等效电压源定理及其在高中物理中应用
等效电源定理

等效电源定理戴维南定理和诺顿定理分别能把含源二端网络等效成为一个实际电压源支路和实际电流源支路,故统称等效电源定理。
1、戴维南定理任一线性含源二端网络,对外电路讲,可以等效为一个电压源和电阻串联的组合,电压源的电压为该网络的开路电压u oc,串联电阻等于该网络中所有独立源为零时的入端等效电阻R o。
2、诺顿定理任一线性含源二端网络,对外电路讲,可以等效为一个电流源和电阻并联的组合,电流源的电流为该网络的短路电流isc,并联电阻等于该网络中所有独立源为零值时的入端等效电阻R o。
图(a)所示为一接有外电路的含源二端网络,根据替代定律,把R L 支路分别用流过它的电流i和两端电压u作为电压源等效替代,然后运用叠加定理分别得到u=u oc-R o i=i sc-u/R o等效电源电路如图(b)所示。
这两条定律所得到的电压源支路和电流源支路可以互相等效,所以人们多应用戴维南等效电压源定律,然后变化为诺顿等效电流源电路,如图(b)上、下图所示。
戴维南定律对求解电路中某一支路的电压、电流和功率,特别是负载吸收的最大功率最为方便。
求解时含源二端网络必须是线性的,待求支是线性的或非线性、有源或无源均可。
应用这两条定律,一般分三个步骤:(1)断开待求支路或将待求支路短路,分别求得开路电压u oc和短路电流i sc;(2)让全部独立源为零,求入端等效电阻R o。
(3)画出等效电源电路,接上待求支路,求解待求量。
3、用戴维南定律分析含受控源电路根据受控源的性质和等效电源定律的要求,当用戴维南定律和诺顿定律分析受控源电路时,必须掌握:(1)当控制量在端口上时,它要随端口开路或短路变化,必须用变化了的控制量来表示受控源的电压或电流。
(2)当控制量在网络内,则在短路或开路时,必须保证受控源及其控制量同在含源二端网络内。
(3)受控源不能充当激励,具有电阻性。
在求戴维南等效电阻时,独立源为零,受控源和电阻一样要保留,故必须采取:(1)开路短路法:将待求支路开路和短路,分别求得二断网络的开路电压u oc和短路电流i sc,由图所示可知R o=u o/i o。
解释等效电源定理

解释等效电源定理等效电源定理是电路分析中重要的定理之一,它包括戴维南定理和诺顿定理两个主要部分。
这两个定理都是用来将复杂电路简化成简单电路的方法,从而方便我们进行电路的分析和计算。
1.戴维南定理戴维南定理(Thevenin's Theorem)是将一个有源二端网络等效成一个电源模型的方法。
这个电源模型包括一个理想电压源和一个内阻串联,其中电压源等于网络开路电压,内阻等于网络所有元件的电阻之和。
戴维南定理的作用是将复杂的有源二端网络简化成一个简单的电源模型,方便我们进行电路的分析和计算。
应用戴维南定理时,需要注意以下几点:(1)开路电压的求解要正确,不能漏掉任何元件;(2)内阻的计算要将所有元件的电阻相加,不能漏掉任何元件;(3)等效电源模型与原网络在端口处要满足电压电流关系。
2.诺顿定理诺顿定理(Norton's Theorem)是将一个有源二端网络等效成一个电源模型的方法。
这个电源模型包括一个理想电流源和一个内阻并联,其中电流源等于网络短路电流,内阻等于网络所有元件的电阻之和。
诺顿定理的作用是将复杂的有源二端网络简化成一个简单的电源模型,方便我们进行电路的分析和计算。
应用诺顿定理时,需要注意以下几点:(1)短路电流的求解要正确,不能漏掉任何元件;(2)内阻的计算要将所有元件的电阻相加,不能漏掉任何元件;(3)等效电源模型与原网络在端口处要满足电压电流关系。
等效电源定理在电路分析中有着广泛的应用。
例如,我们可以通过应用等效电源定理将复杂电路简化成简单电路,从而方便我们进行电路的分析和计算。
同时,等效电源定理还可以用于电路的匹配和优化,以帮助我们更好地理解和设计电路。
需要注意的是,戴维南定理和诺顿定理虽然都是用来简化电路的方法,但它们在使用上有一定的区别。
