初高中衔接第四讲 《代数式的恒等变形》
代数式的恒等变形

教学·信息 课程教育研究 Course Education Ressearch 2015年9月 下旬刊174· ·著名教育家裴斯泰洛奇说过:“教学最大的挑战是她的不可预知性。
”语文课堂教学是师生、生生、生本之间相互对话、相互碰撞的动态过程,课堂随时会出现一些非预设性的新情况、新动态。
这就是所谓的“不可预知性”,通常也叫做节外生枝。
教师该如何运用教学的节外生枝,使其也能绽放出春天的光彩,我谈两个看法。
一、节外生枝,巧在引导有位教师教学苏教版五年级下册的《埃及的金字塔》第二自然段,形成下面的对话:师:读了这段话,谁来说说金字塔有什么作用?生:金字塔是拿来看的!(全班同学哄堂大笑,该同学满脸通红)师:这位同学已经跳出课文,融入了自己的理解,他把今天金字塔的作用用一个“看”字进行了高度的概括。
这个“看”字可不一般呀,同学们请想一想,你能给“看”换个词吗?生(纷纷举手):欣赏、研究、考察、勘探、瞻仰。
师:说得好!下面请同学们认真的默读第3、4、5、自然段,想一想,不同身份的人站在金字塔前,他们是怎么“看”的?《课标》指出:“阅读是学生的个性化行为。
”学生对文本的阅读感悟,是依据自己的阅读经验和情感而产生自然而真实的反应,有时会出现教师不可预料的阅读感悟。
上述教学,由于学生的生活经验和对文本的感悟不同,其认识确实偏离了课文内容。
但执教老师却没有简单地否定,而是充分尊重学生的个性化理解,顺学而导,由“看”引出“欣赏、研究、考察、勘探、瞻仰”等意思,让学生带着问题与文本进行一番深层次的对话,再次交流自己的体会和感悟。
看似离谱的回答,在老师巧妙地引导下,竟化腐朽为神奇。
学生的思维火花被点燃了,“欣赏金字塔、研究金字塔、勘探金字塔……”,对金字塔的崇敬之情、热爱之情油然而生,课堂呈现百花齐放、百家争鸣的局面,也加深了学生对文本的理解和感悟。
这样的引导,既呵护了学生,化解课堂教学的尴尬,又引发学生深入阅读探究,发表见解,从而获得真知求知。
代数式恒等变形法则归纳

代数式恒等变形法则归纳引言代数式是代数学中的基础概念之一,它用字母和常数通过运算符号相连而成。
在数学中,我们常常需要对代数式进行变形,以达到简化、分解、合并或者推导等目的。
代数式的变形是数学问题解决过程中重要的一环,它不仅能提高计算效率,还能揭示代数运算的本质。
在代数式的变形中,恒等变形法则是重要的基础工具,本文将对代数式的恒等变形法则进行归纳总结。
一、基本变形法则1. 加法法则:•加法结合律:a+(b+c)=(a+b)+c•加法交换律:a+b=b+a•加法零元:a+0=a #### 2. 乘法法则:•乘法结合律:$a \\cdot (b \\cdot c) = (a \\cdot b) \\cdot c$•乘法交换律:$a \\cdot b = b \\cdot a$•乘法零元:$a \\cdot 0 = 0$•乘法单位元:$a \\cdot 1 = a$二、分配律1. 左分配律:对于任意的a,b,c,有$a \\cdot (b + c) = a \\cdot b + a \\cdot c$ #### 2. 右分配律:对于任意的a,b,c,有$(a + b) \\cdot c = a \\cdot c + b \\cdot c$三、幂运算法则1. 幂运算与乘法运算:•幂运算与乘法运算的交换律:$(a \\cdot b)^n = a^n \\cdot b^n$•幂运算与乘法运算的结合律:$(a^n)^m = a^{n \\cdot m}$ #### 2.幂运算的乘方法则:•幂运算的乘方法则1:$a^n \\cdot a^m = a^{n + m}$•幂运算的乘方法则2:$(a^n)^m = a^{n \\cdot m}$•幂运算的乘方法则3:$(a \\cdot b)^n = a^n \\cdot b^n$四、指数运算法则1. 指数运算与乘法运算:•指数运算与乘法运算的交换律:$(a \\cdot b)^n = a^n \\cdot b^n$•指数运算与乘法运算的结合律:$(a^n)^m = a^{n \\cdot m}$ #### 2.指数运算的指数法则:•指数运算的指数法则1:$a^n^m = a^{n \\cdot m}$•指数运算的指数法则2:$(a^n)^m = a^{n \\cdot m}$•指数运算的指数法则3:$(a^m)^n = a^{m \\cdot n}$五、因式分解法则1. 