图的矩阵表示及习题-答案汇总

合集下载

图的矩阵表示及习题-答案讲解

图的矩阵表示及习题-答案讲解

177图的矩阵表示图是用三重组定义的,可以用图形表示。

此外,还可以用矩阵表示。

使用矩阵表示图,有利于用代数的方法研究图的性质,也有利于使用计算机对图进行处理。

矩阵是研究图的重要工具之一。

本节主要讨论无向图和有向图的邻接矩阵、有向图的可达性矩阵、无向图的连通矩阵、无向图和有向图的完全关联矩阵。

定义9.4.1 设 G =<V ,E >是一个简单图,V =⎨v 1,v 2,…,v n ⎬ A (G )=(ij a ) n ×n其中:1j i v v v v a j i j i ij =⎩⎨⎧=无边或到有边到 i ,j =1,…,n称A (G )为G 的邻接矩阵。

简记为A 。

例如图9.22的邻接矩阵为:⎪⎪⎪⎪⎪⎭⎫⎝⎛=0111101011011010)(G A 又如图9.23(a)的邻接矩阵为:⎪⎪⎪⎪⎪⎭⎫⎝⎛=0001101111000010)(G A 由定义和以上两个例子容易看出邻接矩阵具有以下性质:①邻接矩阵的元素全是0或1。

这样的矩阵叫布尔矩阵。

邻接矩阵是布尔矩阵。

②无向图的邻接矩阵是对称阵,有向图的邻接矩阵不一定是对称阵。

178③邻接矩阵与结点在图中标定次序有关。

例如图9.23(a)的邻接矩阵是A (G ),若将图9.23(a)中的接点v 1和v 2的标定次序调换,得到图9.23(b),图9.23(b)的邻接矩阵是A ′(G )。

⎪⎪⎪⎪⎪⎭⎫⎝⎛='0010101100011100)(G A 考察A (G )和A ′(G )发现,先将A (G )的第一行与第二行对调,再将第一列与第二列对调可得到A ′(G )。

