平面及其基本性质 ppt课件

合集下载

§14.1 平面及其基本性质

§14.1 平面及其基本性质
Ⅰ.基础知识§14.1 平面及其基本性质
一、 平面的基本概念
1.平面的概念:非常“平”,且无限延展的
2.平面的特征:面 ①.无厚度;②无边界;③在空间无限延展.
3.平面的记法:
①可用一个大写的英文字母或小写的希腊字母表示平面.
②可用三个(或三个以上)点的字母表示平面.
4.平面的画法:画平行四边形来表示平面.
(2)证明点在直线上.(证明点是两个平面的公共点,直线 是两个平面的交线即可)
(3)证明多点共线.பைடு நூலகம்证明这些点是两个平面的公共点, 则它们必在两个平面的交线上)
Ⅰ.基础知识§14.1 平面及其基本性质
二、 平面的基本性质
3.公理3: 不在同一直线上的三点确定一个平面.
α
A
B
C
推论1:
A
一条直线和直线外的一点确定一个平面α.
α
A
b
直线均在此平面内即可.) (3)证明多点共面.(证明这些点在共面的直线即可.)
Ⅱ.例题选讲§14.1 平面及其基本性质 例1 用集合符号表示语句“直线l经过平面α外
M
一点M和平面α内一点N”.并画出图形.
M , N , M l, N l.
α
N
例2 若空间中有四个点,则“这四个点中有三个在同一 直线上”是“这四个点在同一平面上”充的分_不__必__要_______
1.公理1: 如果直线 l 上有两个点在平面α上,那么
直线 l 在平面α上.
若A l, B l,且A , B , α
l
则 l .
①公理1的实质: 公理1是判定直线在平面上的依据.
②公理1的应用: (1)证明直线在平面上.(只要证明直线上两点在平面上)