公因式提取法则:•公因式提取法则1:ax+ay=a(x+y)•公因式提取法则2:$a \\cdot b + a \\cdot c = a \\cdot (b + c)$ ####2. 公式分解法则:•差的平方公式:a2−b2=(a+b)(a−b)•平方差公式:a2−b2=(a−b)(a+b)•完全平方公式:a2+2ab+b2=(a+b)2•完全平方公式:a2−2ab+b2=(a−b)2六、合并同类项法则合并同类项法则:将含有相同字母指数的项合并为一个项•合并同类项法则1:ax+bx=(a+b)x•合并同类项法则2:ax2+bx2=(a+b)x2•合并同类项法则3:ax n+bx n=(a+b)x n结论恒等变形法则在代数式的变形中起着重要的作用。
代数式的恒等变形

代数式的恒等变形一、常值代换求值法——“1”的妙用例1 、 已知ab=1,求221111ba +++的值 [解] 把ab=1代入,得221111b a +++ =22b ab aba ab ab +++ =b a a b a b +++=1例2 、已知xyzt=1,求下面代数式的值:分析 直接通分是笨拙的解法,可以利用条件将某些项的形式变一变.解 根据分式的基本性质,分子、分母可以同时乘以一个不为零的式子,分式的值不变.利用已知条件,可将前三个分式的分母变为与第四个相同.同理练习:1111,1=++++++++=c ca cb bc b a ab a abc 证明:若二、配方法例1、 若实数a 、b 满足a2b2+a2+b2-4ab+1=0,求b aa b +之值。
[解] ∵a2b2+a2+b2-4ab+1=(a2b2-2ab+1)(a2-2ab+b2) =(ab-1)2+(a-b)2 则有(ab-1)2+(a-b)2=0∴⎩⎨⎧==-.1,0ab b a解得⎩⎨⎧==;1,1b a ⎩⎨⎧-=-=.1,1b a当a=1,b=1时,b aa b +=1+1=2 当a=-1,b=-1时,b aa b +=1+1=2 例1 设a 、b 、c 、d 都是整数,且m=a2+b2,n=c2+d2,mn 也可以表示成两个整数的平方和,其形式是______.解mn=(a2+b2)(c2+d2)=a2c2+2abcd+b2d2+a2d2+b2c2-2abcd =(ac+bd)2+(ad-bc)2 =(ac-bd)2+(ad+bc)2,所以,mn 的形式为(ac+bd)2+(ad-bc)2或(ac-bd )2+(ad+bc)2.例 2 设x 、y 、z 为实数,且(y-z)2+(x-y)2+(z-x)2=(y+z-2x)2+(z+x-2y)2+(x+y-2z)2.求的值.解 将条件化简成2x2+2y2+2z2-2xy-2x2-2yz=0 ∴ (x-y)2+(x-z)2+(y-z)2=0 ∴ x=y=z,∴原式=1.练习:,0146422222=+---++x cx bx ax c b a 已知求证:3:2:1::=c b a三、因式分解法例6 已知a4+b4+c4+d4=4abcd ,且a ,b ,c ,d 都是正数,求证:a=b=c=d . 证 由已知可得a4+b4+c4+d4-4abcd=0,(a2-b2)2+(c2-d2)2+2a2b2+2c2d2-4abcd=0, 所以(a2-b2)2+(c2-d2)2+2(ab-cd)2=0.因为(a2-b2)2≥0,(c2-d2)2≥0,(ab-cd)2≥0,所以 a2-b2=c2-d2=ab-cd=0,所以 (a+b)(a-b)=(c+d)(c-d)=0.又因为a ,b ,c ,d 都为正数,所以a+b≠0,c+d≠0,所以 a =b ,c=d . 所以ab-cd=a2-c2=(a+c)(a-c)=0, 所以a =c .故a=b =c=d 成立.例4 已知|a|+|b|=|ab|+1, 求a+b 之值 [解] ∵|a|+|b|=|ab|+1∴|a|·|b|-|a|-|b|+1=0 (|a|-1)(|b|-1)=0 |a|=1 |b|=1 ∴a=±1或b=±1. 则当a=1,b=1时,a+b=2 当a=1,b=-1时,a+b=0 当a=-1,b=1时,a+b=0 当a=-1,b=-1时,a+b=-2[评注] 运用该法一般有两种途径求值,一是将已知条件变形为一边为0,另一边能分解成几个因式的积的形式,运用“若A ·B=0,则A=0或B=0”的思想来解决问题。
代数证明与恒等变形

