压气机级的工作原理
第三章 轴流压气机工作原理

第三章 轴流压气机的工作原理压气机是燃气涡轮发动机的重要部件之一,它的作用是给燃烧室提供经过压缩的高压、高温气体。
根据压气机的结构和气流流动特点,可以把它分为两种主要型式:轴流式压气机和离心式压气机。
本章论述轴流式压气机的基本工作原理,重点介绍压气机基元级和压气机一级的流动特性及工作原理。
第一节 轴流压气机的增压比和效率轴流式压气机由两大部分组成,与压气机旋转轴相联接的轮盘和叶片构成压气机的转子,外部不转动的机匣和与机匣相联接的叶片构成压气机的静子。
转子上的叶片称为动叶,静子上的叶片称为静叶。
每一排动叶(包括动叶安装盘)和紧随其后的一排静叶(包括机匣)构成轴流式压气机的一级。
图3-1为一台10级轴流压气机,在第一级动叶前设有进口导流叶片(静叶)。
图3-1 多级轴流压气机压气机的增压比定义为***=1p p k kπ (3-1) *kp :压气机出口截面的总压;*1p :压气机进口截面的总压;*号表示用滞止参数(总参数)来定义。
依据工程热力学有关热机热力循环的理论,对于燃气涡轮发动机来讲,在一定范围内,压气机出口的压力愈高,则燃气涡轮发动机的循环热效率也就愈高。
近六十年来,压气机的总增压比有了很大的提高,从早期的总增压比3.5左右,提高到目前的总增压比40以上。
图3-2 压气机的总增压比发展历程压气机的绝热效率定义为***=k adkkL L η (3-2) 效率公式定义的物理意义是将气体从*1p 压缩到*2p ,理想的、无摩擦的绝热等熵过程所需要的机械功*adk L 与实际的、有摩擦的、绝热熵增过程所需要的机械功k L *之比。
p 1*p k*1k adkL *k L *ad ksh *图3-3 压气机热力过程焓熵图 由热焓形式能量方程(2-5)式、绝热条件、等熵过程的气动关系式)1(11)(k k adk adk p p T T -****=和R k k c p 1-=可以得到 )1(1)(111--=-=-****k k k adk p adk RT k k T T c L π (3-3) )1(1)(111--=-=******T T RT k k T T c L k k p k (3-4) 将(3-3)和(3-4)式代入到(3-2)式,则得到1111--=**-**T T k k k k k πη (3-5)效率公式(3-5)式可以用来计算多级或单级压气机的绝热效率,也可以用来计算单排转子的绝热效率,只要*k p 和*k T 取相应出口截面处值即可。
压气机的原理和特性

15
主要气动参数
进出气角β1和β2 进口冲角
进出气角:气流进、出口相对流速与叶栅前、 进口冲角:叶栅的入口安装角与气流进气 后额线的夹角。 角之差。
i =β1j-β1
出口落后角 δ=β1j-β1 气流转折角 Δβ=β2-β1
气流转折角:气流出气角与进气角之差。
出口落后角:叶栅的出口安装角与气流出气角之差。
压气机的流量特性线:
通过实验测定并作出的压气机流量特性曲线。
压气机的特性线组:
不同转速下的压气机特性线绘在一起,所得到的曲线 组,称为压气机的特性线组。
2.单级轴流式压气机的特性线
25
特点
①每一转速下的压比均有一最大值 (最大压比点:左、右两支); ②压气机的喘振 ——转速不变,流量降低到一定值 后,压气机内的气流轴向脉动引起 的整台机器的剧烈振动。 喘振边界点:压比不稳定无法 绘出时对应的流量点。 喘振边界线:各转速下喘振工 况点的连线。
入口安装角和出口安装角 :叶型中弧线在前缘点和后 14 缘点的切线与叶栅前、后额线的夹角。
叶栅的几何参数
叶栅前后额线
叶型安装角γp 栅距t 入口安装角β1j 出口安装角β2j
叶栅前后额线:叶型前、后缘点的连线。
栅距t :两个相邻叶型上同位点在圆周方向上的距离。 叶型安装角γp :外弦线与圆周方向的夹角。
2.压气机的喘振
37
压气机喘振的特征
压气机的流量时增时减; 压力忽高忽低; 整个机组剧烈振动并伴随特有轰鸣声。
压气机喘振的原因
内因(根本原因和必要条件)—— 压气机失速; 外因—— 压气机下游存在容积较大的管网部件。
压气机的热力过程概述和工作原理

1
0.525
二级压缩,中间冷却
若取 pa 0.2MPa
l
pa p1
0.2 0.1
MPa MPa
2、h
2.5 0.2
MPa MPa
12.5
n1
Ta T1l n 342.3 K 69.3 oC
1
V ,L
1
n l
1
0.970
n1
T2 T1 h n 493.8 K 220.8 oC
C,T
等温压缩过程耗功 实际压缩过程耗功
wC,T wC
课后思考题
思考题: 1. 如果采用气缸冷却水套以及其他 冷却措施,使气体在压气机中已经 能够按等温压缩过程进行,这时是 否还需要采用多级压缩,为什么?
