叠合法_线段的比较与作法

合集下载

7.1线段的大小的比较(教案)

7.1线段的大小的比较(教案)

《7.1线段的大小的比较》教学设计
教学目标:(知识技能、过程方法、情感态度价值观)
1.经历用叠合法比较两条线段的大小关系的过程,并会用数学符号表示线段;掌握两点间距离的概念,并理解“两点之间,线段最短”的意义;
2.掌握用直尺、圆规等学习工具画相等的线段的方法,初步体验用作图语言叙述画法的规范性和严谨性;
3.在活动过程中感悟数学来源于生活,并用来指导生活,渗透德育.
教学重点:
用直尺、圆规画与已知线段相等的线段;
教学难点:
用作图语言叙述画法.
教学过程:。

七年级数学上册6.2.2-线段的比较与运算

七年级数学上册6.2.2-线段的比较与运算

步骤
(1)用直尺画射线AE; (2)用圆规在射线AE上
依次截取线段AB=a, BC=b,则AC=a+b.
步骤
线段AC即为所 求
(1)用直尺画射线AE; (2)在射线AE上截取AB=a, (3)在线段AB上截取BC=b,
则AC=a-b.
例题讲解
例1:如图,已知线段a,b,作一条线段,使它等于 2a-b .
练习2:(P166练习第1题)
选词填空
练习3:如图,点B在线段AC上:
AB
AC=______+ _______
BC=______-_______
D
C
(如图)增加一个D点,则AC= ______ +______ + ______
此时 AC= ______+ _______= ______ + _______ BD= ______-_______ = ______ - _______ = ______-_______-_______
A
M
B
把线段分成相等的 三部分的点, 叫做线段的三等分点。
C
D
思考:什么是线段的四等分点。
C
DE
拓展提升
1.在一条笔直的公路两侧,分别有 A, B 两个村庄,如图,现在要在公路l上 建一个汽车站C,使汽车站到 A,B 两 村庄的距离之和最小,请在图中画出汽 车站的位置.
A
2.蚂蚁从点A沿圆柱侧面爬行一圈 到达点B,怎样爬行路线最短?
B A
l
B
点C就是汽车站的位置
课堂小结
课后作业
课本P166练习第3题 P167-168习题第5,7,8题
感谢观看
线段

《线段的长短比较》优质学案

《线段的长短比较》优质学案

线段的长短比较【学习目标】1、进一步理解线段长度比较的意义。

2、会用度量法、叠合法比较线段的长短3、通过若干的实例应用掌握“两点之间线段最短”的基本事实4、会用尺规作线段(要求保留作图痕迹和结论,作法过程不需写出)。

【重点难点】重点:线段长度大小的概念及比较方法难点:利用“圆规”叠合法比较的意义【学习过程】一、引入部分1、教师出示两根绳子,(长度比较明显)提出问题,学生口答为主。

(1)你有几种方法(2)简要解释你的数学原理方法。

(教师补充叠合法的注意点)2、若将绳子抽象成线段,如何比较线段的长短,提出课题二、线段长度大小的意义自学课本P147,完成下列问题:1、线段大小就是指线段的长度大小2、如图,(1)请用刻度尺量出它们的长度。

AB= cm ;AC= cm ;BC= cm(2)从数值上看,它们的关系如何,用“=”、“>”或“<”填空 AB AC;AC BC;BC AB3、线段比较的方法有两种分别是:(1) 度量法 (2) 叠合法 (教师需要对利用圆规叠合法比较的原理加以解释分三种情况说明)4、巩固练习:见课本P148的做一做部分2三、掌握“尺规作图”法,作一条线段等于已知线段。

(教师讲解例题)练习要求:用直尺与圆规作一条线段AB 等于已知线段m ,写出结论,保留作图痕迹。

Bm作法:(1)任意画一条射线AC(2)用圆规量取已知线段m的长度(3)在射线AC上截取AB=m线段AB就是所求作的线段.四、掌握线段的基本事实请认真观察课本P148的图6-15、6-16,(1)发现的线段基本事实是在所有连接两点的线中,线段最短,简单地说“两点之间线段最短”。