代数证明与恒等变形代数证明主要是指证明代数中的一些相等关系或不等关系.在初中阶段,要证的等式一般可分为恒等式的证明和条件等式的证明. 恒等式的证明常用的方法有:(1)由繁到简,从一边推向另一边; (2)从左右两边人手,相向推进;(3)作差或作商证明,即证明:左边一右边=0,)0(1≠=右边右边左边. 条件等式的证明实质是有根据、有目的的代数式恒等变换,证明的关键是寻找条件与结论的联系,既要注意已知条件的变换,使之有利于应用;又要考虑求证的需求情况,使之有利于与已知条件的沟通. 代数证明不同于几何证明,几何证明有直观的图形为依托,而代数证明却取决于代数式化简求值变形技巧、方法和思想的熟练运用.例1:设a 、b 、c 、d 都是整数,且m=a 2+b 2,n=c 2+d 2,mn 也可以表示成两个整数的平方和,其形式是______.解 mn=(a 2+b 2)(c 2+d 2)=a 2c 2+2abcd+b 2d 2+a 2d 2+b 2c 2-2abcd=(ac+bd)2+(ad-bc)2=(ac-bd)2+(ad+bc)2,所以,mn 的形式为(ac+bd)2+(ad-bc)2或(ac-bd )2+(ad+bc)2.例2 : 设x 、y 、z 为实数,且(y-z)2+(x-y)2+(z-x)2=(y+z-2x)2+(z+x-2y)2+(x+y-2z)2. 求)1)(1)(1()1)(1)(1(222++++++z y x xy zx yz 的值.解 将条件化简成2x 2+2y 2+2z 2-2xy-2xz-2yz=0∴(x-y)2+(x-z)2+(y-z)2=0 ∴x=y=z,∴原式=1.例3:设a+b+c=3m,求证: (m-a)3+(m-b)3+(m-c)3-3(m-a)(m-b)(m-c)=0. 证明 令p=m-a,q=m-b,r=m-c,则p+q+r=0. P 3+q 3+r 3-3pqr=(p+q+r)(p 2+q 2+r 2-pq-qr-rp)=0 ∴p 3+q 3+r 3-3pqr=0即 (m-a)3+(m-b)3+(m-c)3-3(m-a)(m-b)(m-c)=0 例4:若67890123475678901235,67890123455678901234==B A ,试比较A 、B 的大小.解 设 ,yx A =则,21++=y x B)2(2)2()1()2(21+-=++-+=++-y y yx y y x y y x y x y x . ∵2x >y ∴2x-y >0, 又y >0, 可知21++-y x y x >0 ∴A >B.例5:求最大的正整数n ,使得n 3+100能被n+10整除.分析:此题可以运用整除法或两个整式整除的问题转化为一个分式问题加以解决.解:333100109001010n n n n ++-=++=2(10)(10100)90010n n n n +-+-+=n 2-10n+100-90010n + 要使n+10整除n 3+100,必须且只需n+10整除900,又因为n 取最大值,•所以n+•10=900,从而符合要求的正整数n 的最大值为890.评注:对于分子的次数高于或等于分母的次数的分式,可化为整式部分与分式部分的和.例6:已知a 、b 、c 为非负实数,且a 2+b 2+c 2=1,3111111-=⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+b a c a c b c b a ,求a+b+c 的值. 解:由条件知(a+b+c)()111cb a ++=0 ∴a+b+c=0 或cb a 111++=0当c b a 111++=0时,abcac bc ab ++=0 ∴ab+bc+ac=0∵(a+b+c)2=a 2+b 2+c 2+2ab+2bc+2ac=1 ∴a+b+c=±1∴a+b+c=0或1或-1例7:已知.0222=-+-+-c ab c b ac b a bc a 求证:0)()()(222222=-+-+-c ab c b ac b a bc a . 证明 222222222.()()a b c ab bc ac b cbc a ac b ab c ac b ab c -+-+=-=-----.0))()(()()()(.))()(()(.))()(()(.))