一般来说,当电路中存在电压源时,我们通常使用戴维南定理;当电路中存在电流源时,我们通常使用诺顿定理。
此外,在应用等效电源定理时,还需要注意电路的换路定理解题技巧,从而正确地求解出开路电压和短路电流等参数。
等效电压源定理及其在高中物理中应用

等效电压源定理及其在高中物理中应用一、等效电压源定理(戴维宁定理)1、内容:一个包含电源的二端电路网络(端点为A 、B ),可看成一个等效的电压源,等效电压源的电动势等于“二端电路网络”两端的开路电压(E U '=开),内阻等于“二端电路网络”中去掉电动势后两端间的等效电阻(AB r R '=)。
2、证明:(1)基本情形1:如图甲所示电路,将虚线框内部分视为等效电源,则等效电路图如图乙所示。
对甲图,设电路中电流为I ,由闭合电路欧姆定律,有:0EI r R R=++;对乙图,有:E I r R '='+;两式比较,易得:E E '=,0r r R '=+;图丙是该等效电源的内部结构,易知:=U E 开,0AB R r R =+,得证。
(2)基本情形2:如图丁所示电路,将虚线框内部分视为等效电源,则等效电路图如图戊所示。
对丁图,设通过R 的电流为I ,R 两端电压为U ,则通过电源的电流为0=UI I R +总,由闭合电路欧姆定律,有:0000()(1)()R r U rE U I r U I r U Ir U Ir R R R +=+=++=++=+总变形得:0000R R E U I rR r R r=+++对戊图,有:E U Ir ''=+两式比较,得:0000R R E E r rR r R r''==++,如己图所示,为该等效电源的内部结构,易知:0000AB R R U E R R r R r==++开,,得证。
(3)一般情形:如右图所示为一般电路,则按顺序依次将处于内部的虚线框部分视为更外围部分的等效电源,则易知,等效电压源定理适用于一般电路。
乙ARE ',r 'B甲R 0ARE ,rSB丙R 0AE ,rSB丁R 0A R E ,rSB 戊A RE ',r 'BR 0A E ,rS B 己E ,rSR二、等效电压源定理的应用1、电源电动势和内阻测量的系统误差分析该实验的理论依据是Ir U E +=,其中U 为电源的端电压,I 为通过电源的电流;如图所示为该实验的两种测量电路。
高中物理竞赛教程:2.2.4 电路化简 Word版含解析

§2. 4、电路化简2.4.1、 等效电源定理实际的直流电源可以看作电动势为ε,内阻为零的恒压源与内阻r 的串联,如图2-4-1所示,这部分电路被称为电压源。
不论外电阻R 如何,总是提供不变电流的理想电源为恒流源。
实际电源ε、r 对外电阻R 提供电流I 为r R rr r R I +⋅=+=εε其中r /ε为电源短路电流0I ,因而实际电源可看作是一定的内阻与恒流并联的电流源,如图2-4-2所示。
实际的电源既可看作电压源,又可看作电流源,电流源与电压源等效的条件是电流源中恒流源的电流等于电压源的短路电流。
利用电压源与电流源的等效性可使某些电路的计算简化。
等效电压源定理又叫戴维宁定理,内容是:两端有源网络可等效于一个电压源,其电动势等于网络的开路电压,内阻等于从网络两端看除电源以外网络的电阻。
如图2-4-3所示为两端有源网络A 与电阻R 的串联,网络A 可视为一电压源,Rrε图2-4-10I rR图2-4-2abR网络有源图2-4-3Rr 0εab图2-4-4等效电源电动势0ε等于a 、b 两点开路时端电压,等效内阻0r 等于网络中除去电动势的内阻,如图2-4-4所示。
等效电流源定理 又叫诺尔顿定理,内容是:两端有源网络可等效于一个电流源,电流源的0I 等于网络两端短路时流经两端点的电流,内阻等于从网络两端看除电源外网络的电阻。
例4、如图2-4-5所示的电路中,Ω=Ω=Ω=Ω=Ω===0.194,5.432,0.101,0.12,5.01,0.12,0.31R R R R r r V V εε (1)试用等效电压源定理计算从电源()22r 、ε正极流出的电流2I ;(2)试用等效电流源定理计算从结点B 流向节点A 的电流1I 。