需要,虽然实现等温压缩后耗功最小,但由于余隙容积的存
在,若压比过大, V会很小,分级后有助于提高 V。
2)求实际耗功量
P Ps 15 178 kJ/min 18 972.5 kJ/min 316.21 kW
C,s
0.8
3)由于不可逆而多耗功
P P ' Ps 18 972.5 kJ/min 15 178 kJ/min 3 794.5 kJ/min 63.24 kW
m1
V1
V4 V1
研究VC对产气量和耗功
的影响
3
4 V3
2
1 V
V1 V
一、余隙容积VC对生产量的影响
定义容积效率
p 32
V
V
Vh
V1 V4 V1 V3
V3 V3
VC
1 V4 V3 V1 V3
1 V3 V1 V3
V4 V3
1
1 4V
压气机工作原理

压气机工作原理压气机是一种用来增加气体压力的机械设备,它在许多工业领域都有着广泛的应用。
压气机的工作原理是通过机械作用将气体压缩,从而提高气体的压力。
在本文中,我们将详细介绍压气机的工作原理及其相关知识。
首先,压气机的工作原理可以分为动力循环和压缩循环两个方面。
动力循环是指通过外部动力源(如电动机、发动机等)驱动压气机的转子或活塞运动,从而产生压缩作用。
而压缩循环则是指在压气机内部,气体经过多级压缩,从而提高气体的压力。
这两个循环相互作用,共同完成了压气机的工作过程。
其次,压气机的工作原理与其结构密切相关。
一般来说,压气机主要由压缩机、动力机和控制系统组成。
其中,压缩机是实现气体压缩的核心部件,其工作原理是通过转子或活塞等机械装置对气体进行压缩。
动力机则是提供动力驱动压缩机运转,如电动机、内燃机等。
控制系统则是对压气机进行监控和调节,确保其正常运行。
另外,压气机的工作原理还与气体的物理性质有关。
在进行压缩过程中,气体的温度和压力会发生变化,这需要考虑到气体的热力学性质。
在实际应用中,需要根据气体的性质和使用要求,选择合适的压气机类型和工作参数,以确保其正常、高效地工作。
此外,压气机的工作原理还与其应用领域密切相关。
不同的工业领域对压气机的要求也不同,有些需要高压力、大流量的气体,有些则需要稳定的气体压力和流量。
因此,在选择和设计压气机时,需要充分考虑其工作原理和特性,以满足不同领域的需求。
总的来说,压气机的工作原理涉及动力循环、压缩循环、结构特点、气体性质和应用领域等多个方面,需要综合考虑。
只有深入理解其工作原理,才能更好地应用和维护压气机,确保其正常、高效地工作。
希望本文能够对读者有所帮助,谢谢阅读!。
压气机工作原理

压气机工作原理
压气机是一种用于将气体压缩的设备,工作原理基于变化的体积和压力之间的关系。
在压气机内部,气体被吸入并通过压缩过程提高其压力。
压气机的工作过程可以分为吸气、压缩和排气三个阶段。
在吸气阶段,活塞或螺杆等机械构件移动,使气体从外部环境中进入压气机内部。
在这个过程中,压气机的体积会扩大,导致气体的压力降低。
接下来是压缩阶段,当活塞或螺杆移动到极限位置时,压气机的体积会迅速缩小,使气体被压缩至较高的压力。
这一过程中,气体的分子被挤压在一起,导致气体分子之间的碰撞频率增加,从而使气体的压力增加。
最后是排气阶段,当压气机的体积达到最小值时,气体被迫通过出口排出压缩空间。
在这一过程中,压气机的压力达到最高峰值,气体被排出压力容器。
压气机的工作原理可以是基于活塞、转子、螺杆等不同的机械结构。
活塞式压气机通过活塞在气缸内的运动来压缩气体;转子式压气机则利用旋转齿轮的运动来压缩气体;螺杆式压气机则是通过两个螺杆的运动来实现气体的压缩。