()(()(222222222222222222222222222222222222222222222222=---+-+-+-+++-+-=-+-+-∴---+-+-=----+-+-=-----++-=-∴c ab b ac a bc b a c b ab c a c a bc ac b a c b ac bc ab c ab c b ac b a bc a c ab b ac a bc ca cb abc a c ab c c ab a bc b ac ca bc ac ab b ac b c ab b ac a bc c b ac bc ab a bc a 同理例8:设a 、b 、c 、d 都是正整数,且a 5=b 4,c 3=d 2,c-a=19,求d-b.解 由质因数分解的唯一性及a 5=b 4,c 3=d 2,可设a=x 4,c=y 2,故19=c-a=(y 2-x 4)=(y-x 2)(y+x 2)⎪⎩⎪⎨⎧=+=-∴.19,122x y x y 解得 x=3. y=10. ∴ d-b=y 3-x 5=757.练习:(1)已知a 2+c 2=2b 2,求证.211ac b a c b +=+++(2)求证:aa z a y a x a az z a ay y a ax x 3111222+-+-+-=-+-+-(3)求证:)1)(1)(1(4)1()1()1(222abab b b a a ab ab b b a a ++++=+++++.例9:已知a 、b 、c 、d 满足a+b=c+d ,a 3+b 3=c 3+d 3, 求证:a 2001+b 2001=c 2001+d 2001.解:由a 3+b 3=c 3+d 3得:(a+b) (a 2-ab+b 2)=(c+d) (c 2-cd+d 2)∵a+b =c+d ,则有(1) 若a+b =c+d=0,则a= -b ,c= -d ,从而a 2001+b 2001=c 2001+d 2001=0(2) 若a+b =c+d ≠0,则a 2-ab+b 2=c 2-cd+d 2,∴(a+b)2-3 ab=(c+d)2-3 cd ,从而ab=cd∴(a+b)2-4ab=(c+d)2-4 cd ,∴(a-b)2=(c-d)2,∴a-b=±(c-d) 可得a=b=c=d ,从而a 2001+b 2001=c 2001+d 2001例10: 有18支足球队进行单循环赛,每个参赛队同其他各队进行一场比赛,假设比赛的结果没有平局,如果用i a 和i b ,分别表示第i(i=1,2,3…18)支球队在整个赛程中胜与负的局数. 求证:21822212182221b b b a a a +++=+++ .解:由于每支球队都要进行18-1=17场比赛,则对于第i 支球队有a i +b i =17,i=1,2,3,……18;由于比赛无平局,故所有参赛队的胜与负的总局数相等,即a 1+a 2+…+a 18=b 1+b 2+…+b 18由(a 12+a 22+…+a 182)-(b 12+b 22+…+b 182)=(a 12-b 12)+ (a 22-b 22)+…+(a 182-b 182) =17×[(a 1+a 2+…+a 18)-(b 1+b 2+…+b 18)]=0得21822212182221b b b a a a +++=+++例11:已知333cz by ax ==,且1111=++zy x .求证:3333222c b a cz by ax ++=++.思路点拨 条件中有一个连等式,恰当引入参数,把待证式两边都变形为与参数相同的同一个代数式.解:设333cz by ax ===t 3,则a=33x t ,b=33yt,c=33z t因333c b a ++=t t zy x =++)111(又33333222111z cz y by x ax cz by ax ⋅+⋅+⋅=++=33)111(zy x t ++=t ,从而得证.例12: 已知0≠abc ,证明:四个数abc c b a 3)(++、abc a c b 3)(--、abc b a c 3)(--、abcc b a 3)(--中至少有一个不小于6.思路点拨 整体考虑,只需证明它们的和大于等于24即可. 解:因为abc c b a 3)(+++abc a c b 3)(--+abc b a c 3)(--+abc c b a 3)(--=abcc b a b a c a c b c b a ])()[(])()[(3333--+--+--+++=abcabcabc ac c b a b ac c b a b 24)633(2)633(2222222=-++-+++=24 若abcc b a 3)(++<6,abc a c b 3)(--<6,abc b a c 3)(--<6,abc c b a 3)(--<6,则他们的和必小于24,这与上式矛盾,故四个加数中至少有一个不小于6。