称A ′(G )与A (G )是置换等价的。

一般地说,把n 阶方阵A 的某些行对调,再把相应的列做同样的对调,得到一个新的n 阶方阵A ′,则称A ′与A 是置换等价的。

可以证明置换等价是n 阶布尔方阵集合上的等价关系。

虽然,对于同一个图,由于结点的标定次序不同,而得到不同的邻接矩阵,但是这些邻接矩阵是置换等价的。

矩阵理论习题与答案

矩阵理论习题与答案

矩阵理论习题与答案矩阵理论习题与答案矩阵理论是线性代数中的重要内容之一,它在数学、工程、计算机科学等领域都有广泛的应用。

为了帮助读者更好地理解和掌握矩阵理论,本文将介绍一些常见的矩阵理论习题,并提供详细的答案解析。

一、基础习题1. 已知矩阵A = [[2, 3], [4, 5]],求A的转置矩阵。

答案:矩阵的转置是将其行和列互换得到的新矩阵。

所以A的转置矩阵为A^T = [[2, 4], [3, 5]]。

2. 已知矩阵B = [[1, 2, 3], [4, 5, 6]],求B的逆矩阵。

答案:逆矩阵是指与原矩阵相乘得到单位矩阵的矩阵。

由于B是一个2×3的矩阵,不是方阵,所以不存在逆矩阵。

3. 已知矩阵C = [[1, 2], [3, 4]],求C的特征值和特征向量。

答案:特征值是矩阵C的特征多项式的根,特征向量是对应于每个特征值的线性方程组的解。

计算特征值和特征向量的步骤如下:首先,计算特征多项式:det(C - λI) = 0,其中I是单位矩阵,λ是特征值。

解特征多项式得到特征值λ1 = 5,λ2 = -1。

然后,将特征值代入线性方程组 (C - λI)x = 0,求解得到特征向量:对于λ1 = 5,解得特征向量v1 = [1, -2]。

对于λ2 = -1,解得特征向量v2 = [1, -1]。

所以C的特征值为λ1 = 5,λ2 = -1,对应的特征向量为v1 = [1, -2],v2 = [1, -1]。

二、进阶习题1. 已知矩阵D = [[1, 2], [3, 4]],求D的奇异值分解。

答案:奇异值分解是将矩阵分解为三个矩阵的乘积,其中一个是正交矩阵,一个是对角矩阵。

计算奇异值分解的步骤如下:首先,计算D的转置矩阵D^T。

然后,计算D和D^T的乘积DD^T,得到一个对称矩阵。

接下来,求解对称矩阵的特征值和特征向量。

将特征值构成对角矩阵Σ,特征向量构成正交矩阵U。

最后,计算D^T和U的乘积D^TU,得到正交矩阵V。

矩阵与行列式练习题及解析

矩阵与行列式练习题及解析

矩阵与行列式练习题及解析矩阵与行列式是线性代数的重要内容之一,对于理解和运用线性代数的基本概念和方法具有重要作用。

本文将为读者提供一些矩阵与行列式的练习题,并对其解析过程进行详细讲解,帮助读者掌握相关知识。

练习题一:已知矩阵A=⎡⎣⎢123456⎤⎦⎥,求A的转置矩阵AT。

解析:矩阵的转置是指将矩阵的行与列进行对调。

根据定义,矩阵AT的第i行第j列元素等于矩阵A的第j行第i列元素。

因此,可以得到矩阵A的转置矩阵AT=⎡⎣⎢143256⎤⎦⎥。

练习题二:已知矩阵B=⎡⎣⎢112233⎤⎦⎥,求B的逆矩阵B-1。

解析:矩阵的逆是指与之相乘得到单位矩阵的矩阵。

对于2×2的矩阵而言,可以通过下面的公式求得逆矩阵:B-1 = 1/(ad-bc) * ⎡⎣⎢dd-bb-cc-aa⎤⎦⎥,其中a、b、c、d分别代表B的对应元素。

根据此公式,可以得到矩阵B的逆矩阵B-1=⎡⎣⎢-1/3-2/30.5-1⎤⎦⎥。

练习题三:已知矩阵C=⎡⎣⎢100010001⎤⎦⎥,求C的行列式|C|。

解析:行列式是用来表征矩阵性质的量,对于3×3的矩阵而言,行列式的计算公式如下:|C| = a(ei-hf) - b(di-hg) + c(dg-ge),其中a、b、c、d、e、f、g、h、i分别代表矩阵C的对应元素。

带入矩阵C的值,可以得到|C|=0。

练习题四:已知矩阵D=⎡⎣⎢123456789⎤⎦⎥,求D的特征值和特征向量。

解析:特征值和特征向量是矩阵在线性变换过程中的重要指标,特征值是矩阵对应特征向量的线性变换因子。

首先,求解特征值需要解特征方程Det(D-λI)=0,其中λ为特征值,I为单位矩阵。

通过计算得到特征值λ1=0,λ2=15,λ3=-15。

然后,根据特征值求解对应的特征向量,即求解方程组(D-λI)X=0,其中X为特征向量。

求解过程中,可以得到特征向量X1=⎡⎢⎣-1-101⎤⎥⎦,X2=⎡⎢⎣111⎤⎥⎦,X3=⎡⎢⎣100-11⎤⎥⎦。

矩阵及其运算课后习题答案(最新整理)

矩阵及其运算课后习题答案(最新整理)

用数学归纳法证明:
当 k 2 时,显然成立. 假设 k 时成立,则 k 1时,
k
Ak 1
Ak
A
0
0
kk 1
k 0
k
(k 1) k 2 kk 1 k
2
0 0
1 0
0 1
k1 0 0
k 由数学归纳法原理知: Ak 0 0
kk 1
k 0
k(k 1) k2
2 kk 1
k
(k 1)k1
k 1 0
(k 1)k k1
2 (k 1)k1
k 1
9.设 A, B 为 n 阶矩阵,且 A 为对称矩阵,证明 BT AB 也是对称矩阵.
证明 已知: AT A

