Canny边缘检测

合集下载

canny边缘检测matlab代码

canny边缘检测matlab代码

canny边缘检测matlab代码Canny边缘检测是一种常用的图像处理算法,它可以有效地检测图像中的边缘,并将其显示为白色线条。

在Matlab中,可以使用以下代码实现Canny边缘检测:1. 读取图像首先,需要读取待处理的图像。

可以使用imread函数来读取图片:```matlabimg = imread('image.jpg');```其中,image.jpg是待处理的图片文件名。

2. 灰度化Canny算法只能处理灰度图像,因此需要将彩色图像转换为灰度图像。

可以使用rgb2gray函数来实现:```matlabgray_img = rgb2gray(img);```3. 高斯滤波在进行边缘检测之前,需要对图像进行高斯滤波来消除噪声。

可以使用fspecial和imfilter函数来实现:```matlabgaussian_filter = fspecial('gaussian', [5 5], 1);blur_img = imfilter(gray_img, gaussian_filter, 'replicate');```其中,[5 5]表示高斯核的大小为5x5,1表示标准差。

4. 计算梯度幅值和方向接下来,需要计算每个像素点的梯度幅值和方向。

可以使用Sobel算子来计算梯度,并利用arctan函数计算方向角度:```matlabsobel_x = [-1 0 1; -2 0 2; -1 0 1];sobel_y = [-1 -2 -1; 0 0 0; 1 2 1];grad_x = imfilter(blur_img, sobel_x, 'replicate');grad_y = imfilter(blur_img, sobel_y, 'replicate');grad_mag = sqrt(grad_x.^2 + grad_y.^2);grad_dir = atan(grad_y ./ grad_x);```5. 非极大值抑制由于Sobel算子计算出的梯度幅值可能会有多个峰值,因此需要进行非极大值抑制来保留边缘。

Canny边缘检测器.ppt

Canny边缘检测器.ppt

对NMS结果进行二值化
• 对上述得到的N(x,y)使用阈值进行二值化 • 使用大的阈值,得到:
– 少量的边缘点 – 许多空隙
• 使用小的阈值,得到:
– 大量的边缘点 – 大量的错误检测
使用双阈值检测边缘
• 两个阈值T1,T2: T2 >> T1
–由T1得到E1(x,y),低阈值边缘图:更大的误检测率 –由T2得到E2(x,y),高阈值边缘图:更加可靠
Canny算子:流程
原始图像
原始图像经过Gauss平滑
Canny算子:流程
梯度幅值图像
梯度幅值经过非极大值抑制
Canny算子:流程
低阈值边缘图像
高阈值边缘图像
Canny输出边缘图像
使用Canny算子需要注意的问题
• Canny算子的优点:
– 参数较少 – 计算效率 – 得到的边缘连续完整
• 参数的选择:
Canny边缘检测器
• 也许是最常用的边缘检测方法 • 一个优化的方案
– 噪声抑制 – 边缘增强 – 边缘定位
CanБайду номын сангаасy边缘检测算法
• 算法基本过程:
计算图像梯度
幅值大小M(x,y) 方向Theta(x,y)
梯度非极大值抑制
NMS: Non-Maxima Suppression
双阈值提取边缘点
计算图像梯度:高斯函数的一阶导数
• 高斯函数的一阶导数(Derivative of Gaussian) • 可以很近似地满足以下三条边缘检测最优准则:
–好的边缘检测结果:Good detection 对边缘的响应大于对噪声的响应
–好的定位性能:Good localization 其最大值应接近边缘的实际位置

基于sobel和canny的边缘检测原理

基于sobel和canny的边缘检测原理

基于sobel和canny的边缘检测原理
Sobel的原理:
Sobel 算子是图像处理中的算子之一,主要用作边缘检测。

它是一种离散性差分算子,用来运算图像亮度函数的梯度之近似值。

在图像的任何一点使用此算子,将会产生对应的梯度矢量或是其法矢量.
该算子包含两组3x3的矩阵,分别为横向及纵向,将之与图像作平面卷积,即可分别得出横向及纵向的亮度差分近似值。

以I代表原始图像,Gx及Gy分别代表经横向及纵向边缘检测的图像,其公式如下:
由于Sobel算子是滤波算子的形式,用于提取边缘,可以利用快速卷积函数,简单有效,因此应用广泛。