(2)两点间的距离是指连结两点的线段的长度。

(3)请举出生活生产实践中有关上述基本事实的实例一个。

五、当堂检测:1、村庄A, B之间有一条河流,要在河流上建造一座大桥P, 为了使村庄A, B之间的距离最短,请问:这座大桥P应建造在哪里。

为什么请画出图形。

初一数学《比较线段的长短》知识点精讲

初一数学《比较线段的长短》知识点精讲

初一数学《比较线段的长短》知识点精讲知识点总结1、线段的性质:两点之间,线段最短。

2、两点之间的距离:两点之间线段的长度叫做两点之间的距离。

3、比较线段长短的方法:(1)目测法;(2)度量法;(3)叠合法4、线段的中点:在线段上,到线段两个端点距离相等的点叫做线段的中点。

5、尺规作图:用没有刻度的直尺和圆规作图6、用尺规作线段:(1)作一条线段等于已知线段;(2)作一条线段等于已知线段的二倍;(3)作一条线段等于已知线段的和或差。

其方法是相同的,都是先画一条射线,然后用圆规在射线上截取即可,注意保留作图痕迹,画完图形后写出总结“某某线段即为所求作的线段”。

尺规作图的定义:仅用圆规和没有刻度的直尺作图的方法叫做尺规作图.要点诠释:(1)只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题.(2)直尺必须没有刻度,无限长,且只能使用直尺的固定一侧.只可以用它来将两个点连在一起,不可以在上面画刻度.(3)圆规可以开至无限宽,但上面也不能有刻度.它只可以拉开成之前构造过的长度.2.线段的中点:如下图,若点B在线段AC上,且把线段AC分成相等的两条线段AB与BC,这时点B叫做线段AC的中点.3. 用尺规作线段或比较线段(1)作一条线段等于已知线段:用圆规作一条线段等于已知线段.例如:下图所示,用圆规在射线AC上截取AB=a.要点诠释:几何中连结两点,即画出以这两点为端点的线段.(2)线段的比较:叠合比较法:利用直尺和圆规把线段放在同一条直线上,使其中一个端点重合,另一个端点位于重合端点同侧,根据另一端点与重合端点的远近来比较长短.如下图:要点诠释:线段的比较方法除了叠合比较法外,还可以用度量比较法.如图所示,在一条笔直公路a的两侧,分别有A、B两个村庄,现要在公路a上建一个汽车站C,使汽车站到A、B两村的距离之和最小,问汽车站C的位置应如何确定?【答案与解析】解:如图,连接AB与直线a交于点C,这个点C的位置就是符合条件的汽车站的位置.【总结升华】“两点之间线段最短”在实际生活中有广泛的应用,此类问题要与线段的性质联系起来,这里线段最短是指线段的长度最短,连接两点的线段的长度叫做两点间的距离,线段是图形,线段长度是数值.举一反三:【变式】(1)如图1所示,把原来弯曲的河道改直,A、B两地间的河道长度有什么变化?(2)如图2,公园里设计了曲折迂回的桥,这样做对游人观赏湖面风光有什么影响?与修一座直的桥相比,这样做是否增加了游人在桥上行走的路程?说出上述问题中的道理.【答案】解:(1)河道的长度变小了.(2)由于“两点之间,线段最短”,这样做增加了游人在桥上行走的路程,有利于游人更好地观赏湖面风光,起到“休闲”的作用.思维导图教学设计一、教材分析:1、教材的地位和作用本节课是教材第五章《平面图形及其位置关系》的第二节,是平面图形的重要的基础知识。

4.1线段、射线、直线+第2课时+线段的比较与作图2024--2025学年北师大版七年级数学上册

4.1线段、射线、直线+第2课时+线段的比较与作图2024--2025学年北师大版七年级数学上册

思考 方法一: 度量法
用刻度尺量出两条线段的长度,再比较它们的大小.
如下图所示: 记为AB<CD。
A
B 3.1cm
C
D 4.1cm
0
1
2
3
4
5
6
7
8
思考
A
BA
BA
B
C
D
AB>CD
方法二: 叠合法
C
DC
D
AB<CD
AB=CD
把其中的一条线段移到另一条线段上去,
将其中的一个端点重合在一起加以比较。
新知小结 比较两条线段的长短的方法:
4.1 线段、射线、直线
第2课时 线段的比较与作图
学习目标
1.在现实情境中理解线段、射线、直线的概念及他们的区别与 联系。(重点) 2.会用不同的方法表示线段、射线、直线。(难点) 3.了解“两点确定一条直线”的几何事实。
情境导入 为什么大家都喜欢走捷径呢?
绿地里本没有路,走的人多了… …
讲授新课
的距离是( A )
A. 8
B. 2
C. 4
D. 无法确定
随堂检测
3.要比较线段AB与CD的长短,小明将点A与点C 重合使两条线段在 一条直线上,结果点B在CD的延长线上,则AB与CD相比较,( B ) A. AB<CD B. AB>CD C. AB=CD D. 无法判断 4.如图,点C 是线段AB 的中点,点E,F 是AC 的三等分点。若 BF=8 cm,则线段AB 的长是__1_2___ cm。
A.过一点有无数条直线 B.两点之间线段的长度,叫做这两点之间的距离 C.两点确定一条直线 D.两点之间,线段最短
01 2 3 4 5 6 7 8