( ) ( ) BT AB T BT BT A T BT AT B BT AB
从而 BT AB 也是对称矩阵.
2 y3,
x3 4 y1 y2 5 y3,
y1 y2
3z1 z2 2z1 z3 ,
,
y3 z2 3z3,
求从 z1, z2 , z3 到 x1, x2 , x3 的线性变换.
解 由已知
x1 x2 x3
2 2 4
0 3 1
152
y1 y2 y2
2 2 4
0 3 1
y2 y2

y1 y2 y2
2 3 3
2 1 2
11 x1
53
x2 x3
7 6 3
4 3 2
9 7 4
y1 y2 y3
y1 y2
7x1 4x2 9x3 6x1 3x2 7x3
y3 3x1 2x2 4x3
2.已知两个线性变换
x1 x2

矩阵典型习题解析

矩阵典型习题解析

2 矩阵矩阵是学好线性代数这门课程的基础,而对于初学者来讲,对于矩阵的理解是尤为的重要;许多学生在最初的学习过程中感觉矩阵很难,这也是因为对矩阵所表示的内涵模糊的缘故。

其实当我们把矩阵与我们的实际生产经济活动相联系的时候,我们才会发现,原来用矩阵来表示这些“繁琐”的事物来是多么的奇妙!于是当我们对矩阵产生无比的兴奋时,那么一切问题都会变得那么的简单!知识要点解析2.1.1 矩阵的概念1.矩阵的定义由m×n个数a ij (i 1,2, ,m;j 1,2, , n)组成的m行n列的矩形数表a11 a12 a1nA a21 a22 a2nAa m1 a m2 a mn称为m×n矩阵,记为 A (a ij )m n2.特殊矩阵(1)方阵:行数与列数相等的矩阵;(2)上(下)三角阵:主对角线以下(上)的元素全为零的方阵称为上(下)三角阵;(3)对角阵:主对角线以外的元素全为零的方阵;(4)数量矩阵:主对角线上元素相同的对角阵;(5)单位矩阵:主对角线上元素全是 1 的对角阵,记为E;(6)零矩阵:元素全为零的矩阵。

3.矩阵的相等设 A (a ij )mn; B (b ij )mn若a ij b ij(i 1,2, ,m;j 1,2, ,n),则称A与B相等,记为A=B。

2.1.2 矩阵的运算1.加法(1)定义:设 A (A ij )mn ,B (b ij )mn ,则 C A B (a ij b ij )mn (2) 运算规律① A+B=B+A ;②( A+B ) +C=A+( B+C )③ A+O=A ④ A+(-A ) =0, –A 是 A 的负矩阵 2.数与矩阵的乘法 (1)定义:设 A (a ij )mn ,k 为常数,则 kA (ka ij )mn(2) 运算规律 ① K (A+B) =KA+KB, ② ( K+L) A=KA+LA,③ (KL) A= K (LA)3.矩阵的乘法(1)定义:设 A (a ij )mn ,B (b ij )np .则 nAB C (C ij )mp ,其中 C ij a ik b kjk1(2) 运算规律① (AB)C A (BC) ;② A(B C) AB AC③ (B C)ABA CA3)方阵的幂①定义:A(a ij )n,则 A k A KA ②运算规律:A m A n A mn(A m )n A(4)矩阵乘法与幂运算与数的运算不同之处。