但是Sobel算子并没有将图像的主体与背景严格地区分开来,换言之就是Sobel算子没有基于图像灰度进行处理,由于Sobel算子没有严格地模拟人的视觉生理特征,所以提取的图像轮廓有时并不能令人满意。

在观测一幅图像的时候,我们往往首先注意的是图像与背景不同的部分,正是这个部分将主体突出显示,基于该理论,我们给出了下面阈值化轮廓提取算法,该算法已在数学上证明当像素点满足正态分布时所求解是最优的。

Canny的原理:
1、图象边缘检测必须满足两个条件:其一必须有效地抑制噪声;其次必须尽量精确确
定边缘的位置。

2、根据对信噪比与定位乘积进行测度,得到最优化逼近算子。

这就是Canny边缘检测
算子。

3、类似于LoG边缘检测方法,属于先平滑后求导数的方法。

Canny边缘检测算法可以分为四个步骤:
1)用高斯滤波器平滑图象;
2)用一阶偏导的有限差分来计算梯度的幅值和方向;3)对梯度幅值进行非极大值抑制
4)用双阈值算法检测和连接边缘。

canny非极大值抑制算法步骤

canny非极大值抑制算法步骤

canny非极大值抑制算法步骤Canny非极大值抑制算法步骤Canny边缘检测是一种常用的图像处理技术,通过检测图像中的边缘信息,可以用于目标检测、图像分割等应用。

