (2)原计划税收为120m ×8%,
因此-3m 125
(x 2+42x -400)≥120m ×8%×78%, 解上式,得{x |-44≤x ≤2},
故x 的范围为{x |0≤x ≤2}.
9.18
10.y =(0.957 6)x 100
11.2037
12.解 (1)设每年砍伐面积的百分比为x (0<x <1),则
a (1-x )10=12a ,即(1-x )10=12

解得x =1-(12)110
. (2)设经过m 年剩余面积为原来的
22,则 a (1-x )m =22a ,即(12)m 10=(12)12,m 10=12
,解得m =5, 故到今年为止,已砍伐了5年.
(3)设从今年开始,以后砍了n 年,
则n 年后剩余面积为
22a (1-x )n . 令22a (1-x )n ≥14a ,即(1-x )n ≥24
, (12)n 10≥(12)32,n 10≤32
,解得n ≤15. 故今后最多还能砍伐15年.
13.解 (1)由题意知:f (2)=f (1)(1+6.24%)-12
f (1)·6.24%=f (1)×(1+3.12%), f (3)=f (2)×(1+6.24%)-12
f (2)×6.24%=f (2)×(1+3.12%)=f (1)×(1+3.12%)2, ∴f (x )=19 800(1+3.12%)x -
1(x ∈N *).
(2)2008年诺贝尔奖发放后基金总额为f (10)=19 800(1+3.12%)9=26 136,
故2009年度诺贝尔奖各项奖金为16·12
f (10)·6.24%≈136(万美元),与150万美元相比少了约14万美元,是假新闻.。

相关文档
最新文档