26.1 二次函数(第2课时)教案
26.1.1二次函数教学案

主备人 张 伟 年级主任签字 使用人修 改 补 充【尝试应用】例1.下列函数表达式中,哪些是二次函数?哪些不是?若是二次函数,请指出各项对应项的系数.(1)y =1-3x 2 (2)y =3x 2+2x (3)y =x (x -5)+2(4)y =3x 3+2x 2(5)y =x +1x例2. 关于x 的函数mm xm y -+=2)1(是二次函数, 求m 的值.注意:二次函数的二次项系数必须是 的数。
3.函数y =(m -2)x 2+mx -3(m 为常数).(1)当m__________时,该函数为二次函数; (2)当m__________时,该函数为一次函数. 4.课堂训练:P3-- 练习 【畅谈收获】你认为今天这节课最需要掌握的是 __________________________。
【达标检测】(带*为选做) (一)必做题 :举一反三1.下列函数中是二次函数的是( ) A .y =x +12B .y =3 (x -1)2C .y =(x +1)2-x 2D .y =1x2 -x2.若函数y =(a -1)x 2+2x +a 2-1是二次函数,则( ) A .a =1 B .a =±1 C .a ≠1 D .a ≠-1 3.y =(m +1)xmm -2-3x +1是二次函数,则m 的值为_________________.4.在一定条件下,若物体运动的路段s (米)与时间t (秒)之间的关系为 s =5t 2+2t ,则当t =4秒时,该物体所经过的路程为( ) A .28米 B .48米 C .68米 D .88米5.一个长方形的长是宽的2倍,写出这个长方形的面积y 与宽x 之间的函数关系式. _________________ (二)选做题:劝君未解不要走,解得好题快乐人1.已知二次函数y =-x 2+bx +3.当x =2时,y =3,求 这个二次函数解析式。
2.已知y 与x 2成正比例,并且当x =-1时,y =-3.求: (1)函数y 与x 的函数关系式;(2)当x =4时,y 的值; (3)当y =-13时,x 的值.修 改 补 充课 题 《26.1.1二次函数》教学案学习目标1、经历对实际问题情境分析确定二次函数表达式的过程,理解并掌握二次例函数的概念;2、能判断一个给定的函数是否为二次例函数;3、能根据实际问题中的条件确定二次例函数的解析式。
二次函数的图象第二课时教案

二次函数的图象第二课时教案一、教学目标1. 知识与技能:(1)理解二次函数图象的开口方向、对称轴和顶点的概念;(2)学会如何通过二次函数的系数判断开口方向和对称轴的位置;(3)能够熟练运用二次函数的性质解决实际问题。
2. 过程与方法:(1)通过观察、分析、归纳二次函数图象的性质;(2)利用数形结合的方法,理解二次函数图象与系数的关系。
3. 情感态度与价值观:培养学生对数学的兴趣,提高学生分析问题、解决问题的能力。
二、教学重点与难点1. 教学重点:(1)二次函数图象的开口方向、对称轴和顶点的判断方法;(2)运用二次函数的性质解决实际问题。
2. 教学难点:(1)开口方向与对称轴的判断;(2)二次函数图象与实际问题的结合。
三、教学过程1. 复习导入:(1)回顾一次函数图象的性质;(2)引导学生思考二次函数图象的特点。
2. 新课讲解:(1)介绍二次函数图象的开口方向、对称轴和顶点的概念;(2)讲解如何通过二次函数的系数判断开口方向和对称轴的位置;(3)举例说明二次函数图象与系数的关系。
3. 课堂练习:(1)让学生绘制几个二次函数的图象,观察开口方向、对称轴和顶点的位置;(2)引导学生分析二次函数图象与系数的关系。
四、课后作业2. 选取几个实际问题,运用二次函数的性质进行解答。
五、教学反思本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高学生对二次函数图象的理解和运用能力。
关注学生在课堂上的参与度和思维发展,激发学生的学习兴趣。