其中,Canny非极大值抑制算法是Canny边缘检测的关键步骤之一。

本文将详细介绍Canny非极大值抑制算法的步骤。

1. 图像灰度化Canny非极大值抑制算法首先需要将输入的彩色图像转换为灰度图像。

这是因为灰度图像只有一个通道,更容易处理。

常用的灰度化方法有取平均值法、加权平均法等。

2. 高斯滤波为了减少图像中的噪声对边缘检测的影响,需要对灰度图像进行高斯滤波。

高斯滤波可以平滑图像,并且能够保持边缘的信息。

通过使用一个高斯核对图像进行卷积操作,可以得到平滑后的图像。

3. 计算梯度幅值和方向在进行非极大值抑制之前,需要计算图像中每个像素点的梯度幅值和方向。

常用的方法是使用Sobel算子对图像进行卷积操作,得到水平和垂直方向的梯度值,然后利用这些梯度值计算每个像素点的梯度幅值和方向。

4. 非极大值抑制非极大值抑制是Canny边缘检测的核心步骤。

它的主要目的是将梯度幅值图像中的局部最大值保留下来,同时抑制非最大值点。

具体步骤如下:(1) 在梯度方向上,将每个像素点的梯度幅值与其相邻两个像素点的梯度幅值进行比较。

如果当前像素点的梯度幅值是相邻两个像素点中最大的,则将其保留,否则将其置为0。

(2) 迭代地对整个图像进行上述操作,直到所有的像素点都被处理完。

通过非极大值抑制,可以得到一个只有边缘线条的二值图像。

边缘线条的宽度与原始图像中边缘的宽度有关,可以通过调整高斯滤波的标准差来控制。

5. 双阈值检测非极大值抑制之后,得到的二值图像中仍然可能存在一些噪声点和弱边缘。

为了进一步提取有效的边缘信息,可以使用双阈值检测。

双阈值检测将像素点分为三类:强边缘、弱边缘和非边缘。

通过设定两个阈值,将像素点的梯度幅值与这两个阈值进行比较,可以将像素点分为三类。

Canny边缘检测算法的一些改进

Canny边缘检测算法的一些改进

Canny边缘检测算法的⼀些改进传统的Canny边缘检测算法是⼀种有效⽽⼜相对简单的算法,可以得到很好的结果(可以参考上⼀篇)。

但是Canny算法本⾝也有⼀些缺陷,可以有改进的地⽅。

1. Canny边缘检测第⼀步⽤⾼斯模糊来去掉噪声,但是同时也会平滑边缘,使得边缘信息减弱,有可能使得在后⾯的步骤中漏掉⼀些需要的边缘,特别是弱边缘和孤⽴的边缘,可能在双阀值和联通计算中被剔除。

很⾃然地可以预见,如果加⼤⾼斯模糊的半径,对噪声的平滑⼒度加⼤,但也会使得最后得到的边缘图中的边缘明显减少。

这⾥依然⽤Lena图为例,保持Canny算法中⾼阀值100,低阀值50不变,⾼斯半径分别为2,3,5的Canny边缘⼆值图像如下。

可知⾼斯模糊把很多有⽤的边缘信息也模糊掉了,因此如何精确的选择⾼斯半径就相当重要。

⾼斯半径2 ⾼斯半径3 ⾼斯半径52. 在最初的Canny算法中是使⽤的最⼩的2x2领域来计算梯度幅值的。

这种⽅法对噪声很敏感,⽐较容易检测到伪边缘或漏掉真是边缘。

在上⼀篇算法实现中,实际上使⽤的是3x3的Sobel梯度算⼦,是⼀种⽐较好的选择。

3. 传统Canny算法的双阀值是全局固定的,因此双阀值⼤⼩的选取对最终的结果影响很⼤,也有⼀些经验,⽐如选择低阀值是⾼阀值的0.4或0.5。

然⽽这毕竟是⼀种经验选择,阀值的确定仍然很难决定⼀个最优值。

⽽且⼀个图像的不同局部区域可能需要各不相同的阀值来精确地找到真实边缘,因此全局阀值就不太合适了。

4. 传统算法仍然可能产⽣⼀条宽度⼤于1的边缘,达不到满意的⾼精度单点响应。

也就是需要继续细化边缘。

下⾯就⼀些可以改进的地⽅做⼀些讨论。

代替⾼斯模糊噪声是⾼频信号,边缘信号也属于⾼频信号。

既然⾼斯模糊不加区分的对所有的⾼频信息进⾏了模糊,效果⾃然不尽如⼈意。

那么⾃然就想到了带有保留边缘功能的各种选择性平滑⽅法,似乎在这⾥⽐⾼斯模糊会更加合适,那我们就来试⼀试。

带有保留边缘功能的平滑⽅法的基本思想不是让领域范围内的所有像素都参与该种平滑⽅法的计算,⽽是设定⼀个阀值,仅仅让和中⼼像素灰度的差值⼩于这个阀值的像素参与计算。

(完整版)Canny边缘检测算法总结

(完整版)Canny边缘检测算法总结

一.Canny边缘检测算法原理JohnCanny于1986年提出Canny算子,属于是先平滑后求导数的方法。

其处理过程大体上分为下面四部分。

1. 对原始图像进行灰度化Canny算法通常处理的图像为灰度图,因此如果获取的是彩色图像,那首先就得进行灰度化。

对一幅彩色图进行灰度化,就是根据图像各个通道的采样值进行加权平均。

以RGB格式的彩图为例,通常灰度化采用的方法主要有:方法1:Gray=(R+G+B)/3;方法2:Gray=0.299R+0.587G+0.114B;(这种参数考虑到了人眼的生理特点)至于其他格式的彩色图像,可以根据相应的转换关系转为RGB然后再进行灰度化;在编程时要注意图像格式中RGB的顺序通常为BGR。

2. 对图像进行高斯滤波图像高斯滤波的实现可以用两个一维高斯核分别两次加权实现,也可以通过一个二维高斯核一次卷积实现。

1)高斯核实现上式为离散化的一维高斯函数,确定参数就可以得到一维核向量。

上式为离散化的二维高斯函数,确定参数就可以得到二维核向量。

在求得高斯核后,要对整个核进行归一化处理。

2)图像高斯滤波对图像进行高斯滤波,其实就是根据待滤波的像素点及其邻域点的灰度值按照一定的参数规则进行加权平均。

这样可以有效滤去理想图像中叠加的高频噪声。

通常滤波和边缘检测是矛盾的概念,抑制了噪声会使得图像边缘模糊,这会增加边缘定位的不确定性;而如果要提高边缘检测的灵敏度,同时对噪声也提高了灵敏度。

实际工程经验表明,高斯函数确定的核可以在抗噪声干扰和边缘检测精确定位之间提供较好的折衷方案。

3. 用一阶偏导的有限差分来计算梯度的幅值和方向关于图像灰度值得梯度可使用一阶有限差分来进行近似,这样就可以得图像在x和y 方向上偏导数的两个矩阵。

常用的梯度算子有如下几种:1)Roberts算子上式为其x和y方向偏导数计算模板,可用数学公式表达其每个点的梯度幅值为:2)Sobel算子上式三个矩阵分别为该算子的x向卷积模板、y向卷积模板以及待处理点的邻域点标记矩阵,据此可用数学公式表达其每个点的梯度幅值为:3)Prewitt算子和Sobel算子原理一样,在此仅给出其卷积模板。