分析: 根据题意,在求通过2ε电源的电流时,可将ABCDE 部分电路等效为一个电压源,求解通过1R 的电流时,可将上下两个有源支路等效为一个电流源。
解: (1)设ABCDE 等效电压源电动势0ε,内阻0r ,如图2-4-6所示,由等效电压源定理,应有VR R R r R 5.1132111=+++=εε()Ω=+++++=5321132110R R R r R R r R r电源00r 、ε与电源22r 、ε串联,故Ar R r I 02.0240022-=+++=εε2I <0,表明电流从2ε负极流出。
高中物理竞赛第四阶段 第13讲 复杂电路原理有答案

第13 讲复杂电路原理1. 基尔霍夫定律。
2. 叠加原理。
3. 等效电源定理。
4. 电路变换。
本讲先给出复杂所有的原理,初步学习电路原理的使用方法,下讲我们会通过一次习题课加深同学们对这些原理的理解,提升应用的能力。
引入:复杂电路所谓复杂电路就是无法通过“揉线”改变成串并联的电路,最简单的复杂电路莫过于如下电桥:当然也就可能是多电源多网络的:刚开始看见这样电路一定有些绝望,这种电路怎么等效电路怎么画?总电阻多少?要解决这样的问题,我们需要更深刻,更本质的理解欧姆定律以及“串并联电路规律”。
知识模块本讲提纲第一部分基尔霍夫定律知识点睛1.含多个电源电路欧姆定律沿着电流的方向,每通过一个电阻电势降低,降低的值等于电阻上的电压,每当从负极到正极通过一个电源,电势升高,升高的值等于电源电动势. 电路两端电压等于各部电路上电压升降的代数和.Ua - Ir1+ E1- IR1- E2- Ir2- IR2= UbUab = E2+ I (R1+ R2+ r1+ r2) - E1【注意】 1.这个原理的应用最关键的是要掌握电势差的概念:对于一个电阻,电势差等于电流与电阻之乘积。
但对于一个电源,电势差必须等于电动势与电阻压的总和,但是电动势的方向与其形成电压方向相反。
2.同学们由于初中电路题练得太多,思维往往形成了定势。
这里有些概念一定要及时纠正过来。
对于复杂电路,“干路电流I”不能做绝对的理解(任何要考察的一条路均可视为干路);电源的概念也是相对的,它可以是多个电源的串、并联,也可以是电源和电阻组成的系统;一个电路不是除了串联并联就是混联的,所以不要一看见电路就期待找主路支路,看串并联。
2.基尔霍夫定律第一定律(节点定律):流入节点的电流,等于从节点中流出的电流.∑(±I ) = 0第二定律(电压定律):沿任何一闭合回路一周电势降落的和为0.∑(±IR) - ∑(±E ) = 0 .3.应用基尔霍夫定律的要点:1.方程的独立性及独立方程数目应等于所求未知量数.例如:一个有n 个节点,p 个支路的复杂电路,其电流独立方程为n -1 ,电压回路方程数为p - (n - 1) 个. 为了保证回路的独立性,在新选定的回路中,必须至少有一段电路中在已选的回路中未曾出现过. 2.中每一点都有一定电位,这个电位是该点对零电位参考点而言的,欲求电路中某点的电位或两点电位差,只要从该点出发经过一定路径绕到零电位点(或给定点),考察各点电位的改变,就可以求出该点的电位或电位差. 即U = ∑(±IR) - ∑(±E ) .3.给定电路上假定电流的方向,若解得结果为正值,说明实际电流方向和假定方向相同;若解得结果为负值,说明实际电流方向和假定方向相反,电流的大小为其绝对值.4.方程时,按正负号规定,前后要保持统一,对于电流,流出节点的电流为正值,则流入节点的电流为负值,流入和流出节点的电流之和为零.例题精讲【例1】如下图所示,电源电动势E=6V,内阻r=1Ω,电阻R1=R2=R3=18Ω,R4=11Ω,则C、D两端的电压U CD= V,R3上的电流方向为_.【例2】 英国物理学家惠斯登曾将最开始的图中的R 5换成灵敏电流计○G ,将R 1 、R 2中的某一个电阻 换成待测电阻,将R 3 、R 4换成带触头的电阻丝,通过调节触头P 的位置,观察电流计示数为零来测量带测电阻R x 的值,这种测量电阻的方案几乎没有系统误差,历史上称之为“惠斯登电桥”。
