几个概率分布函数

合集下载

几种常见的概率分布律

几种常见的概率分布律

的概率,其值为 ϕ4
=
⎛ ⎜⎝
1 2
⎞4 ⎟⎠
=1 16

ϕ 3 (1 − ϕ ) 表示有三个显性基因和一个隐性基因组合出现的概率。其中
显形基因有三个,隐性基因一个,该项的系数表示这样的组合共有四种。
它们是RRYy,RRyY,RrYY和rRYY。这四种组合的概率均为

ϕ
3
(1

ϕ
)
=
⎛ ⎜⎝
1 2
⎞3 ⎟⎠
上式正是二项式展开式的第x+1项,因此产生理论分布中“二项分布”这一名 称。故该式称为二项分布的概率函数。
• 二项展开式,
⎡⎣ϕ +(1−ϕ)⎤⎦n =Cn0ϕ0 (1−ϕ)n +Cn1ϕ1 (1−ϕ)n−1 +"+Cnxϕx (1−ϕ)n−x +"+Cnnϕn (1−ϕ)0 = p(0) + p(1) + p(2) +"+ p( x) +"+ p(n)
⎛ ⎜⎝
1 2
⎞10 ⎟⎠
=
2−10
=
0.0009766
( ) p(1)
=
10! ⎛
1!(10 −1)!⎜⎝
1 2
⎞1 ⎟⎠
⎛ ⎜⎝
1 2
⎞9 ⎟⎠
=
10
2−10
= 0.0097656
( ) p(2) =
10! ⎛ 1 ⎞2 ⎛ 1 ⎞8
2!(10 − 2)!⎜⎝ 2 ⎟⎠ ⎜⎝ 2 ⎟⎠
= 45
2−10
(1) 二项分布图形的形状取决于P 和 n 的大小; (2) 当P = 0.5时,无论 n 的大小, 均为对称分布; (3) 当P ≠ 0.5,n 较小时为偏态分 布,n 较大时逼近正态分布。