边缘检测的原理

边缘检测的原理

边缘检测的原理概述边缘检测是计算机视觉领域中一种常用的图像处理技术,用于检测图像中的边缘信息。

边缘是指图像中灰度级发生突变的区域,通常表示物体的轮廓或对象的边界。

边缘检测在很多图像处理应用中起着重要的作用,如图像分割、目标检测、图像增强等。

基本原理边缘检测的基本原理是利用像素点灰度值的变化来检测边缘。

在数字图像中,每个像素点都有一个灰度值,范围通常是0到255。

边缘处的像素点灰度值变化较大,因此可以通过检测像素点灰度值的梯度来找到边缘。

常用算法1. Roberts算子Roberts算子是一种基于差分的边缘检测算法。

它通过计算相邻像素点之间的差值来检测边缘。

具体计算方式如下:1.将图像转换为灰度图像。

2.将每个像素点与其相邻的右下方像素点(即(i,j)和(i+1,j+1))进行差值计算。

3.将每个像素点与其相邻的右上方像素点(即(i,j+1)和(i+1,j))进行差值计算。

4.对上述两组差值进行平方和再开方得到边缘强度。

5.根据设定的阈值对边缘强度进行二值化处理。

2. Sobel算子Sobel算子是一种基于滤波的边缘检测算法。

它通过使用两个卷积核对图像进行滤波操作,从而获取图像中每个像素点的梯度信息。

具体计算方式如下:1.将图像转换为灰度图像。

2.使用水平和垂直方向上的两个卷积核对图像进行滤波操作。

3.将水平和垂直方向上的滤波结果进行平方和再开方得到边缘强度。

4.根据设定的阈值对边缘强度进行二值化处理。

3. Canny边缘检测算法Canny边缘检测算法是一种基于多步骤的边缘检测算法,被广泛应用于计算机视觉领域。

它在边缘检测的精度、对噪声的抑制能力和边缘连接性上都有很好的表现。

Canny算法的主要步骤包括:1.将图像转换为灰度图像。

2.对图像进行高斯滤波以减小噪声的影响。

3.计算图像的梯度和方向。

4.对梯度进行非极大值抑制,只保留局部极大值点。

5.使用双阈值算法进行边缘连接和边缘细化。

6.得到最终的边缘图像。

canny边缘检测及matlab实现

canny边缘检测及matlab实现

北京工业大学研究生课程考试答题纸课程类别:学位课选修课研究生学号:研究生姓名:学生类别:博士硕士工程硕士进修生考试时间:年月日一、实验目的:熟悉边缘检测原理,并运用matlab软件实现图像的canny边缘检测,体会canny 边缘检测的优缺点。

二、实验内容:编写matlab程序,实现对lena图像的边缘检测,输出程序运行结果。

三、实验原理或步骤:首先回顾一下边缘检测的一般步骤:边缘检测算法一般包含如下四个步骤:1.滤波(去噪)。

2.增强(一般是通过计算梯度幅值)。

3.检测(在图像中有许多点的梯度幅值会比较大,而这些点并不都是边缘,所以应该用某种方法来确定边缘点,比如最简单的边缘检测判据:梯度幅值阈值)。

4.定位(有的应用场合要求确定边缘位置,可以在子像素水平上来估计,指出边缘的位置和方向)Canny边缘检测的算法步骤:1.用高斯滤波器平滑图像(不同尺度的Canny检测子由高斯的不同标准差来表示)用一阶偏导的有限差分来计算梯度的幅值和方向。

2.对高斯平滑后的图像进行sobel边缘检测。

这里需要求横的竖的还有联合的,所以一共三个需要sobel边缘检测图像。

3.对联合的sobel检测图像进行非极大值抑制(Non-Maxima Suppression, NMS)4.用双阈值算法检测和连接边缘,并进行滞后阈值处理。

其中非极大值抑制细化了幅值图像中的屋脊带,只保留幅值局部变化最大的点。

双阈值算法:用两个阈值得到两个阈值图像,然后把高阈值的图像中的边缘连接成轮廓,连接时到达轮廓的端点时,在低阈值图像上找可以连接的边缘。

不断收集,直到所有的间隙连接起来为止。

四、运行结果和分析每步运行效果:Figure1原图:Figure2 高斯模糊后:Figure3 sobel边缘检测后:Figure4 非极大抑制后:Figure5 上阈值120,下阈值100检测结果:Canny算子的方向性使得它的边缘检测和定位优于其他算子,具有更好的边缘强度估计,能产生梯度方向和强度两个信息。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Canny边缘检测
图象的边缘是指图象局部区域亮度变化显著的部分,该区域的灰度剖面一般可以看作是一个阶跃,既从一个灰度值在很小的缓冲区域内急剧变化到另一个灰度相差较大的灰度值。