总的来说,压气机工作通过改变气体的体积和压力之间的关系,将气体压缩至更高的压力。
不同的压气机采用不同的机械结构,但其基本工作原理都是类似的。
压气机级的基本参数沿

压气机级的基本参数沿用途及原理压气机是一种将气体压缩的机械设备,广泛应用于工业、航空、航天等领域。
它的基本原理是通过旋转的叶轮将气体加速,并在静止的固体叶片上产生压力,从而实现气体的压缩。
在压缩过程中,气体温度会升高,因此需要冷却系统来保持温度稳定。
压气机级的基本参数1. 压比(Pressure Ratio)压比是指出口静态压力与入口静态压力之比。
它是衡量单级压缩能力的重要参数,通常用来描述整个压缩系统的性能。
在设计和选择压气机时,需要考虑所需的最终输出压力和入口条件。
2. 流量(Flow Rate)流量是指单位时间内通过一个给定面积的气体质量或体积。
在设计和选择压气机时,需要考虑所需流量和入口条件。
3. 效率(Efficiency)效率是指输出功率与输入功率之比。
对于一个给定的流量和压比,效率越高意味着更少的能量浪费和更低的运行成本。
因此,在设计和选择压气机时,需要考虑效率和所需输出功率。
4. 转速(Rotational Speed)转速是指压气机旋转的速度。
它是衡量压气机性能的重要参数之一,通常用来描述单级压缩能力。
在设计和选择压气机时,需要考虑所需流量、压比和效率,并根据这些要求来确定适当的转速。
5. 噪声(Noise)噪声是指由于空气动力学效应、振动和流体噪声等因素产生的声音。
在选择和使用压气机时,需要考虑噪声水平,并采取相应的措施来减少噪声对环境和工作人员造成的影响。
6. 重量(Weight)重量是指整个压气机系统的重量。
在设计和选择压气机时,需要考虑所需流量、压比、效率以及其他因素,并根据这些要求来确定适当的重量。
7. 尺寸(Size)尺寸是指整个压气机系统的大小。
在设计和选择压气机时,需要考虑所需流量、压比、效率以及其他因素,并根据这些要求来确定适当的尺寸。
8. 可靠性(Reliability)可靠性是指压气机系统的稳定性和可靠性。
在选择和使用压气机时,需要考虑其可靠性,并采取相应的措施来确保系统的稳定性和可靠性。
第四章压气机

W c 2uu2 c 1uu1
(u c 2u c 1u)
u1 u2时
ucu
uwu
cu 和w u 称为气流的扭速,它的大小与气流的转折角
与相对应。加功量的大小取决与圆周速度u和气
流扭速wu。要提高压气机的增压能力,必须增大u和w 。
增大前者受到材料强度的限制,而增大后者受到叶栅
气动性能的限制。
2
动叶:
h
* 1
h1
c
2 1
,
2
h
* 1
w
h1
w
2 1
2
h
* 2
w
h2
w
2 2
,
2
h
* 1w
h
* 2
w
,
p
* 2w
p
* 1w
静叶:
h
* 2
h2
c
2 2
2
h
* 3
h3
c
2 3
2
h
h1*w h2*w
P1w*
P2w*
c
2 2
2
w
w
2 2
p
w
2 1
2t 2
22
2
P1*
c
2 1
p
h
* 2
h
* 3
,
p
* 3
p
中弧线:叶型型线诸内切圆
中心的连线;
叶型转折角:在中弧线两
端点处切线间的夹角;
弦长b:中弧线两端点的距
离(投影长度);
叶型中弧线挠度f :弦长
与中弧线上平行与弦长方向 的切线之间的距离;