代数式的恒等变换

代数式的恒等变换方法与技巧例:设px =有实根的充要条件,并求出所有实根。
由于代数式的变形会引起定义域的改变,因此,在解方程时,尽量使用等价变形的方法求解。
这样可避免增根和遣根的出现。
解:原方程等价于222(0,0x p x x x ⎧-=-⎪⎨-≥≥⎪⎩222222(4)4448(2)441330440,0p x x p p x x x x p x ⎧-=⎪⎧=+--⎪⎪⎪⎪⇔≤≤⇔≤⎨⎨⎪⎪≥⎪⎪+-≤≥⎩⎪⎩222(4)8(2)44,043p x p p x x ⎧-=⎪⎪-⇔⎨-⎪≤≤≥⎪⎩ 由上式知,原方程有实根,当且仅当p 满足条件24(4)44048(2)33p p p p --≤≤⇔≤≤- 这说明原方程有实根的充要条件是403p ≤≤。
这时,原方程有惟一实根x =。
一、分类变换当式的变换受到字母变值的限制时,可对字母的取值进行分类,然后对每一类进行变换,以达到求解的目的。
分类变换方法适用于式的化简与方程(组)的化简、求解。
例1:当x 取什么样的实数值时,下列等式成立:(a=;(b1=;(c2=。
解:(0)m m =≥ 记方程左边为f(x),则()f x =1|1|1|112xx≥==≤≤由此可知,当m=时,原方程的解集为1[,1]2;当m∈时,解集为∅;当)m∈+∞m=,解得21(2)4x m=+。
即当)m∈+∞时,原方程的解集为21{(2)}4m+。
例2:在复数范围内解方程组2225553,3,3.x y zx y zx y z++=⎧⎪++=⎨⎪++=⎩解:考虑数列*,n n nna x y z n=++∈N。
不难证明此数列满足递推式321()()n n n na x y z a xy yz zx a xyza+++=++-+++,其中1253,3a a a===。
利用基本恒等式,得2121()32xy yz zx a a++=-=,312311[()]33xyz a a a xy yz zx a=--++=,∴{}na的递推式化为*3213133,3n n n na a a a a n+++=-+⋅∈N由此得432313543323113349,33102733a a a a a a a a a a a a=-+⋅=---+⋅=-由53a=,得310273a-=,∴33a=。
恒等变形知识点总结

恒等变形知识点总结恒等变形是指根据等式的性质和算术运算的性质,将一个等式变形成另一个等式的过程。
在变换的过程中,通过适当的运算,将等式的两侧转变成相同的表达式。
首先,我们来看一下恒等变形的基本原则,它包括以下几个方面:1. 相等的两个数(对象)可以相互规约。
2. 等式的两边加(或减)相等的数(或算式)仍相等。
3. 等式的两边同乘(或同除)一个不为零的数(或数的倒数)仍相等。
4. 在等式中引进(或去除)平方根,绝对值符号对方程做平方根变形,只有当两边都为非负数时,该等式才成立。
这些基本原则是我们进行恒等变形时需要牢记的,只有在遵守这些原则的前提下,我们才能正确进行恒等变形。
在进行恒等变形时,我们通常会用到一些基本的代数运算,例如加减法、乘除法、开平方、平移等,这些运算在恒等变形中起着非常重要的作用。
接下来,我们来看一些常见的恒等变形的方法和技巧。
1. 加减法变形加减法变形是指用等于同一个数的两个数互换位置,并相加或相减,来得到一个新的等式。
例如:a +b =c 和 a = c - b这里,我们可以将第一个等式两边分别减去b,得到新的等式 a = c - b。
通过这个例子,我们可以看出,加减法变形是一种常见且有效的恒等变形方法,它可以帮助我们将一个复杂的等式化简成一个简单的等式。
2. 乘除法变形乘除法变形是指用等于同一数的两个数相除或相乘,得到新的等式。
例如:ab = c 和 a = c/b这里,我们可以将第一个等式两边都除以b,得到新的等式a = c/b。
通过这个例子,我们可以看出,乘除法变形也是一个常见且有效的恒等变形方法。
3. 平方根变形平方根变形是指用等于同一数的两个数同时开平方,得到新的等式。
例如:a^2 = c 和a = √c这里,我们可以将第一个等式两边同时开平方,得到新的等式a = √c。