图象的边缘部分集中了图象的大部分信息,图象边缘的确定与提取对于整个图象场景的识别与理解是非常重要的,同时也是图象分割所依赖的重要特征,边缘检测主要是图象的灰度变化的度量、检测和定位,自从1959提出边缘检测以来,经过五十多年的发展,已有许多中不同的边缘检测方法。

根据作者的理解和实践,本文对边缘检测的原理进行了描述,在此基础上着重对Canny检测算法的实现进行详述。

本文所述内容均由编程验证而来,在实现过程中,有任何错误或者不足之处大家共同讨论(本文不讲述枯燥的理论证明和数学推导,仅仅从算法的实现以及改进上进行原理性和工程化的描述)。

1、边缘检测原理及步骤
在之前的博文中,作者从一维函数的跃变检测开始,循序渐进的对二维图像边缘检测的基本原理进行了通俗化的描述。

结论是:实现图像的边缘检测,就是要用离散化梯度逼近函数根据二维灰度矩阵梯度向量来寻找图像灰度矩阵的灰度跃变位置,然后在图像中将这些位置的点连起来就构成了所谓的图像边缘(图像边缘在这里是一个统称,包括了二维图像上的边缘、角点、纹理等基元图)。

在实际情况中理想的灰度阶跃及其线条边缘图像是很少见到的,同时大多数的传感器件具有低频滤波特性,这样会使得阶跃边缘变为斜坡性边缘,看起来其中的强度变化不是瞬间的,而是跨越了一定的距离。

这就使得在边缘检测中首先要进行的工作是滤波。

1)滤波:边缘检测的算法主要是基于图像强度的一阶和二阶导数,但导数通常对噪声很敏感,因此必须采用滤波器来改善与噪声有关的边缘检测器的性能。

常见的滤波方法主要有高斯滤波,即采用离散化的高斯函数产生一组归一化的高斯核(具体见“高斯滤波原理及其编程离散化实现方法”一文),然后基于高斯核函数对图像灰度矩阵的每一点进行加权求和(具体程序实现见下文)。

2)增强:增强边缘的基础是确定图像各点邻域强度的变化值。

增强算法可以将图像灰度点邻域强度值有显著变化的点凸显出来。

在具体编程实现时,可通过计算梯度幅值来确定。

3)检测:经过增强的图像,往往邻域中有很多点的梯度值比较大,而在特定的应用中,这些点并不是我们要找的边缘点,所以应该采用某种方法来对这些点进行取舍。

实际工程中,常用的方法是通过阈值化方法来检测。

2、Canny边缘检测算法原理
JohnCanny于1986年提出Canny算子,它与Marr(LoG)边缘检测方法类似,也属于是先平滑后求导数的方法。

本节对根据上述的边缘检测过程对Canny检测算法的原理进行介绍。

2.1 对原始图像进行灰度化
Canny算法通常处理的图像为灰度图,因此如果摄像机获取的是彩色图像,那首先就得进行灰度化。

对一幅彩色图进行灰度化,就是根据图像各个通道的采样值进行加权平均。

以RGB格式的彩图为例,通常灰度化采用的方法主要有:
方法1:Gray=(R+G+B)/3;
方法2:Gray=0.299R+0.587G+0.114B;(这种参数考虑到了人眼的生理特点)
注意1:至于其他格式的彩色图像,可以根据相应的转换关系转为RGB然后再进行灰度化;
注意2:在编程时要注意图像格式中RGB的顺序通常为BGR。