六、课堂实践1. 案例分析:分析实际问题,将其转化为二次函数形式;利用二次函数的性质,解答实际问题。
2. 分组讨论:学生分组,讨论如何将实际问题转化为二次函数;每组选取一个实际问题,展示解题过程和答案。
七、拓展与延伸1. 探讨二次函数图象在其他领域的应用;引导学生思考二次函数在物理学、经济学等领域的应用;举例说明二次函数在其他领域的实际应用。
2. 课堂小结:强调二次函数图象在实际问题中的应用价值。
二次函数的全章教案

26.1二次函数(一)一、学习目标1.知识与技能目标:(1)理解并掌握二次函数的概念;(2)能判断一个给定的函数是否为二次函数,并会用待定系数法求函数解析式;(3)能根据实际问题中的条件确定二次函数的解析式。
二、学习重点难点1.重点:理解二次函数的概念,能根据已知条件写出函数解析式; 2.难点:理解二次函数的概念。
三、教学过程(一)创设情境、导入新课:回忆一下什么是正比例函数、一次函数、反比例函数?它们的一般形式是怎样的? (二)自主探究、合作交流:问题1: 正方体的六个面是全等的正方形,如果正方形的棱长为x ,表面积为y ,写出y 与x 的关系。
问题2: n 边形的对角线数d 与边数n 之间有怎样的关系?问题3: 某工厂一种产品现在的年产量是20件,计划今后两年增加产量.如果每年都比上一年的产量增加x 倍,那么两年后这种产品的数量y 将随计划所定的x 的值而定,y 与x 之间的关系怎样表示?问题4:观察以上三个问题所写出来的三个函数关系式有什么特点?小组交流、讨论得出结论:经化简后都具有 的形式。
问题5:什么是二次函数?形如 。
问题6:函数y=ax²+bx+c ,当a 、b 、c 满足什么条件时,(1)它是二次函数? (2)它是一次函数? (3)它是正比例函数?(三)尝试应用:例1. 关于x 的函数 是二次函数, 求m 的值.mm 221)x (m y --=注意:二次函数的二次项系数必须是的数。
例2.已知关于x的二次函数,当x=-1时,函数值为10,当x=1时,函数值为4,当x=2时,函数值为7。
求这个二次函数的解析式.(待定系数法)(四)巩固提高:1.下列函数中,哪些是二次函数?(1)y=3x-1 ; (2)y=3x2+2; (3)y=3x3+2x2; (4)y=2x2-2x+1; (5)y=x2-x(1+x); (6)y=x-2+x.2.一个圆柱的高等于底面半径,写出它的表面积S与半径R之间的关系式。
上海教育版数学九年级上册26.1《二次函数的概念》教案

教学目标:1、理解二次函数的概念;掌握二次函数解析式的典型特征,能判断用解析式表示出来的两个变量之间的关系是不是二次函数。
2、对简单的实际问题,能根据具体情景中两个变量之间的依赖关系列出二次函数解析式,并确定函数的定义域。
3、经历从实际问题引进二次函数概念的过程,体会用函数去描述、研究变量之间的变化规律的意义。
4、培养学生的观察、分析、总结能力,让学生体会二次函数是研究和解决生产、生活实际问题的有用工具。
教学重点:引进二次函数的概念,并帮助学生理解概念,初步学会用二次函数描述实际问题中两个变量之间的依赖关系。
教学难点:让学生根据具体问题情景中两个变量之间的依赖关系列出二次函数解析式,并确定函数的定义域。
教学用具:多媒体工具。
教学过程:[复习] 函数的意义,一次函数、正比例函数、反比例函数的解析式和定义域。
[新知探索1 ] (学生探索回答)1、请用适当的函数解析式表示下列问题情境中的两个变量y 与x 之间的关系:(1)圆的面积y (cm2)与圆的半径x ( cm );(2)某商店1月份的利润是2万元,2、3月份利润逐月增长,这两个月利润的月平均增长率为x,3月份的利润为y万元;(3)一个边长为4厘米的正方形,若它的边长增加x厘米,则面积随之增加y平方厘米,求y 关于x的函数解析式。
2、仔细观察上述三个问题中的函数解析式具有哪些共同的特征?(1)y =πx2(2)y = 2(1+x)2=2x2+4x+2 (3)y= (x+4)242= x2+8x3、得出结论:经化简后都具有y=ax²+bx+c 的形式,a,b,c是常数, a≠0。