矩阵练习题及答案

矩阵练习题及答案

矩阵练习题及答案一、选择题1. 矩阵的转置是指将矩阵的行和列互换,以下哪个矩阵不是A的转置?A. [a11 a12; a21 a22]B. [a21 a22; a11 a12]C. [a12 a22; a11 a21]D. [a22 a12; a21 a11]2. 矩阵的加法是元素对应相加,以下哪个矩阵不能与矩阵B相加?矩阵A = [1 2; 3 4]矩阵B = [5 6; 7 8]A. [4 3; 2 1]B. [6 7; 8 9]C. [1 2; 3 4]D. [5 6; 3 4]3. 矩阵的数乘是指用一个数乘以矩阵的每个元素,以下哪个矩阵是矩阵A的2倍?矩阵A = [1 2; 3 4]A. [2 4; 6 8]B. [1 0; 3 4]C. [0 2; 3 4]D. [1 2; 6 8]4. 矩阵的乘法满足结合律,以下哪个等式是错误的?A. (A * B) * C = A * (B * C)B. A * (B + C) = A * B + A * CC. (A + B) * C = A * C + B * CD. A * (B - C) ≠ A * B - A * C5. 矩阵的逆是满足AA^-1 = I的矩阵,以下哪个矩阵没有逆矩阵?A. [1 0; 0 1]B. [2 0; 0 2]C. [0 1; 1 0]D. [1 2; 3 4]二、填空题6. 给定矩阵A = [1 2; 3 4],矩阵B = [5 6; 7 8],矩阵A和B的乘积AB的元素a31是________。

7. 矩阵的行列式是一个标量,可以表示矩阵的某些性质。

对于矩阵C = [2 1; 1 2],其行列式det(C)是________。

8. 矩阵的特征值是指满足Av = λv的非零向量v和标量λ。

对于矩阵D = [4 1; 0 3],其特征值是________。

9. 矩阵的迹是主对角线上元素的和。

对于矩阵E = [1 0; 0 -1],其迹tr(E)是________。

矩阵练习题及答案

矩阵练习题及答案

矩阵练习题及答案矩阵是线性代数中的一个重要概念,也是在数学、物理、计算机科学等领域中广泛应用的工具。

通过解矩阵练习题,可以帮助我们加深对矩阵运算和性质的理解。

下面给出一些矩阵练习题及其答案,供大家参考。

1. 问题描述:已知矩阵 A = [4 2],求 A 的转置矩阵 A^T。

解答:矩阵的转置就是将矩阵的行和列互换得到的新矩阵。

因此,A 的转置矩阵为 A^T = [4; 2]。

2. 问题描述:已知矩阵 B = [1 -2; 3 4],求 B 的逆矩阵 B^-1。

解答:对于一个可逆矩阵 B,其逆矩阵 B^-1 满足 B * B^-1 = I,其中 I 是单位矩阵。

通过矩阵的求逆公式,可以得到 B 的逆矩阵 B^-1 = [4/11 2/11; -3/11 1/11]。

3. 问题描述:已知矩阵 C = [2 1; -3 2],求 C 的特征值和特征向量。

解答:矩阵的特征值和特征向量是矩阵在线性变换下的重要性质。

特征值λ 是方程 |C - λI| = 0 的根,其中 I 是单位矩阵。

解方程可得特征值λ1 = 1 和λ2 = 3。

特征向量 v1 对应于特征值λ1,满足矩阵C * v1 = λ1 *v1,解方程可得 v1 = [1; -1]。

特征向量 v2 对应于特征值λ2,满足矩阵C * v2 = λ2 * v2,解方程可得 v2 = [1; 3]。

4. 问题描述:已知矩阵 D = [1 2 -1; 3 2 4],求 D 的行列式和秩。

解答:矩阵的行列式表示线性变换后单位面积或单位体积的变化率。

计算 D 的行列式可得 det(D) = 1 * (2*4 - 4*(-1)) - 2 * (3*4 - 1*(-1)) + (-1) * (3*2 - 1*2) = 10。