概率分布函数与概率密度函数

概率分布函数与概率密度函数

概率分布函数与概率密度函数概率分布函数和概率密度函数是统计学中常见的两个重要概念,它们在描述随机变量分布特征时起着至关重要的作用。

下面我们将分别介绍概率分布函数和概率密度函数的概念、特点和应用。

一、概率分布函数概率分布函数又称为累积分布函数,是描述随机变量取值的概率分布规律的函数。

对于任意一个实数t,概率分布函数F(t)定义为随机变量X的取值小于等于t的概率,即F(t)=P(X≤t)。

概率分布函数的性质有以下几个特点:1. F(t)是一个单调非减的函数,即对于任意s和t(s≤t),有F(s)≤F(t)。

2. F(t)在整个实数轴上取值范围为[0,1]。

3. 当t趋近于负无穷时,F(t)趋近于0;当t趋近于正无穷时,F(t)趋近于1。

4. 概率分布函数是一种分步函数,具有不连续点。

在不连续点上,概率分布函数的值对应着概率的跳跃。

概率分布函数在统计学中有着广泛的应用,可以帮助研究者了解随机变量的分布情况,进而进行参数估计、假设检验、置信区间估计等统计分析工作。

二、概率密度函数概率密度函数是描述随机变量取值的密度分布的函数,通常用f(t)表示。

对于连续型随机变量X,如果存在一个函数f(t),对于任意实数区间[a,b],有P(a≤X≤b)= ∫[a,b] f(t)dt。

概率密度函数的性质如下:1. 概率密度函数在整个定义域上非负,即f(t)≥0。

2. 概率密度函数的积分在整个定义域上等于1,即∫(-∞,+∞) f(t)dt=1。

3. 概率密度函数f(t)与概率分布函数F(t)之间存在积分关系,即F(t)=∫(-∞,t) f(u)du。

4. 概率密度函数的图形代表了随机变量在不同取值上的密度大小,可以直观地表示随机变量的分布情况。

概率密度函数在连续型随机变量的分布描述中占据重要地位,例如正态分布、指数分布、均匀分布等常见的概率分布都可以通过概率密度函数来描述其分布规律。

综上所述,概率分布函数和概率密度函数是统计学中两个重要的概念,它们分别适用于离散型随机变量和连续型随机变量的分布描述。

均匀分布的概率分布函数

均匀分布的概率分布函数

均匀分布的概率分布函数1. 引言概率分布函数是描述随机变量的分布规律的数学函数。

均匀分布是概率论和统计学中常见的一种概率分布类型。

在均匀分布中,随机变量在给定范围内的取值是等可能的,没有偏向性,呈现出均匀分布的特征。

本文将就均匀分布的概率分布函数进行全面、详细、完整且深入的探讨。

2. 均匀分布的定义在概率论中,均匀分布是指随机变量在某个区间内以等可能性取得任一取值的概率分布。

均匀分布的概率密度函数(Probability Density Function, PDF)为常数,表示在区间内各个取值的概率是相等的。

均匀分布的概率密度函数可以表示为:f(x) = 1 / (b - a) (a <= x <= b)其中,a和b分别为分布的左右边界。

3. 均匀分布的性质均匀分布具有以下几个重要的性质:3.1 对称性均匀分布是以区间的中心点为对称点的对称分布。

对于区间[a, b],随机变量落在区间的左侧和右侧的概率相等。

3.2 期望值对于均匀分布,其期望值等于区间的中心点,可表示为:E(X) = (a + b) / 23.3 方差均匀分布的方差可以通过区间长度的平方除以12来计算,表示为:Var(X) = (b - a)^2 / 123.4 累积分布函数均匀分布的累积分布函数(Cumulative Distribution Function, CDF)可以表示为:F(x) = (x - a) / (b - a) (a <= x <= b)3.5 生成随机数由于均匀分布的随机变量在给定范围内的取值是等可能的,可以利用均匀分布生成随机数。

通过在区间[a, b]之间选择一个随机数,即可获得服从均匀分布的随机数。

4. 使用均匀分布的场景均匀分布在很多领域中都有广泛的应用,以下是一些常见的使用均匀分布的场景:4.1 随机抽样在概率抽样中,如果样本空间中的每个个体被选中的概率是相等的,那么可以使用均匀分布来生成随机样本。

16种常见概率分布概率密度函数、意义及其应用

16种常见概率分布概率密度函数、意义及其应用

目录1. 均匀分布 (1)2. 正态分布(高斯分布) (2)3. 指数分布 (2)4. Beta分布(:分布) (2)5. Gamm 分布 (3)6. 倒Gamm分布 (4)7. 威布尔分布(Weibull分布、韦伯分布、韦布尔分布) (5)8. Pareto 分布 (6)9. Cauchy分布(柯西分布、柯西-洛伦兹分布) (7)210. 分布(卡方分布) (7)8 11. t分布................................................9 12. F分布 ...............................................10 13. 二项分布............................................10 14. 泊松分布(Poisson 分布).............................11 15. 对数正态分布........................................1. 均匀分布均匀分布X ~U(a,b)是无信息的,可作为无信息变量的先验分布。

2. 正态分布(高斯分布)当影响一个变量的因素众多,且影响微弱、都不占据主导地位时,这个变量 很可能服从正态分布,记作X~N (」f 2)。

正态分布为方差已知的正态分布N (*2)的参数」的共轭先验分布。

1 空f (x ): —— e 2-J2 兀 o'E(X), Var(X) _ c 23. 指数分布指数分布X ~Exp ( )是指要等到一个随机事件发生,需要经历多久时间。

其 中,.0为尺度参数。

指数分布的无记忆性:Plx s t|X = P{X t}。

f (X )二 y oiE(X) 一4. Beta 分布(一:分布)f (X )二 E(X)Var(X)=(b-a)2 12Var(X)二1~2Beta 分布记为X 〜Be(a,b),其中Beta(1,1)等于均匀分布,其概率密度函数 可凸也可凹。