通过这个例子,我们可以看出,平方根变形也是一个常见且有效的恒等变形方法。
4. 移项变形移项变形是指将等式中的某一项移到等式的另一侧,得到新的等式。
代数式的恒等变形

的心扉 : 《 欢迎你 ,春的使者!》 《 春天的 “ 礼物”》 《 当春天 来到教 室》《 春的序曲》《 使者 , 您好 !》《 小蜜蜂历险记 》《 蜜
蜂 巡视 员》…… 教 育 家 第斯 多惠说 : “ 教 学 艺术 的 本 质 不在 于 传授 ,而在 于激励 、唤 醒 、鼓 舞 。”有 时学生 的 生活 中会 闪现丰 富的、感人
、
有位教师教学苏教版五年级下册的 《 埃及的金字塔》第二 自
然段 ,形成 下面 的对话 :
师 :读 了这段 话 ,谁来说 说金 字塔有 什 么作用 ? 生 :金 字塔是 拿来 看的 ! ( 全班 同学哄堂 大笑 ,该 同学满脸
通红 )
师 :这 位 同学 已经跳 出课 文 ,融入 了 自己的理解 ,他把 今天 金 字塔 的作 用用一 个 “ 看” 字进 行 了高度 的概括 。这 个 “ 看 ”字 可不一般 呀 , 同学们 请 想一 想 ,你 能给 “ 看”换 个词 吗? 生( 纷 纷举手 ):欣赏 、研 究、考察 、勘探 、 瞻仰 。 师 :说得好 !下面请 同 学们认 真 的默读 第 3 、4 、5 、 自然段 , 想一 想,不 同身份 的人站在 金 字塔前 ,他们 是 怎 么 “ 看 ” 的?
我 谈 两个看 法。 节 外生枝 。巧在 引导
一
们回家后认真查找、 收集资料 , 我们专 门开展一次交流会 , 好吗? 语文学习的综合性与开放性要求教 师将语文学习的 内容向 课 外拓展 ,在延 伸过程 中引导 学生去探 索 , 使 得 学 生在 比较 、对 照、引申、拓展过程 中拓宽思维的空间,提 高阅读质量,培养学 生探 究性 阅读 和创造 性 阅读能 力。本 片断教 学 中 ,当学生在 理解 课 文 内容 的基础 上 ,经过 自已的思考 ,提 出有价 值的 问题 ,而教 师一时无法解惑时,是不理不睬,还是维护 “ 师道尊严” ,或是 信I : 1 雌黄?体现一个教师的教学机智和教学素养。该教师在学生 提 出 自己无 法解答 的问后 ,不是 简单 处理 ,而是把 让 学生 的视 野 由课 内拓展到课外。学生通过查找 、整理资料 ,写文章,制作手 抄报 等 活动 ,既巩 固、加 深、 活用 、扩 大课 内所 学的语 文知 识 . 又提 高学生的语文能力,拓宽 了学生的知识视野。 三 、节 外 生枝 。智在 唤醒 春末夏初的早晨 ,教室里正在进行单元测验。忽然,一个不 速之寥一 蜜蜂不请 自来,嗡嗡地飞行着。此时,所有同学的 目 光都 追 随着 蜜蜂 。教 师在 黑板 上 快速地 写 下一行 字 “ 请 安静 ,春 的使者到了 ! 我们该怎么做呢?”接着,教师轻轻地把门打开。 靠窗户的同学迅速地把窗户推到最大。过 了几秒钟 ,蜜蜂终于找 到 了 出口 ,飞走 了。 周五 的 “ 本 周最佳镜 头”— — 周记指 导 活动 中 ,很 多 同学都 把 蜜蜂飞入教 室评为本周最佳镜头。当学生把周记本交上来时, 教师惊异地发现 ,许多充满灵性、流露着诗意的题 目拨动着教师
代数式的恒等变换

代数式的恒等变换方法与技巧一、代数式恒等的一般概念定义1:在给定的数集中,使一个代数式有意义的字母的值,称为字母的允许值。
字母的所有允许值组成的集合称为这个代数式的定义域。
对于定义域中的数值,按照代数式所包含的运算所得出的值,称为代数式的值,这些值的全体组成的集合,称为代数式的值域。
定义2:如果两个代数式A 、B ,对于它们定义域的公共部分(或公共部分的子集)内的一切值,它们的值都相等,那么称这两个代数式恒等,记作A=B 。
两个代数式恒等的概念是相对的。
同样的两个代数式在它们各自的定义域的x =,在x≥0时成立,但在x<0时不成立。
因此,在研究两个代数式恒等时,一定要首先弄清楚它们在什么范围内恒等。
定义3 把一个代数式变形成另一个与它恒等的代数式,这种变形称为恒等变换。
代数式的变形,可能引起定义域的变化。
如lgx 2的定义域是(,0)(0,)-∞+∞,2lgx 的定义域是(0,)+∞,因此,只有在两个定义域的公共部分(0,)+∞内,才有恒等式lgx 2=2lgx 。
由lgx 2变形为2lgx 时,定义域缩小了;反之,由2lgx 变形为lgx 2时,定义域扩大了。