矩阵的秩表示矩阵中独立的行或列的最大个数。

对矩阵 D 进行行变换得到矩阵的行最简形式为 [1 0 6; 0 1 -3],因此 D 的秩为 2。

矩阵练习题及答案

矩阵练习题及答案

矩阵练习题及答案矩阵练习题及答案矩阵是线性代数中的重要概念,也是许多数学问题的基础。

通过练习矩阵题目,我们可以加深对矩阵的理解,提高解决问题的能力。

下面,我将为大家提供一些矩阵练习题及其答案,希望对大家的学习有所帮助。

一、基础练习题1. 计算以下矩阵的和:A = [2 4][1 3]B = [3 1][2 2]答案:A + B = [5 5][3 5]2. 计算以下矩阵的乘积:A = [2 3][4 1]B = [1 2][3 2]答案:A * B = [11 10][7 10]3. 计算以下矩阵的转置:A = [1 2 3][4 5 6]答案:A^T = [1 4][2 5][3 6]二、进阶练习题1. 已知矩阵 A = [2 1][3 4]求矩阵 A 的逆矩阵。

答案:A 的逆矩阵为 A^-1 = [4/5 -1/5] [-3/5 2/5]2. 已知矩阵 A = [1 2][3 4]求矩阵 A 的特征值和特征向量。

答案:A 的特征值为λ1 = 5,λ2 = -1对应的特征向量为 v1 = [1][1]v2 = [-2][1]3. 已知矩阵 A = [2 1][3 4]求矩阵 A 的奇异值分解。

答案:A 的奇异值分解为A = U * Σ * V^T其中,U = [-0.576 -0.817][-0.817 0.576]Σ = [5.464 0][0 0.365]V^T = [-0.404 -0.914][0.914 -0.404]三、实际应用题1. 一家工厂生产 A、B、C 三种产品,其销售量分别为 x1、x2、x3。

已知每天销售的总量为 100 个,且销售收入满足以下关系:2x1 + 3x2 + 4x3 = 3003x1 + 2x2 + 5x3 = 3204x1 + 3x2 + 6x3 = 380求解方程组,得到每种产品的销售量。

答案:解方程组得到 x1 = 30,x2 = 20,x3 = 50。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

177图的矩阵表示图是用三重组定义的,可以用图形表示。

此外,还可以用矩阵表示。

使用矩阵表示图,有利于用代数的方法研究图的性质,也有利于使用计算机对图进行处理。

矩阵是研究图的重要工具之一。

本节主要讨论无向图和有向图的邻接矩阵、有向图的可达性矩阵、无向图的连通矩阵、无向图和有向图的完全关联矩阵。

定义9.4.1 设 G =<V ,E >是一个简单图,V =⎨v 1,v 2,…,v n ⎬ A (G )=(ij a ) n ×n其中:1j i v v v v a j i j i ij =⎩⎨⎧=无边或到有边到 i ,j =1,…,n称A (G )为G 的邻接矩阵。

简记为A 。

例如图9.22的邻接矩阵为:⎪⎪⎪⎪⎪⎭⎫⎝⎛=0111101011011010)(G A 又如图9.23(a)的邻接矩阵为:⎪⎪⎪⎪⎪⎭⎫⎝⎛=0001101111000010)(G A 由定义和以上两个例子容易看出邻接矩阵具有以下性质:①邻接矩阵的元素全是0或1。

这样的矩阵叫布尔矩阵。

邻接矩阵是布尔矩阵。

②无向图的邻接矩阵是对称阵,有向图的邻接矩阵不一定是对称阵。

178③邻接矩阵与结点在图中标定次序有关。

例如图9.23(a)的邻接矩阵是A (G ),若将图9.23(a)中的接点v 1和v 2的标定次序调换,得到图9.23(b),图9.23(b)的邻接矩阵是A ′(G )。

⎪⎪⎪⎪⎪⎭⎫⎝⎛='0010101100011100)(G A 考察A (G )和A ′(G )发现,先将A (G )的第一行与第二行对调,再将第一列与第二列对调可得到A ′(G )。