4.3等效电源定理

U
s
得
Req
Us I
1
1
0.8
225
300 720
20 中北大学国家级电工电子实验教学示范中心
戴维南定理例题3
③戴维南等效电路如图示,则得电流解
I4
U 225
0.03A
该例题用戴维南定理求解电流,
同时涵盖了含受控源电路之回
路方程的概念和外加电源求解
戴维南定理是有源单口网路的基本属性。
7 中北大学国家级电工电子实验教学示范中心
戴维南定理例题1
[例]图示电路中已知Us2 = 9V , Uab = 9V , Is = 6A , R1 = 1Ω, R2 = 2Ω, R3 = 3Ω,R4 = 4Ω, 试求Us1
解一:用戴维南定理化简ab 端口右边的网路。 ①求ab端的开路电压Uoc,如图 (a)所示,先求Icb再求Uoc最 为捷径,因为
18 中北大学国家级电工电子实验教学示范中心
戴维南定理例题3
可列回路方程解电流 I 3
R1 R2 R3 I3 R2I3 U s
I3
R1
R2
Us
R3
R2
36
420 300 300 0.2 300
0.0375A
Uoc U seq R3I3 300 0.0375 11.25V
(Req RL ) R0 RL
6 中北大学国家级电工电子实验教学示范中心
戴维南定理的证明
结论:前式 i i i uoc useq
(Req RL ) R0 RL
该式正是含内阻电压源的电流表达式。它表明: 从端口上看,有源单口网路对外电路的作用,可 以用一个含内阻的电压源来等效代替。该电压源 的源电压等于有源单口网路的开路电压,其内电 阻R0就是有源单口网路去源后的等效电阻。故戴 维南定理得证。此刻应该认识到:
等效电源法在实验和解题中的优势

等效电源法在实验和解题中的优势作者:赵传亮黄顺立来源:《试题与研究·教学论坛》2017年第35期新高考改革更加倾向于考查学生的综合能力和素质,渗透物理思想方法的题目将成为热点。
等效法的运用可以将复杂的物理过程转换成理想、简单的过程,等效电源定理包括等效电压源定理和等效电流源定理,这两种形式彼此等价,可以互换,但在高中阶段主要会用到后者,因此本文着重介绍等效电压源。
一、图像法在“测定电池的电动势和内阻”实验中,系统误差的主要原因在于实验所用的电压表和电流表并不是真正的理想电表。
为方便后面讨论,下面我们将忽略电表系统误差得到的结果叫测量值;考虑电表系统误差影响而得到的结果叫真实值,我们优先采用图像法来分析这个实验误差产生的原因。
教材采用的测量电路如图1(左)所示,测量的基本原理闭合电路欧姆定律:U=E-Ir,公式中的I本应是主干路电流。
真实情况因为电压表内阻分流效应导致电流表的测量读数I测小于电源实际中通过的电流I真,分流IV的大小即为两者之差:I真=I测+IV=I测+■。
如果我们根据某一组测量数据在如图1(右)所示的U-I图像中确定为A点,则真正的图像点应该在A 点右侧的B点。
路端U越大,分流IV越大,当电压表分流IV=0时,测量值与真实值相等,因此图1(右)虚线部分为修正之后的U-I图线。
从修正之后的图中可看出实线的纵轴截距E 测小于虚线的纵轴截距E真,实线斜率的绝对值r测也小于虚线图线斜率的绝对值r真,即E 测■如果换用图2(左)所示的电路进行测量,电压表的读数(U测)由于电流表内阻的分压作用小于电源两端真正的路端电压(U真),两者的关系为U真=U测+UA=U测+IR。
所以在原本图像基础上应加上一个修正值UA=IRA,同理当I=0时,UA=0,此时测量值与真实值相同,修正之后的U-I图像如图2(右)虚线所示,从中可看出E测=E真,r测>r真。
■图像法能帮助学生定性直观地判断电源电动势、内阻的测量值与真实值的大小关系,但是得不到其中定量的关系,它们的定量关系还需通过具体计算来确定。
高中物理竞赛辅导讲义-第篇-稳恒电流(精品)