一、平面的基本性质

一、平面的基本性质

平面的基本性质教学目标:1,并能运用它解决点、线共面问题2,并能运用它找出两个平面的交线及“三线共点”和“三点共线”问题教学重点:平面基本性质的三条公理及其作用.教学难点:(1)对“有且只有一个”语句的理解.(2)确定两相交平面的交线.1.平面的概念:平面是没有厚薄的,可以无限延伸,这是平面最基本的属性常见的桌面,黑板面,平静的水面等都是平面的局部形象一个平面把空间分成两部分,一条直线把平面分成两部分2.平面的画法及其表示方法:①在立体几何中,常用平行四边形表示平面锐角画成45,横边画成邻边的两倍画两个平面相交时,当一个平面的一部分被另一个平面遮住时,应把被遮住的部分画成虚线或不画②一般用一个希腊字母α、β、γ……来表示,还可用平行四边形的对角顶点的字母来表示如平面α,平面AC等3.空间图形是由点、线、面组成的=b A⊂aαα=∅α=Al β= 集合中“∈”的符号只能用于点与直线,点与平面的关系,用于直线与直线、直线与平面、平面与平面的关系,虽然借用于集合符号,但在读法上仍用几何语言. a α=∅或a A α=平面的基本性质公理1 如果一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平面内图1 图2 图3图4公理2如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线公理3 经过不在同一条直线上的三点,有且只有一个平面 推论1 经过一条直线和直线外的一点有且只有一个平面. 已知:直线l ,点A 是直线l 外一点.推论2 经过两条相交直线有且只有一个平面推论3 经过两条平行直线有且只有一个平面例1 求证:三角形是平面图形已知:三角形ABC求证:三角形ABC 是平面图形例2 两两相交且不过同一个点的三条直线必在同一平面内已知:直线,,AB BC CA 两两相交,交点分别为,,A B求证:直线,,AB BC CA 共面例3 在正方体1111ABCD A B C D -中,①1AA 与1CC 是否在同一平面内?②点1,,B C D 是否在同一平面内?③画出平面1AC 与平面1BC D 的交线,平面1ACD 与平面1BDC 的交线例4 若l αβ=,,A B α∈,c β∈,试画出平面ABC 与平面,αβ的交线课堂练习1:1 下面是一些命题的叙述语(A 、B 表示点,a 表示直线,α、β表示平面) A .∵αα∈∈B A ,,∴α∈AB . B .∵βα∈∈a a ,,∴a =βα . C .∵α⊂∈a a A ,,∴A α∈. D .∵α⊂∉a a A ,,∴α∉A . 其中命题和叙述方法都正确的是( )1C2.下列推断中,错误的是( ) A .αα⊂⇒∈∈∈∈l B l B A l A ,,,B .B B A A =⇒∈∈∈∈βαβαβα ,,,C .αα∉⇒∈⊄A l A l ,D .βα∈∈C B A C B A ,,,,,,且A 、B 、C 不共线βα,⇒重合3.一个平面把空间分成____部分,两个平面把空间最多分成____部分,三个平面把空间最多分成____部分.4.判断下列命题的真假,真的打“√”,假的打“×”(1)空间三点可以确定一个平面 ( ) (2)两条直线可以确定一个平面 ( ) (3)两条相交直线可以确定一个平面 ( ) (4)一条直线和一个点可以确定一个平面 ( ) (5)三条平行直线可以确定三个平面 ( ) (6)两两相交的三条直线确定一个平面 ( ) (7)两个平面若有不同的三个公共点,则两个平面重合 ( ) (8)若四点不共面,那么每三个点一定不共线 ( )课堂练习2: 1.选择题(1)下列图形中不一定是平面图形的是 ( ) (A )三角形 (B )菱形 (C )梯形 (D )四边相等的四边形(2)空间四条直线,其中每两条都相交,最多可以确定平面的个数是( ) (A )一个 (B )四个 (C )六个 (D )八个(3)空间四点中,无三点共线是四点共面的 ( ) (A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分也不必要(4)若a ⊂ α,b ⊂ β,α∩β=c ,a ∩b =M ,则 ( ) (A )M ∈c (B )M ∉c (C )M ∈α (D )M ∈β2.已知直线a //b //c ,直线d 与a 、b 、c 分别相交于A 、B 、C ,求证:a 、b 、c 、d 四线共面.课后练习:11、给定四个命题:(1)一平面的面积可以等于100cm3;(2)平面是矩形或平行四边形形状;(3)铺得很平的一张白纸是一个平面;(4)20个平面重合在一起比一个平面厚20倍,其正确的有 ( )A.0B.2C.3D.42、满足下列条件,平面α∩平面β=AB,直线a⊂α,直线b⊂β且a∥AB,b∥AB的图形是 ( )3、两个平面能把空间分成几个部分 ( )A.2或3B.3或4C.3D. 2或44、三个平面把空间分成最多或最少几个部分 ( )A.8;4B.7;4C.8;6D.6;45、三条直线两两相交,经过这3条直线的平面有 ( )A.0个B.1个C.0或1个D.3个6、空间有四个点,如果其中任意三点都不在同一直线上,那么经过其中三个点的平面 ( )A.可能有3个,也可能有2个B.可能有3个,也可能有1个C.可能有4个,也可能有3个D.可能有4个,也可能有1个7、确定一个平面的条件是()A、空间三点B、空间两条件直线C、一条直线和一点D、不过同一点且两两相交的三条直线8、下列命题中正确的是()A、空间四点中有三点共线,则此四点必共面B、三个平面两两相交的三条交线必共点C、空间两组对边分别相等的四边形是平行四边形D、平面a和平面b只有一个交点9、M、N、P、Q是空间不同的四点,下列命题中,错误的是()A、若MP与NQ共面,则MQ与NP异面B、若MP与NQ共面,则MQ与NP异面C、若MP=NQ,MN=PQ,则MQ=NPD、若MP^NQ,MN^PQ,则MQ^NP10、水平放置的DABC有一边在水平线上,它的斜二测直观图是正DA1B1C1,则 DABC是()A、锐角三角形B、直角三角形C、钝角三角形D、任意三角形11、a、b为异面直线,a上有5个点,b上有8个点,从这些点中选三个点确定一个平面,共能确定不同的平面数为_________(任意3点不共线)12、正方体的六个面把空间分成_______个部分二、填空题:7.(1)如果把图形比作一本打开的书,那么书内是向里还是向外 ;(2)αβ= ,AB α= ,AB与PQ .8.两两平行的三条直线最多可以确定个平面.9.直线AB、AD⊂α,直线CB、CD⊂β,点E∈AB,点F∈BC,点G∈CD,点H∈DA,若直线EH∩直线FG=M,则点M 在上.三、解答题:10.画一个正方体ABCD—A1B1C1D1,再画出平面ACD1与平BDC1的交线,并且说明理由.11.求证:三条两两相交且不共点的直线必共面.12、在正方体ABCD—A1B1C1D1中,设A1C与平面ABC1D1交于点O,求证:B、O、D1三点共线。