线段的比较与作法

线段的比较与作法

教学活动二
学习目标
评价任务
教学活动
目标:
活动二
1.掌握“两 1.比较三条线 1. 出示王庄到李村的三条线路图。
点之间线段最 段的大小,并得 2. 教师提问:沿不同的路去李村,哪条路最近?
短”的基本性 出结论:“两点之 学生根据生活经验快速作答。
质;理解两点 间线段最短”。 追问:如果采用刚才学到的“叠合法”该如何解决?
大小关系?如何 展示方法:叠合法,将AB移到CD上,使AC重合,观察B 借助圆规来比较 与CD两点之间的位置,得出AB<CD;AB>CD;AB=CD三种情况。 两条线段的大小? 学生自主练习叠合法,规范字母表示。
2. 教师提示:圆规也可以用来比较两条线段的长短。
何语言使用的规范 性。 (理解目标)
学生练习用圆规比较两条线段大小的方法,为接下来的用 圆规表示线段数量关系打下基础。
过程性评价
A.在作图层面理解线段的 和与差。 B.理解中点定义,能熟练 地用符号语言标识线段中 点关系。
任务一览

1.找出比较两支铅 笔的长短的方法。 2.明确两条线段之 间存在怎样的大小 关系?如何借助圆 规来比较两条线段
的大小?

1.比较三条线段的 大小,并得出结论:
“两点之间线段最 短”。
2.推论两点间的距 离:两点之间线段
教师总结中点定义,展示符号表示:AM=BM=½ AB 或 AB=2AM=2BM
类比推论线段的三等分点和四等分点。
3、学生尝试用符号语言表示中点。
4、课堂完成巩固练习,进行回顾总结。
the end
理解语言符号的双向性。
评价任务三
●任务形成:
1.用直尺和 圆规画一条 与已知线段 相等的线段