高中物理竞赛辅导讲义第8篇 稳恒电流【知识梳理】一、基尔霍夫定律(适用于任何复杂电路) 1. 基尔霍夫第一定律(节点电流定律)流入电路任一节点(三条以上支路汇合点)的电流强度之和等于流出该节点的电流强度之和。
即∑I =0。
若某复杂电路有n 个节点,但只有(n −1)个独立的方程式。
2. 基尔霍夫第二定律(回路电压定律)对于电路中任一回路,沿回路环绕一周,电势降落的代数和为零。
即∑U =0。
若某复杂电路有m 个独立回路,就可写出m 个独立方程式。
二、等效电源定理1. 等效电压源定理(戴维宁定理)两端有源网络可以等效于一个电压源,其电动势等于网络的开路端电压,其内阻等于从网络两端看除源(将电动势短路,内阻仍保留在网络中)网络的电阻。
2. 等效电流源定理(诺尔顿定理)两端有源网络可等效于一个电流源,电流源的电流I 0等于网络两端短路时流经两端点的电流,内阻等于从网络两端看除源网络的电阻。
三、叠加原理若电路中有多个电源,则通过电路中任一支路的电流等于各个电动势单独存在时,在该支路产生的电流之和(代数和)。
四、Y−△电路的等效代换如图所示的(a )(b )分别为Y 网络和△网络,两个网络中的6个电阻满足一定关系时完全等效。
1. Y 网络变换为△网络122331123R R R R R R R R ++=, 122331231R R R R R R R R ++=122331312R R R R R R R R ++=2. △网络变换为Y 网络12311122331R R R R R R =++,23122122331R R R R R R =++,31233122331R R R R R R =++五、电流强度与电流密度 1.电流强度 (1)定义式:q I t∆=∆。
(2)宏观决定式:U I R=。
(3)微观决定式:I neSv =。
2.电流密度在通常的电路问题中,流过导线截面的电流用电流强度描述就可以了,但在讨论大块导体中电流的流动情况时,用电流强度描述就过于粗糙了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等效电压源定理及其在高中物理中应用
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
等效电压源定理及其在高中物理中应用
湖北省恩施高中 陈恩谱
一、等效电压源定理(戴维宁定理)
1、内容:一个包含电源的二端电路网络(端点为A 、B ),可看成一个等效的电压源,等效电压源的电动势等于“二端电路网络”两端的开路电压(E U '=开),内阻等于“二端电路网络”中去掉电动势后两端间的等效电阻(AB r R '=)。
2、证明:
(1)基本情形1:如图甲所示电路,将虚线框内部分视为等效电源,则等效电路图如图乙所示。
对甲图,设电路中电流为I ,由闭合电路欧姆定律,有:0E
I r R R
=++;对乙图,有:
E I r R
'='+;两式比较,易得:E E '=,0r r R '=+;图丙是该等效电源的内部结构,易知:
=U E 开,0AB R r R =+,得证。
(2
对丁图,设通过R 的电流为I ,R 两端电压为U ,则通过电源的电流为0
=U
I I R +总
,由闭合电路欧姆定律,有:
0000
()(1)()R r U r
E U I r U I r U Ir U Ir R R R +=+=++=++=+总
乙
甲
丙 丁
戊
己
变形得:
00
00R R E U I
r
R r R r
=+++ 对戊图,有: E U Ir ''=+
两式比较,得:00
00R R E E r r R r R r
''=
=++, 如己图所示,为该等效电源的内部结构,易知:
00
00AB R R U E R r R r R r
==++开,,得证。
(3)一般情形:如右图所示为一般电路,则按顺序依次将处于内部的虚线框部分视为更外围部分的等效电源,则易知,等效电压源定理适用于一般电路。
二、等效电压源定理的应用