概率论中几种常用重要分布

概率论中几种常用重要分布

概率论中几种常用的重要的分布摘要:本文主要探讨了概率论中的几种常用分布,的来源和他们中间的关系。

其在实际中的应用。

关键词1 一维随机变量分布随机变量的分布是概率论的主要内容之一,一维随机变量部分要介绍六中常用分布,即( 0 -1) 分布、二项分布、泊松分布、均匀分布、指数分布和正态分布. 下面我们将对这六种分布逐一地进行讨论.随机事件是按试验结果而定出现与否的事件。

它是一种“定性”类型的概念。

为了进一步研究有关随机试验的问题,还需引进一种“定量”类型的概念,即,根据试验结果而定取什么值(实值或向量值)的变数。

称这种变数为随机变数。

本章内将讨论取实值的这种变数—— 一维随机变数。

定义1.1 设X 为一个随机变数,令 ()([(,)])([]),()F x P X x P Xx x=∈-∞=-∞+∞.这样规定的函数()F x 的定义域是整个实轴、函数值在区间[0,1]上。

它是一个普通的函数。

成这个函数为随机函数X 的分布函数。

有的随机函数X 可能取的值只有有限多个或可数多个。

更确切地说:存在着有限多个值或可数多个值12,,...,a a 使得 12([{,,...}])1P X a a ∈=称这样的随机变数为离散型随机变数。

称它的分布为离散型分布。

【例1】下列诸随机变数都是离散型随机变数。

(1)X 可能取的值只有一个,确切地说,存在着一个常数a ,使([])1P X a ==。

称这种随机变数的分布为退化分布。

一个退化分布可以用一个常数a 来确定。

(2)X 可能取的值只有两个。

确切地说,存在着两个常数a ,b ,使([{,}])1P X a b ∈=.称这种随机变数的分布为两点分布。

如果([])P X b p ==,那么,([])1P X a p ===-。

因此,一个两点分布可以用两个不同的常数,a b 及一个在区间(0,1)内的值p 来确定。

特殊地,当,a b 依次为0,1时,称这两点分布为零-壹分布。

16种常见概率分布概率密度函数意义及其应用

16种常见概率分布概率密度函数意义及其应用

16种常见概率分布概率密度函数意义及其应用概率分布是统计学中一个重要的概念,用于描述随机变量在各个取值上的概率分布情况。

常见的概率分布有16种,它们分别是均匀分布、伯努利分布、二项分布、几何分布、泊松分布、正态分布、指数分布、负二项分布、超几何分布、Gumbel分布、Weibull分布、伽马分布、Beta分布、对数正态分布、卡方分布和三角分布。

以下将逐一介绍这些概率分布的概率密度函数、意义及其应用。

1. 均匀分布(Uniform Distribution):概率密度函数为f(x)=1/(b-a),意义是在一个区间内所有的取值具有相同的概率,应用有随机数生成、模拟实验等。

2. 伯努利分布(Bernoulli Distribution):概率密度函数为P(x)=p^x*(1-p)^(1-x),意义是在两种可能结果中,成功或失败的概率分布,应用有二分类问题的建模。

3. 二项分布(Binomial Distribution):概率密度函数为P(x)=C(n,x)*p^x*(1-p)^(n-x),意义是在n次独立重复试验中,成功次数为x的概率分布,应用有二分类问题中的n次重复试验。

4. 几何分布(Geometric Distribution):概率密度函数为P(x)=p*(1-p)^(x-1),意义是独立重复试验中,第x次成功所需的试验次数的概率分布,应用有描述一连串同样试验中第一次获得成功之前所需的试验次数。