2.2 对图像进行高斯滤波
图像高斯滤波的实现可以用两个一维高斯核分别两次加权实现,也可以通过一个二维高斯核一次卷积实现。

1)高斯核实现
上式为离散化的一维高斯函数,确定参数就可以得到一维核向量。

上式为离散化的二维高斯函数,确定参数就可以得到二维核向量。

注意1:关于参数Sigma的取值详见上篇博文。

注意2:在求的高斯核后,要对整个核进行归一化处理。

2)图像高斯滤波
对图像进行高斯滤波,听起来很玄乎,其实就是根据待滤波的像素点及其邻域点的灰度值按照一定的参数规则进行加权平均。

这样可以有效滤去理想图像中叠加的高频噪声。

通常滤波和边缘检测是矛盾的概念,抑制了噪声会使得图像边缘模糊,这回增加边缘定位的不确定性;而如果要提高边缘检测的灵敏度,同时对噪声也提高了灵敏度。

实际工程经验表明,高斯函数确定的核可以在抗噪声干扰和边缘检测精确定位之间提供较好的折衷方案。

这就是所谓的高斯图像滤波,具体实现代码见下文。

2.3 用一阶偏导的有限差分来计算梯度的幅值和方向
关于图像灰度值得梯度可使用一阶有限差分来进行近似,这样就可以得图像在x和y 方向上偏导数的两个矩阵。

常用的梯度算子有如下几种:
1)Roberts算子
上式为其x和y方向偏导数计算模板,可用数学公式表达其每个点的梯度幅值为:
2)Sobel算子
上式三个矩阵分别为该算子的x向卷积模板、y向卷积模板以及待处理点的邻域点标记矩阵,据此可用数学公式表达其每个点的梯度幅值为:
3)Prewitt算子
和Sobel算子原理一样,在此仅给出其卷积模板。

4)Canny算法所采用的方法
在本文实现的Canny算法中所采用的卷积算子比较简单,表达如下:
其x向、y向的一阶偏导数矩阵,梯度幅值以及梯度方向的数学表达式为:
求出这几个矩阵后,就可以进行下一步的检测过程。

2.4 对梯度幅值进行非极大值抑制
图像梯度幅值矩阵中的元素值越大,说明图像中该点的梯度值越大,但这不不能说明该点就是边缘(这仅仅是属于图像增强的过程)。

在Canny算法中,非极大值抑制是进行边缘检测的重要步骤,通俗意义上是指寻找像素点局部最大值,将非极大值点所对应的灰度值置为0,这样可以剔除掉一大部分非边缘的点(这是本人的理解)。

图1 非极大值抑制原理
根据图1 可知,要进行非极大值抑制,就首先要确定像素点C的灰度值在其8值邻域内是否为最大。

图1中蓝色的线条方向为C点的梯度方向,这样就可以确定其局部的最大值肯定分布在这条线上,也即出了C点外,梯度方向的交点dTmp1和dTmp2这两个点的值也可能会是局部最大值。

因此,判断C点灰度与这两个点灰度大小即可判断C点是否为其邻域内的局部最大灰度点。

如果经过判断,C点灰度值小于这两个点中的任一个,那就说明C点不是局部极大值,那么则可以排除C点为边缘。

这就是非极大值抑制的工作原理。

作者认为,在理解的过程中需要注意以下两点:
1)中非最大抑制是回答这样一个问题:“当前的梯度值在梯度方向上是一个局部最大值吗?” 所以,要把当前位置的梯度值与梯度方向上两侧的梯度值进行比较;
2)梯度方向垂直于边缘方向。

但实际上,我们只能得到C点邻域的8个点的值,而dTmp1和dTmp2并不在其中,要得到这两个值就需要对该两个点两端的已知灰度进行线性插值,也即根据图1中的g1和g2对dTmp1进行插值,根据g3和g4对dTmp2进行插值,这要用到其梯度方向,这是上文Canny算法中要求解梯度方向矩阵Thita的原因。

完成非极大值抑制后,会得到一个二值图像,非边缘的点灰度值均为0,可能为边缘的局部灰度极大值点可设置其灰度为128。

根据下文的具体测试图像可以看出,这样一个检测结果还是包含了很多由噪声及其他原因造成的假边缘。

因此还需要进一步的处理。

2.5 用双阈值算法检测和连接边缘
Canny算法中减少假边缘数量的方法是采用双阈值法。

选择两个阈值(关于阈值的选取方法在扩展中进行讨论),根据高阈值得到一个边缘图像,这样一个图像含有很少的假边缘,但是由于阈值较高,产生的图像边缘可能不闭合,未解决这样一个问题采用了另外一个低阈值。

在高阈值图像中把边缘链接成轮廓,当到达轮廓的端点时,该算法会在断点的8邻域点中寻找满足低阈值的点,再根据此点收集新的边缘,直到整个图像边缘闭合。

以上即为整个Canny边缘检测算法的原理分析,接下来我们进行VC下的算法实现和效果分析。

相关文档
最新文档