1、电源电动势和内阻测量的系统误差分析
该实验的理论依据是Ir U E +=,其中U 为电源的端电压,I 为通过电源的电流;如图所示为该实验的两种测量电路。
左图中电流表测量的是通过电源的电流,但由于电流表的分压作用,电压表却测量的不是电源的端电压,右图中电压表测量的是电源的端电压,但由于电压表的分流作用,电流表测量的也不是通过电源的电流。
但是,两图中,电压表测量的都是虚线框两端的电压,电流表测量的都是通过虚线框的电流,因此,依据Ir U E +=算出来的实际上是虚线框内等效电源的电动势和内阻,即左图:E E =测,A r r R =+测,
右图:00
00R R E E r r R r R r
=
=++测测,。
安箱法、伏箱法的误差分析,由于是把R 当做外电阻,与此同理,也是测量的虚线框内等效电源的电动势和内阻。
E ,r
S R
2、动态电路相关问题的分析
【例】如图所示电路中,电源内阻不能忽略不计,电流表、电压表均视为理想表,滑动变阻器总阻值足够大;当滑动变阻器滑片从左端向右滑动时,下列说法中正确的是:
A 、电流表A 示数减小
B 、电压表V 1、V 2示数减小
C 、电压表V 3示数变化的绝对值与电流表示数变化的绝对值之比为R
D 、滑动变阻器R 消耗的电功率先减小后增大
【解析】A 、考虑电流表A 读数时,可将R 1、R 3、E 视为一个等效电源(E 1、r 1),如图虚线框所示,R 增大时,由闭合电路欧姆定律有
112E I r R
R =++,电流表A 示数减小。
B 、电压表V 1的示数为电源E 的路端电压,R 增大时,电源
E 的外阻增大,由闭合电路欧姆定律有1R U E R r =+外
外,可知电压V 1表示数增大;考虑电压表V 2示数时,可将R 2视为等效电源
(E 1、r 1)的外电阻的一部分,则由闭合电路欧姆定律有
2121
R U E R R r =++2
,可知R 增大时,U 2减小。
CD 、将除R 外的其余部分视为等效电源(E 2、r 2),则有
322U E Ir =-,可知3
2U r I
∆=-∆,而不是R ——R 实际上是变化的;R 消耗的功率即为等效电源
(E 2、r 2)的输出功率,由P R -出外函数规律可知,R 从0逐渐增大到r 2时,P 逐渐增大;
R =r 2时,P 最大,为2
2
2
4m E P r =;R 再增大,P 又减小。
【拓展】按此思路,结合串联分压、并联分流知识,易得出动态电路分析一个重要的结论——“串反并同”。
R 1
E
S 1
R
A
R 2 R 3 V 2
V 3
V 1 R 1 E
S 1 R A
R 2 R 3 V 2 V 3
V 1
3、电路匹配的工作点问题
【例】某电阻器R x 的伏安特性曲线如下图中曲线所示,将其与定值电阻R 0=5Ω串联起来后,接在电动势E =3.0V 、内阻r =1Ω的电源两端,如右图所示,则该电阻器的实际功率为多少?
【解析】电阻器R x 可看做是虚线框内等效电源(E '、r ')的外电阻,则R x 两端电压U 就是该等效电源的路端电压,通过的电流I 就是通过该等效电源的电流;因此,R x 的工作点(U ,I )必然同时在该等效电源的伏安特性曲线U E Ir ''=-和该电阻器的伏安特性曲线上,即两曲线的交点处。
已知 3.0V E E '==,06r r R '=+=Ω,代入U E Ir ''=-,得36U I =-,其函数图线如图所示,则可知U =0.9V ,I =0.35A ,则该电阻器的实际功率为P =IU =3.15W 。
【拓展】其实,本题只是要得出通过R x 的电流就可以了,因此,直接将R x 与R 0合在一起作为一个元件,描出其伏安特性曲线后再与实际电源(E 、r )的伏安特性曲线求交点;或者,把R x 与电源(E 、r )合在一起作
为等效电源(E E '=,x r r R '=+),作其伏安特性曲线U E Ir ''=-,然后与R 0的伏安特性曲线求交点。
不过,前述解析是最简单的一种。
R 0
E ,r
S。