数学《4.2.2 线段长短的比较与运算教学设计》

数学《4.2.2 线段长短的比较与运算教学设计》

4.2.2 线段长短的比较与运算观察图形,你能比较出每组图形中线段 a 和b 的长短吗?很多时候,眼见未必为实. 准确比较线段的长短还需要更加严谨的办法.作一条线段等于已知线段已知:线段a,作一条线段AB,使AB=a.第一步:用直尺画射线AF第二步:用圆规在射线AF 上截取AB = a.∴ 线段AB 为所求.在数学中,我们常限定用无刻度的直尺和圆规作图,这就是尺规作图.(教师动画演示叠合的过程,呈现三种情况)设计意图在总结生活经验的基础上,引导学生归纳两人身高的比较方法以及需要注意的问题,再将方法迁移到“线段的长短比较”的数学问题中来,促进学生理解,锻炼学生几何语言的表达、概括能力,感受数学的严谨性,逐步培养学生用数学的眼光观察世界的能力,用数学的语言表达世界的能力.问题1 如图1(几何画板显示),当点C是线段AB 上一点时,图中有几条线段,它们的大小关系呢?生:有3条,分别是线段AC、CB、AB问题2:如图,线段AB和AC的大小关系是怎样的?线段AC与线段AB的差是哪条线段?你还能从图中观察出其他线段间的和、差关系吗?答案:AB<ACAB+BC=ACAC-AB=BCAC-BC=AB师:如果点C在线段AB 上移动(不与A、B两点重合),以上不等量关系和等量关系还成立吗?生:不等量关系中 AC<AB,CB<AB成立,而 AC>CB 不一定成立了;而等量关系都成立.师:利用几何画板的度量功能,可以把线段的长度都度量出来,请观察动画,当点C在线段AB上移动时,这3条线段的长度如何变化?(动画演示)生:当C刚开始移动时,有AC>CB,随着点C向点A方向移动,线段AC的长度越来越小,线段CB的长度越来越大,而线段AB 的长度保持不变.师:在点C移动的过程中,线段AC 和线段CB 的长度有没有可能相等?能找出相等时刻点C的位置吗?生1:有可能相等(上台演示).生2:如果能够折叠,将 AB=8.18厘米线段折叠,使点 A 与点B 重合AC=4.09厘米CB=4.09厘米重合,折痕与线段的交点就是点C.师:我们把这时的点C叫做线段AB 的中点,你能说说什么是线段的中点吗?生:线段AB上有一点C ,将线段AB 分成相等的两条线段AC 和CB ,就说点C是线段AB 的中点.强调:点C把线段AB分成相等的两条线段AC与BC,点C叫做线段AB的中点.符号语言:∴M是AB的中点∴AM=BM=12 AB想一想:什么是三等分点?四等分点呢?设计意图:利用直观图形,由线段的大小关系过渡到线段的和差关系,自然合理.利用多媒体动画及度量工具,揭示线段中点的含义.线段中点的表示采用两种表示法,渗透线段的倍分关系,为以后学习线段的三等分点、四等分点以及线段的几倍与几分之一打下基础.在概念的学习中,让学生体会一般与特殊的关系,通过不断逼近中点的演示,渗透极限思想,培养学生用数学的思维思考世界的能力.问题3:如图,从A地到B地有四条道路,除它们外能否再修一条从A地到B地的最短道路?如果能,请联系你以前所学的知识,在图上画出最短路线.强调1:两点的所有连线中,线段最短.简单地说:两点之间,线段最短.过关练习 1.如图,下列关系式中与图不符的是( )A.AD-CD=ACB. AB+BC=ACC.BD-BC=AB+BCD. AD-BD=AC-BC答案:C2.若AB = 6 cm,点C 是线段AB 的中点,点D 是线段CB 的中点,问:线段AD 的长是多少?3.如图,已知点C在线段AB上,线段AC=12,BC=8,点M,N分别是AC,BC的中点,求线段MN的长度;根据上面的计算过程与结果,设AC+BC=a,其他条件不变,你能猜出MN的长度吗?用简练的语言表述你发现的规律.解:(1)因为MC=12AC,NC=12BC,所以MN=12AC+12BC=12×12+12×8=10Aa aM B(2)因为MC =12AC ,NC =12BC ,所以MN =12AC +12BC =12×12+12×8=10如图,A ,B ,C 三点在一条直线上,线段4. AB = 4 cm ,BC = 6 cm ,若点 D 为线段 AB 的中点,点 E 为线段 BC 的中点,求线段 DE 的长.课堂小结设计意图 通过师生共同回顾本节课的学习内容和探究历程,构建知识框架,梳理知识的发生、发展过程,总结知识获得的方法,加深学生对所学知识的理解,感受数学的逻辑性和严密性.鼓励学生大胆发表自己的见解,培养语言表达和与人交流的能力.四、达标测评 检测小卷五、布置作业A 层作业:数学书128页练习1-3题B 层作业:练习卷C 层作业:拓展训练A DB E C线段长短的比较与运算 线段长短的比较基本事实线段的和差度量法叠合法中点两点之间线段最短 思想方法方程思想 分类思想基本作图。

部编版七年级上册线段长短的比较

部编版七年级上册线段长短的比较

a
b
画法:
a a ba
A
B EC
DD
F
1.画射线AF.
2.用圆规在射线AF上依次截取AB=BC=CD=a.
3. 在线段AD上截取DE=b.
线段AE就是所求的线段c. (或线段AE=3a-b)
1、如图,填空:
AB
C
D
填 一 填
AB+BC=__A_C__ BC=__B_D__ - CD
AD - CD=_A__C__ AD=__A_B__ + __B_C__ + __C__D__
当两条不同的直线有一个公共点时,我们就称两条直线相交,这个公共点叫做它们的交点.
二、概念延伸,思维提升
段d,使它的长度等于a-b。 情况二:点C在A的右侧
③AC=BC; ④AC+BC=AB.
你会画吗?画法如何?
• 直线、射线、线段的联系与区别.
画法: 一、开门见山,引入新知
②在射线AM上截取AB= a . 如果把我们学习知识比作这三种“线”的一种,你选哪一种呢?
(3)AB=2AM=2BM.
如 何 用 符 号 语 言
2.线段的三等分点:
一、学习了怎样比较线段的长短。
一、开门见山,引入新知
(或线段AE=3a-b)
• 分类思想,转化思想,有序思考.
A M N 叠合法比较线段的长短:
已知线段AB=10,点C在直线AB上,且AC=4,若点D是AB的中点,求DC的长.
BC=_____ - CD
在他们看来,直线和圆是可以信赖的最基本的图形,而直尺和圆规是这两种图形的具体体现,因而只有用尺规作出的图形才是可信的。
将线段AB放到CD上,使点A与点C重合,点B和点D在重合点的同侧.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档