叶型最大厚度Cmax:叶型诸内切圆的最大值; 进出口缘厚度d1、d2:组成进出口圆直径; 相对出口缘厚度:d2/o; o为喉口最小截面。
第三章 轴流式压气机工作原理

1)边界层摩擦损失
2)边界层分离损失 3)尾迹损失 4)尾迹与主流掺混损失 5)气流穿过激波损失
三 平面叶栅气动参数
1、进气角β1 来流与额线夹角 2、攻角i 进气角与几何进口角夹角
3、出气角β2 出口气流与额线夹角 4、落后角δ 出气角与几何出口角夹角
5、气流转角△β 气流流过叶栅方向的改变 6、损失系数
c1u
w1 c12a (u c1u ) 2
w1
c2
M w1
M c2
c1u wu u 2u
c2 c12a (c1u wu ) 2 c1u
尖部C1u >0,正预旋 根部C1u <0,反预旋 3、圆周速度u
控制反力度很有效 K 1
D
wmax w2 wmax
wmax
w1
w u w1 2
物理意义:气流流经叶栅 相对扩压程度大小
wmax w 2 D wmax
w u w2 w 2 w u 2 1 w1 w1 2w1
动叶叶尖D≤0.4,其它部位及静叶D≤0.6
4、弦长和叶片数目确定
5)不计重力
2、受力分析: 离心力
2 cu drd
2 dm cu / r, dm rddrda
( p dp)(r dr)d prd 2( p dp / 2)dr sin(d / 2)
sin(d / 2) d / 2
2 cu dp dr r
四 平面叶栅的实验研究
(一)亚声平面叶栅风洞
f1 (i, Ma1 )
f 2 (i, Ma1 )
f 1 (i )
来流马赫数低于0.4~0.6
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
压气机级中气流的增压过程
1. 外界通过工作叶轮把一定数量的压缩 轴功传递给流经动叶栅的气体,一方 面使气流绝对速度的动能增高,同时 让气流相对速度的动能降低,以促使 气体的压力增高一部分; 2. 随后,由动叶栅流出的高速气流在静 叶栅中逐渐减速,这样,就可以使气 流绝对速度的动能中的一部分,进一 步转化成为气体的压力势能,使气体 的压力再进一步增高。
动叶栅的功能
动叶栅是有意识地设计成为由叶片的内弧表面朝着叶片的运动 方向的,当气流流过叶栅时,气流作用在动叶栅上的气动力切向分 量是与动叶的运动方向相反的,而动叶栅对气流的作用力的切向分 量就与动叶的运动方向 正好一致致,这时的轴功就通过叶轮上的动 叶传递给气流,转化为气流的动能,促使气流的绝对速度c2 增高。 由此可见,在压气机中,是从外界通过叶轮上的动叶对气体连续不 断作功,才能使气流绝对速度c2 增高,这也就实现了向压气机的静 叶能连续不断地提供高速气流,这也就为在静叶中进行降速增压创 造了条件。 只要合理地设计动、静叶栅的几何形状,我们不仅可以使气流 在静叶栅中获得增压效果,而且还能使气流在流经动叶栅时,既能 提高气流的绝对速度,为下一步在静叶栅中的增压准备了条件,同 时还可以让气流的相对速度有所下降,借以使气体的压力在流经动 叶栅时就能提高一部分。显然在这样的压气机级的动叶栅中,由转 轴通过叶轮上的动叶栅传送给气流的功量中,将有一部分用来使气 流的绝对速度动能增高,而另一部分则直接用来提高气流的压力势 能。
多级轴流式压气机中,在动叶和静叶中气流绝对 速度c和压力 p的变化。
基元级的反动度(或称反作用度)的概念