这种由恒等变换而引起的代数式定义域的变化,对研究方程和函数等相关问题时也十分重要。
由于方程的变形不全是代数式的恒等变形,但与代数式的恒等变形有类似之处,因此,在本节里,我们把方程的恒等变形与代数式的恒等变形结合起来讨论。
例1:设p 为实常数,x =有实根的充要条件,并求出所有实根。
由于代数式的变形会引起定义域的改变,因此,在解方程时,尽量使用等价变形的方法求解。
这样可避免增根和遣根的出现。
解:原方程等价于222(0,0x p x x x ⎧-=-⎪⎨-≥≥⎪⎩222222(4)4448(2)441330440,0p x x p p x x x x p x ⎧-=⎪⎧=+--⎪⎪⎪⎪⇔≤≤⇔≤⎨⎨⎪⎪≥⎪⎪+-≤≥⎩⎪⎩222(4)8(2)44,043p x p p x x ⎧-=⎪⎪-⇔⎨-⎪≤≤≥⎪⎩ 由上式知,原方程有实根,当且仅当p 满足条件24(4)44048(2)33p p p p --≤≤⇔≤≤- 这说明原方程有实根的充要条件是403p ≤≤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四讲 代数式的恒等变形 姓名
基础知识呈现
1、 恒等式与条件等式:
如果一个等式中字母取允许范围内的任意一个值,等式总能成立,那么这个等式就叫做恒等式。
如:()a b b a a a b ab a b a +=+-=+-=-,,2222
等都是恒等式。
而12=x 不是恒等式,
因为只有当2
1
=
x 时,等式才成立。
因此称为条件等式。
2、 恒等变形
把一个式子变形为与原式恒等的另外不同形式的式子,这种变形叫恒等变形,例如y z z x y x -+-=-就是恒等变形。
两个多项式恒等的充要条件是它们的对应项系数相等,即:
⇔++++=++++----01110111b x b x b x b a x a x a x a n n n n n n n 001111,,,b a b a b a b a n n n n ====--。
实际上,待定系数法的依据就是多项式的恒等的性质。
3、 代数式恒等变形是解决初等数学乃至高等数学问题的一种重要方法,是研究函数和方程的重要
工具。
代数式的恒等变形包括:代数式化简,求代数式的值,证明恒等式或条件等式等等。
例题讲解
例1、 证明恒等式()()()()
22222
2
y x b a ay bx by ax ++=++-。
例2、 证明恒等式()()
bc ac ab c b a c b a abc c b a ---++++=-++2
2
2
3
3
3
3。
例3、 证明恒等式()
()
()2
2
2
2
111
1
1
1
⎪⎭
⎫ ⎝⎛-+-+-=-+
-+
-a c c b b a a c c b b a
例4、 证明恒等式()()()()()a
c c b b a b c a c b a a b c b a c c a b a c b -+
-+-=---+---+---2
22)(
例5、 已知11
,11=+=+
z
y y x ,求证:11=+x z 。
例6、 已知z y x ,,为三个互不相等的数,且x
z z y y x 1
11+=+=+,试证:1222=z y x 。
例7、 已知0=++c b a ,求证:3111111-=⎪⎭⎫
⎝⎛++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝
⎛+b a c a c b c b a
例8、 已知10,5=-=-b c b a ,求ca bc ab c b a ---++2
2
2
的值。
例9、 设t
t t t y t
t t t x -+++=
++-+=
11,11,t 取何值时,代数式200120412022=++y xy x 。
例10、 若()
2012
34554575322)(+--+=x x x x x f ,求)2
1
111(
-f 的值。
巩固练习
1、 证明恒等式:()()()()c a c b b a c b a c b a +++=---++33333。
2、 已知1=abc ,求证11
11=++++++++c ca c
b b
c b a ab a 。
3、 设(
)
1123-+++=+++c b a c b a ,求222c b a ++的值。
4、 设1
1716+=x ,求17181722
345-+--+x x x x x 的值。