1_平面基本性质第三课时

1_平面基本性质第三课时
(×)
练习
(1)三条直线相交于一点,用其中的两条确定平面, 三条直线相交于一点,用其中的两条确定平面, 最多确定的平面数是_______; 最多确定的平面数是 3
看看答案吧
或 两个平面可以把空间分成________部分 部分, (2) 两个平面可以把空间分成 3或4 部分, , , 或 三个平面呢?_________________。 。 三个平面呢 4,6,7或8
CD上,H在AD上,且DF:FC=2:3,DH:HA=2:3, 上 在 上 : : , : : , 求证: 、 交于一点。 求证:EF、GH、BD交于一点。 、 交于一点 A G H B D F E C 证明三线共点的方法: 证明三线共点的方法: 证明两直线的交点在第三直线上, 证明两直线的交点在第三直线上,而第三直线又 往往是两平面的交线
证共面问题:可先由公理3(或推论)证某些元素确定一个平面, 证共面问题:可先由公理 (或推论)证某些元素确定一个平面, 再证其余元素都在此平面内; 再证其余元素都在此平面内 ; 或者指出给定的元素中的某些元 素在一个平面内,再证两个平面重合. 素在一个平面内,再证两个平面重合.
题目变型:求证三角形ABC的三条边在同一个平面内。 ABC的三条边在同一个平面内 题目变型:求证三角形ABC的三条边在同一个平面内。
同理b 同理b、c确定平面β ,且l ⊂β 确定平面β
而l、b ⊂α, 、b ⊂β,l∩ b = B l
∴α与β重合
∴a,b,c,l共面 a,b,c,l共面
四、证明共面问题 AB、 两两相交, 例5、直线AB、BC、CA两两相交,交点分别为A、B、C, 、直线AB BC、CA两两相交 交点分别为A 判断这三条直线是否共面,并说明理由。 如图) 判断这三条直线是否共面,并说明理由。(如图)

平面基本性质.ppt

平面基本性质.ppt

• 14、Thank you very much for taking me with you on that splendid outing to London. It was the first time that I had seen the Tower or any of the other famous sights. If I'd gone alone, I couldn't have seen nearly as much, because I wouldn't have known my way about.
a__lP, b__l_P
例题讲解
例2、求证:两两相交且不过同一个点的三条 直线必在同一平面内。
A C
B
已知 :如图 ,直线 AB、BC、CA两两相交 交 变 直线式点 ”:,如分 果命题条A别 还件、成改B为 、 立为C 吗“。 ?交于同一点的三条 求证:A直B、 线 BC、CA共面。
思考探究
。2020年11月9日星期一2020/11/92020/11/92020/11/9
• 15、会当凌绝顶,一览众山小。2020年11月2020/11/92020/11/92020/11/911/9/2020
• 16、如果一个人不知道他要驶向哪头,那么任何风都不是顺风。2020/11/92020/11/9November 9, 2020
P
l
P
P 且 P l且 P l
作用:用来判定两个平面相交或点在直线上。
例题讲解
B
A
l
a (1)
பைடு நூலகம்
b
lP
a
(2)
例1、如上图,用符号表示图形中点、直线、 平面之间的位置关系。