称A ′(G )与A (G )是置换等价的。

一般地说,把n 阶方阵A 的某些行对调,再把相应的列做同样的对调,得到一个新的n 阶方阵A ′,则称A ′与A 是置换等价的。

可以证明置换等价是n 阶布尔方阵集合上的等价关系。

虽然,对于同一个图,由于结点的标定次序不同,而得到不同的邻接矩阵,但是这些邻接矩阵是置换等价的。

今后略去结点标定次序的任意性,取任意一个邻接矩阵表示该图。

④对有向图来说,邻接矩阵A (G )的第i 行1的个数是v i 的出度, 第j 列1的个数是v j的入度。

⑤零图的邻接矩阵的元素全为零,叫做零矩阵。

反过来,如果一个图的邻接矩阵是零矩阵,则此图一定是零图。

设G =<V ,E >为有向图,V =⎨v 1,v 2,…,v n ⎬,邻接矩阵为A =(a ij )n ×n 若a ij =1,由邻接矩阵的定义知,v i 到v j 有一条边,即v i 到v j 有一条长度为1的路;若a ij =0,则v i 到v j 无边,即v i 到v j 无长度为1的路。

故a ij 表示从v i 到v j 长度为1的路的条数。

设A 2=AA ,A 2=(2ij a )n ×n ,按照矩阵乘法的定义,nj in j i j i ij a a a a a a a +++= 22112若a ik a kj =1,则a ik =1且a kj =1,v i 到v k 有边且v k 到v j 有边,从而v i 到v j 通过v k 有一条长度为2的路;若 kj ik a a =0,则a ik =0或a kj =0,v i 到v k 无边或v k 到v j 无边,因而v i 到v j 通过v k 无长度为2的路,k =1,…,n 。

故2ij a 表示从v i 到v j 长度为2的路的条数。

设A 3=AA 2,A 3=(3ij a ) n ×n ,按照矩阵乘法的定义, 22222113nj in j i j i ij a a a a a a a +++=若2kj ik a a ≠0,则ik a =1且2kj a ≠0,v i 到v k 有边且v k 到v j 有路,由于2kj a 是v k 到v j 长度为2的路的条数,因而2kj ik a a 表示v i 到v j 通过v k 长度为3的路的条数;若2kj ik a a =0,ik a =0或2kj a =0,则v i 到v k 无边或v k 到v j 无长度为2的路,所以v i 到v j 通过v k 无路,k =1,…,n 。

故3ij a 表示从v i 到v j 长度为3的路的条数。

……可以证明,这个结论对无向图也成立。

因此有下列定理成立。

定理9.4.1 设A (G )是图G 的邻接矩阵,A (G )k =A (G )A (G )k-1,A (G )k 的第i 行,第j 列元素k ij a 等于从v i 到v j 长度为k 的路的条数。

其中k ii a 为v i 到自身长度为k 的回路数。

推论 设G =<V ,E >是n 阶简单有向图,A 是有向图G 的邻接矩阵,B k =A +A 2+…+A k ,179B k =(k ij b )n ×n ,则k ij b 是G 中由v i 到v j 长度小于等于k 的路的条数。

∑∑==n i nj kij b 11是G 中长度小于等于k 的路的总条数。

∑=ni kiib 1是G 中长度小于等于k 的回路数。

【例9.4】 设G =<V ,E >为简单有向图,图形如图9.24,写出G 的邻接矩阵A ,算出A 2,A 3,A 4且确定v 1到v 2有多少条长度为3的路? v 1到v 3有多少条长度为2的路? v 2到自身长度为3和长度为4的回路各多少条?解:邻接矩阵A 和A 2,A 3,A 4如下: ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=0100010000000100010100010A ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=10000010000010100020001012A ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=01000100000002000202000203A ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=10000010000020200040002024A 312a =2,所以v 1到v 2长度为3的路有2条,它们分别是:v 1v 2v 1v 2和v 1v 2v 3v 2。

213a =1,所以v 1到v 3长度为2的路有1条:v 1v 2v 3。

322a =0,v 2到自身无长度为3的回路。

422a =4,v 2到自身有4条长度为4的回路,它们分别是:v 2v 1v 2v 1v 2、v 2v 3v 2v 3v 2、v 2v 3v 2v 1v 2和v 2v 1v 2v 3v 2。