5. 泊松分布(Poisson Distribution):概率密度函数为P(x)=(e^(-λ)*λ^x)/x!,意义是在给定时间或空间内事件发生的次数的概率分布,应用有描述单位时间或单位空间内的事件计数问题。

6. 正态分布(Normal Distribution):概率密度函数为P(x) = (1 / sqrt(2πσ^2)) * e^(-(x-μ)^2 / (2σ^2)),意义是描述连续变量的概率分布,应用广泛,例如测量误差、人口身高等。

分布函数

分布函数

分布函数分布函数(Cumulative Distribution Function, CDF)是概率统计中重要的函数,正是通过它,可用的方法来研究随机变量。

1.伯努利分布伯努利分布(Bernoulli distribution)又叫做两点分布或者0-1分布,是一个离散型概率分布,若伯努利实验成功,则伯努利随机变量取值为1,如果失败,则伯努利随机变量取值为0。

并记成功的概率为p,那么失败的概率就是1p-,概率p p-,则数学期望为p,方差为(1)密度函数为2.二项分布二项分布即重复n次独立的。

在每次试验中只有两种可能的结果,而且两种结果发生与否互相对立,并且相互,与其它各次试验结果无关,事件发生与否的概率在每一次中都保持不变,则这一系列试验总称为n重伯努利实验,当试验次数为1时,二项分布服从0-1分布。

假设每次试验的成功概率为p,则二项分布的密度函数为:二项分布函数的数学期望为np,方差为(1)X B n p。

概率密度分布图如下所np p-,记为~(,)示。

3.正态分布正态分布(Normal distribution)又名高斯分布(Gaussian distribution),若X服从一个为μ、为σ2的高斯分布,记为:X~N(μ,σ2),则其为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。

通常所说的标准正态分布是μ = 0,σ = 1的正态分布。

分布曲线特征:图形特征集中性:正态曲线的高峰位于正中央,即均数所在的位置。

对称性:正态曲线以均数为中心,左右对称,曲线两端永远不与横轴相交。

均匀变动性:正态曲线由均数所在处开始,分别向左右两侧逐渐均匀下降。

曲线与横轴间的面积总等于1,相当于概率密度函数的函数从正无穷到负无穷积分的概率为1。

即频率的总和为100%。

关于μ对称,并在μ处取最大值,在正(负)无穷远处取值为0,在μ±σ处有拐点,形状呈现中间高两边低,正态分布的概率密度函数曲线呈钟形,因此人们又经常称之为钟形曲线。

常用概率分布函数

常用概率分布函数

– 则f(x)为X的概率密度函数(PDF)
– f(x)满足:
(1) f (x) 0
(2) f (x)dx 1
常用概率分布函数
• 连续型随机变量
– F(x)为连续型随机变量的累积分布函数(CDF)
F(x) P(X x) x f (x)dx
– 连续型随机变量X均值和方差分别为:
E(X ) xf (x)dx
常用概率分布函数
二项分布 泊松分布 均匀分布 正态分布 指数分布 伽马分布
常用概率分布函数
• 离散型随机变量
– 若随机变量的取值为有限个或可以逐一列举的无穷多个 数值,则称此类随机变量为离散型随机变量。
– 设离散随机变量X有:P( X xi ) p( xi )
– 将P={p1,p2,…pn…}称为X的概率密度函数 (Probability Density Function,PDF)
– 泊松分布是二项分布的特殊情况(n趋近无穷大,令 np->λ),当一个固定时间间隔内有大量事件以恒定的 速率发生,且事件之间相互独立时,可以用泊松分布描 述,并称这样的随机事件为泊松流。
– 泊松分布的概率密度函数: P(x k) k e k {0,1, 2..., n}
k!
– 累积分布函数:
– x=0:0.001:5;
0.4
– n=10;
0.35
– p=0.1;
0.3
– y=binopdf(x,n,p); 0.25
– plot(x,y);
0.2
0.15
0.1
0.05
0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
常用概率分布函数
• 泊松分布( Poisson Distribution )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档