所谓反动度为在动叶中的理论压力势能的增升值与在整个级中 的理论压力势能增升值之比 。 一般0≤ ρ ≤1,反动度 ρ 越大,就意味着在该级 的压力增升 过程中,气体的压力增升更多是在动叶 栅中完成的。 显然当ρ = 1时,压气级中气流压力的增升将是完全在动叶栅 中完成。在这种压气机级中,从其叶栅通流截面积的变化来看, 它的特点是: A2>A1 和 A3=A2/ 不难想象,对于 ρ=0 的压气机级来说,气流流过动叶栅 时,气体的压力是不会升高的 。动叶栅的通流截面积是恒定 不变的;而在静栅中,通流的截面积是要逐渐扩大的,即 A2=A1 和A3 >A/2
外界通过工作叶轮对气体施加的 理论功 气体流过压气机级时,其压力之以能够增高, 完全是于外界通过工作叶轮对气体连续作功的结 果。在下面就让我们研究一下:在压气机级中, 气体流过动叶栅时,外界通过工作叶轮对气体所 施加的理论功,这能帮助我们进一步理解压气机 级的工作原理。
外界通过工作叶轮对气体施加的理论功 的小结
基元级的反动度
反动度 ρ 与速度三角形之间有着密切的关系, 反动度 ρ 的概念来表示气体在动叶栅压力增高的 程度,一定的反动度就对应着一定的速度三角形 当速度三角形一定时,压气机级中的反动度也就 完全确定了。 ,
ρ = 0.5的压气机级的速度三角形
压气机级的工作原理
1. 2. 3. 4. 5. 6. 基元级概念的引出 基元级的气流速度三角形 外界通过工作叶轮对气体施加的理论功 基元级的压缩功 基元级的效率 基元级的反动度
轴流压气机的基元级
气流流过叶栅时的速度三角形
静叶栅的扩压流道
假如能向压气机的基元级的静叶栅连续不断地提供 高速流动的气流,显然,这就可以使气体达到增压的 目的。而这个任务就是由装在静叶栅前作高速旋转的 动叶栅变压缩功 实际耗功 △hs △hP △h
△hs,△hP,△h 在 T-s 图上的表示
在T-s 图上,过程线下面所包围的 面积相当于所施加的功量。
各部分功在T_s 图中的面积表示
基元级的效率
基元级中扩压流动的完善程度一般可用效率来描述。 压气机基元级的效率定义是:对气体压缩的有益功和实 际耗功之比。根据对有益功和实际耗功的定义不同,就 有相应存在几种基元级效率。 基元级中的实际耗功一般认为是加给气体的理论功。 根据对有益功的定义不同,基元级的效率分为等熵效率 和多变效率。 各种效率又分为静参数效率和滞止参数效率。
在轴流压气机级中气体的增压过程及其原因
1. 外界通过工作叶轮把一定数量的压缩轴功 传递给流经 动叶栅的气体,一方面使气流绝对速度的动能增高,同时让气 流相对速度的动能降低,以促使气体的压力增高一部分; 2. 随后,由动叶栅流出的高速气流在静叶栅中逐渐减速, 这样,就可以使气流绝对速度的动能中的一部分,进一步转 化成为气体的压力势能,使气体的压力再进一步增高; 3. 当气流流经压气机级时,由于从外界接受了压缩轴功 , 提高了气体的焓值 i,与此同时,工质的状态参数P,v,T 发生了变化。
根据动量原理: 外界通过工作叶轮对气体施加的理论 的表达式为: ⊿h=u⊿Wu 或表达为: ⊿h=( C22-C12 )/2 +(W12-W22)/2 即等于气流的绝对速度的动能与相对速度的动能的变 化的总和。
压气机级中热力学参数的变化情况
基元级的压缩功
从热力学第一定律,即从能量守恒与 转化的角度来研究轴流式压气机的压缩 过程,它可揭示出在气体的压缩过程中, 各种能量之间的转化规律,与气体状态 参数之间的关系以及各种压缩功。 实际上,气体在压气机级中的压缩过程, 是与其顺序流过动叶栅和静叶栅时状态 参数的变化密切相关的。