定义9.4.2 设G =<V ,E >是简单有向图,V =⎨v 1,v 2,…,v n ⎬ P (G )=(p ij )n ×n其中:p ij=不可达到可达到 j i j iv v v v 01⎩⎨⎧i ,j =1,…,n称P (G )为G 的可达性矩阵。

简记为P 。

在定义9.3.10中,规定了有向图的任何结点自己和自己可达。

所以可达性矩阵P (G )的主对角线元素全为1。

设G =<V ,E >是n 阶简单有向图,V =⎨v 1,v 2,…,v n ⎬,由可达性矩阵的定义知,当i ≠j 时,如果v i 到v j 有路,则ij p =1;如果v i 到v j 无路,则ij p =0;又由定理9.2.1知,如果v i 到v j 有路,则必存在长度小于等于n –1的路。

依据定理9.4.1的推论,如下计算图G 的可达性矩阵P :先计算B n –1=A +A 2+…+A n –1,设B n –1=(1-n ij b )n ×n 。

若1-n ij b ≠0,则令ij p =1,若1-n ij b =0,则令p ij =0,i ,j =1,…,n 。

180再令p ii =1,i =1,…,n 。

就得到了图G 的可达性矩阵P 。

令A 0为n 阶单位阵,则上述算法也可以改进为:计算C n –1= A 0+B n –1=A 0+A +A 2+…+A n -1,设C n –1=(1-n ij c )n ×n 。

若1-n ij c ≠0,则令ij p =1,若1-n ij c =0,则令ij p =0,i ,j =1,…,n 。

使用上述方法,计算例9.4中图G 的可达性矩阵,C 4= A 0+A +A 2+A 3+A 4=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛3100013000004330037300334 P =⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛1100011000001110011100111计算简单有向图图G 的可达性矩阵P ,还可以用下述方法:设A 是G 的邻接矩阵,令A =(ij a )n ×n ,A (k ) =()(k ij a )n ×n ,A 0为n 阶单位阵。

A (2) = A A , 其中)2(ij a =(a i 1∧a 1j )∨(a i 2∧a 2j )∧…∧(a in ∧a nj ) i ,j =1,…,n 。

A (3) = A A (2),其中=)3(ij a (a i 1∧)2(1j a )∨(a i 2∧)2(2j a )∧…∧(a in ∧)2(nj a ) i ,j =1,…,n 。

……P = A 0∨A ∨A (2)∨A (3)∨…∨A (n –1)。

其中,运算∨是矩阵对应元素的析取。

可达性矩阵用来描述有向图的一个结点到另一个结点是否有路,即是否可达。

无向图也可以用矩阵描述一个结点到另一个结点是否有路。

在无向图中,如果结点之间有路,称这两个结点连通,不叫可达。

所以把描述一个结点到另一个结点是否有路的矩阵叫连通矩阵,而不叫可达性矩阵。

下面是无向图连通矩阵的定义。

定义9.4.3 设G =<V ,E >是简单无向图,V =⎨v 1,v 2,…,v n ⎬P (G )=( p ij ) n ×n其中: 01不连通与连通与 j i j i ij v v v v p ⎩⎨⎧= i ,j =1,…,n称P (G )为G 的连通矩阵。

简记为P 。

无向图的邻接矩阵是对称阵,无向图的连通矩阵也是对称阵。

求连通矩阵的方法与可达性矩阵类似。

定义9.4.4 设G =<V ,E >是无向图,V =⎨v 1,v 2,…,v p ⎬,E =⎨e 1,e 2,…,e q ⎬M (G )=( m ij ) p ×q其中:1否则关联与 j iij e v m ⎩⎨⎧=i =1,…,p ,j =1,…,q称M (G )为无向图G 的完全关联矩阵。

简记为M 。

例如图9.25的完全关联矩阵为:181M (G )=⎪⎪⎪⎪⎪⎭⎫⎝⎛1000110000110111设G =<V ,E >是无向图,G 的完全关联矩阵M (G )有以下的性质:①每列元素之和均为2。

相关文档
最新文档