平面及其基本性质

平面及其基本性质

向量数量积运算规则
数量积定义
两个向量的数量积是一个标量,等于两向量模的乘积与它们夹角的余弦的乘积。
数量积运算规则
数量积满足交换律、分配律和结合律,且数量积的结果与两向量的夹角有关,当两向量垂直时数量积为零。
平面上标系建立与特点
直角坐标系的建立
在平面上选定两条互相垂直的数轴,分别作为x轴和y轴,两轴的交点O为坐标原点。对于平面上的任 意一点P,其位置可以用从O点到P点的有向线段的数量来表示,该数量即为点P的坐标。
VS
极坐标系的特点
极坐标系在处理某些问题时具有独特的优 势,如描述圆的方程、研究点的轨迹等。 在极坐标系中,点的位置由其到极点的距 离和与极轴的夹角确定,这种表示方式在 某些情况下比直角坐标系更为简便。
坐标变换公式及应用
坐标变换公式
在平面上的不同坐标系之间,可以通过一定 的数学公式进行坐标的转换。例如,在直角 坐标系和极坐标系之间,点的坐标可以通过 以下公式进行转换:x = rcosθ, y = rsinθ, r = √(x² + y²), θ = arctan(y/x)。
向量表示方法
在平面直角坐标系中,向量可以用坐 标形式表示,起点为坐标原点,终点 坐标即为向量坐标。
向量加减法运算规则
向量加法
向量加法遵循平行四边形法则或三角形法则,结果向量以两 个加向量为邻边作平行四边形,其对角线即为和向量。
向量减法
向量减法可以转化为向量加法来处理,即减去一个向量相当 于加上这个向量的相反向量。
圆及其性质
圆的定义
平面上到定点的距离等于定长的所有 点组成的图形。
圆的性质
圆的任意一条直径所在的直线都是圆 的对称轴;圆的周长与直径的比值是 一个常数,称为圆周率;圆内接四边 形的对角互补,外角等于它的内对角 。

14.1平面及其基本性质

14.1平面及其基本性质

a b
14.1平面及其基本性质(1)
例1、正方体的各顶点如图所示,正方体的三个面所在平
面 A1C1,A1B1,B1C1,分别记作、、,试用适当的符号填空.
(1)A1______, _B1_______ (2)B1______, _C1_______ (3)A1______,_D1 _______
14.1平面及其基本性质(1)
❖ (二)平面的表示方法:
❖ 1、几何表示:

水平放置①:

正视垂直放置②: ② 侧视垂直放置③:
❖ 2、符号表示:
(1)直线AB,直线l,直线a
(2)平面ABCD(顶点字母),
平面αβγ(小写的希腊字母),平面M、N
❖ 3、点、线、面的位置关系(借用集合符号)
14.1平面及其基本性质(1)
❖ 例4、空间三个点能确定几个平面? 空间四个点能确定几个平面?
❖ 例5、 空间三条直线相交于一点,可以确定几个平面? 空间四条直线相交于一点,可以确定几个平面?
❖ 例6、两个平面可以把空间分成________部分, 三个平面呢?_________________。
三条直线相交于一点,可以确定几个平面?

m
(3) l
P

(4)P l,P ,Q l,Q
Q
14.1平面及其基本性质(1)
例3、如图,正方体 ABCDA1B1C1D 1,E,F分别是
B1C1, BB1的中点,问:直线EF和BC是否相交;
如果相交,交点在哪几个平面内?
D1
C1
A1
B1 E
DF C
A
B
14.1平面及其基本性质(1)
(4)_____A _1B_ 1 ______B_1B

3平面及其基本性质

3平面及其基本性质

平面及其基本性质教学目标:掌握平面的基本性质,主要是三个公理、三个推论及其应用.会用斜二测画法画水平放置的直观图;会证明共面、共点、共线问题;掌握反证法的应用;知道什么叫“空间四边形”.重点1.理解并会应用平面的基本性质,掌握证明关于“线共点”、“线共面”、“点共线”的方法2.公理4及等角定理.3.空间两条直线的位置关系有且只有三种,即平行、相交及异面.4.两条异面直线所成的角及距离,求作异面直线所成的角时,往往取题中的特殊点.基础扫描1.分别与两条异面直线都相交的两条直线的位置关系是 2.下列命题中真命题的序号为(1)四边形是平面图形(2)有三个公共点的两个平面重合(3)两两相交的三条直线必在同一平面内(4)三角形必是平面图形3.角α与β的两边分别平行,当α70=︒时, β=4.对于任意的直线l 与平面α,在平面α内必有直线m ,使m 与l.A 平行 .B 相交 .C 垂直 .D 互为异面直线 解题平台例1如图,空间四边形ABCD 中,E 、F 分别是AB 、AD 的中点,G 、H 分别在BC 、CD 上,且BG :GC =DH :HC =1:2 (1)求证:E 、F 、G 、H 四点共面。

(2)设EG 与HF 交于点P ,求证:P 、A 、C 三点共线。

A CD BEF GH例2若P 是两条异面直线,l m 外的任意一点,则下列正确的是.A 过点P 有且仅有一条直线与,l m 都平行 .B 过点P 有且仅有一条直线与,l m 都垂直 .C 过点P 有且仅有一条直线与,l m 都相交 .D 过点P 有且仅有一条直线与,l m 都异面例3正方体1111ABCD A B C D 中,P 、Q 、R 分别是AB 、AD 、11B C 的中点.那么,正方体的过P 、Q 、R 的截面图形是小结A BCD1A1B1C1D PQ R课后练习1.不共面的四个定点到平面α的距离都相等,这样的平面α共有 个。

2.在正方体ABCD A B C D -''''中,过对角线BD '的一个平面交AA '于E ,交CC '于F ,则① 四边形BFD E '一定是平行四边形; ② 四边形BFD E '有可能是正方形③ 四边形BFD E '在底面ABCD 内的投影一定是正方形 ④ 四边形BFD E '有可能垂直于平面BB D '以上结论正确的为 (写出所有正确结论的编号) 3.对两条不相交的空间直线a 与b,必存在平面α,使得.A αα⊂⊂b a , .B b a ,α⊂∥α .C αα⊥⊥b a ,.D αα⊥⊂b a ,4.若空间中有四个点,则“这四个点中有三点在同一直线上”是“这四个点在同一平面上”的 条件5.空间四边形ABCD 中,AC 、BD 为对角线,E 、F 为AB 、BC 的中点,G 、H 分别在CD 、DA 上,且CG :GD=AH :HD=λ(λ>0) (1)求证:点E 、F 、G 、H 共面;(2)若λ=2,求证:直线FG 、EH 、BD 相交于一点6.已知△ABC 在平面α外,三边AB 、BC 、CA 分别与平面α交于P 、Q 、R ,求证:P 、Q 、R 共线.7.三个平面两两相交,得到三条交线,求证:(1)若其中两条交于一点P ,则P 也在第三条交线上; (2)若其中两条平行,则这三条交线两两平行。

14.1-平面及其基本性质

14.1-平面及其基本性质

点--- 组成集合的基本元素; Explanation 线--- 由基本元素点组成的集合. 面---由基本元素点组成的集合. ①点与直线的位置关系:The positional relationship of the points 说明
with straight lines
点A在直线l上--记作 :
新课讲解
③直线与平面的位置关系:The position *当直线l上的所有点都在平面α 上时,可把直线l看作是平面α的 子集,称直线l在平面α上,或平 面α经过直线l---记作: When all
relationship between straight line and plane

l
.
of the points on the straight line l in the plane alpha, can be regarded as a straight line l is a subset of the plane alpha, said straight line l in the plane l alpha
②数学中的平面概念可与平几中直线的概念相类比.
新课讲解
二.数学中表示平面的一般方法: a general method said
plane
·· ①大写的英文字母—— 平面M;平面N;···Plane M;
Uppercase letters -Plane N; ...
②小写的希腊字母— —Lowercase Greek letter --
α∩β=Ø 或α∥β.
总结说明Summary ①点、线、面之间的位置关系的语言叙述具有多变性;
Point, line, plane positional relationship between the language Designation
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所有点都在这个平面内;直线上有一点不 在平面内,则直线上只有一个点在这个平 面内或全不在这个平面内;
问题2
(1)把书的一角放在桌面上,问书所在平 面与桌面所在平面有几个公共点?
(2)把教室的门及其所在的墙看成两平 面,当门开着时,它们的公共点的分布如 何?
公理2 如果两个平面有一个 公共点,那么它们还有其他 公共点,且所有这些公共点 的集合是一条过这个公共点 的直线。
9.1 平面及其基本性质
一、平面的概念和表示法
D
C
A
B
A
ቤተ መጻሕፍቲ ባይዱ
B
B• •A
二、如何理解平面?
平面是一个描述而不是定义的原始概念。
(1)平面是绝对平的; (2)平面没有厚度; (3)平面是无限延展的; (4)平面和点、线一样是今后研究空间图 形的基础,也是空间图形的一个重要组成 部分;
(5)平面可以看作是空间的一些特殊点组 成的集合,它是一个无限集;
区别:(1)平面图形的点都在同一个平面内, 立体图形的点不全在同一个平面内;
(2 )平面图形由点、线构成,立体图形 由点、线、面构成;
(3)考虑问题要着眼于整个空间而不能 局限与一个平面
(4)立体图形中有些点在同一平面内,对平面 图形的研究是立体图形的基础,立体图形常常转 化为平面图形来研究.
(5)过去所学的平面图形中的结论在立体图形 中是否正确?要经过验证
A
B
C
证法二: 因为A直线BC上, 所以过点A和直线BC确定平面α.(推论1) 因为A∈α,B∈BC,所以B∈α. 故AB α, 同理AC α, 所以AB,AC,BC共面.
A
B
C
证法三: 因为A,B,C三点不在一条直线上,
所以过A,B,C三点可以确定平面.(公理3) 因为A∈α,B∈α,所以AB .(公理1) 同理BC ,AC ,
和一个平面,
(1)若尺的两个端点都在桌面上,问尺 所在直线上各点会不会都在桌面所在平面 内?
(2)若尺的一个端点不在桌面上,问尺 所在直线与桌面所在平面的关系如何?
公理1 如果一条直线上的两 点在一个平面内,那么这条 直线上所有的点都在这个平 面内。
确定直线在不在平面内的依 据
注意:直线有两点在平面内,则直线上
所以AB,BC,CA三直线共面.
A
B
C
课堂小结: (1)平面的概念及如何理解? (2)平面的表示法; (3)平面的基本性质:
3个公理、3个推论;应用; (4)3种语言的相互表示、相互转化;
立体几何
问题1 你能过任意一点引三条互相垂直的
直线吗?
如图
问题2 你能用六根火柴在桌面上搭出四个
三角形吗?
如图
问题3 你能画出一个四边形,使它的两条
对角线所在的直线不相交吗? 总结
C
O B
A 返回
C
O A
B 返回
空间图形分为:平面图形 立体图形
立体图形与平面图形的区别与联系:
联系:从集合论角度,二者都是点的集合;
(6)无限的平面----将它所在的无限的空 间分成两部分,如果想从平面的一侧到另 一侧,必须穿过这个平面;
(7)有限的图形-----平行四边形,用它表 示平面,只是一种表示法,绝不能认为平 行四边形就是平面;
(8)画线原则-----“看得见的画实线,看 不见的画虚线”;
三、平面的基本性质
问题1 如果把尺和桌面分别看成一条直线
判断两平面相交的依据,也 是证明三点共线的依据。
注意:两个不重合的平面有公共点,则
两平面有一条过公共点的直线。两平面的 公共点一定不可能是孤立的点;
问题3
(1)把门销插上,门便不动,为什么? (2)测量仪的支架为什么只需三支脚?
公理3 经过不在同一直线上 的三点,有且只有一个平面
确定平面的依据
A
B
C
推论1: 经过一条直线和这条直 线外一点,有且只有一个平面。
A
B
C
已知:点A,直线a,Aa. 求证:过点A和直线a可以确定一个平面.
A a
推论2: 经过两条相交直线, 有且只有一个平面。
推论3: 经过两条平行直线, 有且只有一个平面
确定平面的依据
例1:两两相交且不过同一点的三条直线 必在同一个平面内。(如图) 已知:AB∩AC=A,AB∩BC=B,AC∩BC=C 求证:直线AB,BC,AC共面
相关文档
最新文档