[讲授]我们把形如y=ax²+bx+c(其中a,b,c是常数,a≠0)的函数叫做二次函数,a为二次项系数,b为一次项系数,c为常数项。
注:在二次函数中,含x的代数式必须是整式,含x项的最高次数为2,可以没有一次项和常数项,但不能没有二次项。
[新知探索2 ] 问题:是否任何情况下二次函数中的自变量的取值范围都是任意实数呢?例如:圆的面积y ( cm2 )与圆的半径x(cm)的函数关系是y =πx2, 其中自变量x能取哪些值呢?(x>0)注意:在实际应用问题中, 必须注意函数的定义域,自变量x的取值符合实际意义. [趣味练习] (演练竞技场)6个动物的图片,每个图片后面都有一个题目,学生可以选择动物的图片来回答后面的题目,同学可以一起帮助解决问题。
26.1二次函数教案[修改版]
![26.1二次函数教案[修改版]](https://img.taocdn.com/s3/m/d505746a51e79b8969022662.png)
第一篇:26.1二次函数教案26.1 二次函数[本课知识要点]通过具体问题引入二次函数的概念,在解决问题的过程中体会二次函数的意义.[创新思维](1)正方形边长为a(cm),它的面积s(cm)是多少?s = a(2)矩形的长是4厘米,宽是3厘米,如果将其长与宽都增加x厘米,则面积增加y平方厘米,试写出y与x的关系式.y = (4+x)(3+x)−4×3 = x+7x222请观察上面列出的两个式子,它们是不是函数?为什么?如果是函数,请你结合学习一次函数概念的经验,给它下个定义.二次函数的概念:形如ax+bx+c = 0(a≠0,a、b、c为常数)的函数叫二次函数.2[实践与探索]例题:补充例题:1.m取哪些值时,函数是以x为自变量的二次函数?分析若函数.解若函数解得因此,当,且,且时,函数..是二次函数,须满足的条件是:是二次函数,则是二次函数.的函数只有在的条件下才是二次函数.回顾与反思形如探索若函数值?是以x为自变量的一次函数,则m取哪些2.写出下列各函数关系,并判断它们是什么类型的函数.(1)写出正方体的表面积S(cm)与正方体棱长a(cm)之间的函数关系;(2)写出圆的面积y(cm)与它的周长x(cm)之间的函数关系;(3)某种储蓄的年利率是1.98%,存入10000元本金,若不计利息,求本息和y(元)与所存年数x之间的函数关系;(4)菱形的两条对角线的和为26cm,求菱形的面积S(cm)与一对角线长x(cm)之间的函数关系.解(1)由题意,得,其中S是a的二次函数;222(2)由题意,得(3)由题意,得其中y是x的一次函数;,其中y是x的二次函数;(x≥0且是正整数),(4)由题意,得数.,其中S是x的二次函3.正方形铁片边长为15cm,在四个角上各剪去一个边长为x(cm)的小正方形,用余下的部分做成一个无盖的盒子.(1)求盒子的表面积S(cm)与小正方形边长x(cm)之间的函数关系式;(2)当小正方形边长为3cm时,求盒子的表面积.2解(1)(2)当x = 3cm时,;(cm).2[当堂课内练习]1.下列函数中,哪些是二次函数?(1)(2)(3)(4)为二次函数?2.当k为何值时,函数3.已知正方形的面积为,周长为x(cm).(1)请写出y与x的函数关系式;(2)判断y是否为x的二次函数.[本课课外作业]A组1.已知函数2.已知二次函数是二次函数,求m的值.,当x=3时,y= -5,当x= -5时,求y的值.3.已知一个圆柱的高为27,底面半径为x,求圆柱的体积y与x的函数关系式.若圆柱的底面半径x 为3,求此时的y.4.用一根长为40 cm的铁丝围成一个半径为r的扇形,求扇形的面积y与它的半径x之间的函数关系式.这个函数是二次函数吗?请写出半径r的取值范围.B组5.对于任意实数m,下列函数一定是二次函数的是()A.B.C.(D.6.下列函数关系中,可以看作二次函数A.在一定的距离内汽车的行驶速度与行驶时间的关系)模型的是()B.我国人口年自然增长率为1%,这样我国人口总数随年份的变化关系C.竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系(不计空气阻力)圆的周长与圆的半径之间的关系典型例题1.下列各式中,y是x的二次函数的是( ) A.x+y−1 = 0 B.y = (x+1)(x−1)−xC.y = 1+22D.2(x−1)+3y−2 = 0 答案:D2 4说明:选项A、C都不难看出关系式中不含x的平方项,因此,都不满足二次函数的定义,选项B,y = (x+1)(x−1)−x可化简为y = −1,也不满足二次函数的定义,只有选项D是正确的,答案为D.2.下列函数中,不是二次函数的是( )2A.y = 1−x B.y = 2(x−1)+4 C.y =2222(x−1)(x+4) D.y = (x−2)−x22答案:D说明:选项D,y = (x−2)−x可化为y = −4x+4,不是二次函数,而选项A、B、C中的函数都是二次函数,答案为D.3.函数y = (m−3)是二次函数,则m的值为:(答案:−3)说明:因为y = (m−3)且m≠3,即m = −3.4.已知函数y = ( 4a +3)是二次函数,所以m2−7 = 2,且m−3≠0,因此有m = ±3,+x−1是一个二次函数,求满足条件的a的值.解:∵y = ( 4a +3)+x−1是一个二次函数,∴,解得a = 1.习题精选21.在半径为4 cm的圆中,挖去一个半径为x(cm)的小圆,剩下的圆环面积为y(cm),则y与x之间的函数关系式为( ) A.y = πx−4 B.y = π(2−x)C.y = −(x+4) D.y = −πx+16π答案:D说明:半径为4cm的圆,面积为16π(cm),挖去的小圆面积为πx(cm),所以剩下的圆环222面积为(16π-πx)(cm),即有y =-πx+16π,答案为D.2.若圆锥的体积为Vcm,高为6cm,底面半径为rcm.写出V与r之间的函数关系式,并判断它是否是二次函数?此题考查圆锥的体积公式及二次函数的概念.32222222解:由题意得:V=n+2πr×6,即V=2πr,此函数是二次函数.223.若函数y=2x+1是二次函数,求n的值.此题考查二次函数概念中关于自变量的二次式.解:由题意得:n+2=2 ∴n=04.若函数y=(a−1)x+x+1是二次函数,求a、b的取值范围.b+12 5此题综合考查二次函数的概念,分三种情况讨论:(1)(a−1)x是二次项(2)(a−1)x是一次项(3)(a−1)x是常数项.解:分三种情况:b+1b+1b+1(1)∴b = 1,a≠1(2)∴b = 0,a≠1(3)a−1 = 0 ∴a = 1∴a = 1;b = 0且a≠1且b = 15.一个长方形的周长为50cm,一边长为x(cm),求这个长方形的面积y(cm)与一边长x(cm)之间的函数关系式,并写出自变量x的取值范围答案:y=−x+25x,0说明:由已知不难得出,该长方形的另一边长为50÷2−x,即25−x,长方形的两边长则分别为x、25−x,而这两边长都应该大于0,即x>0且25−x>0,同时,该长方形的面积为22x(25−x)=−x+25x,即有y=−x+25x,06.小明存入银行人民币200元,年利率为x,两年到期,本息和为y元(以单利计算).(1)求y与x之间的函数关系式.(2)若年利率为2.25%,求本息和.(3)若利息税率为20%,求到期时,小明实际所得利息.答案:(1)y=200+400 (2)209 (3)7.2元说明:(1)两年到期的利息应该是2×200x,即400x,所以本息和y=200+400x(2)当x=2.25%时,y=200+400×2.25%=209(3)实际所得利息为2×200×2.25%×(1−20%)=7.2.22 6第二篇:《26.1二次函数》教学反思《26.1二次函数》教学反思龙潭镇第一初级中学黄海东这节课是安排在学了一次函数、反比例、一元二次方程之后的二次函数的第一节课,学习目标是要学生懂得二次函数概念,能分辨二次函数与其他函数的不同,能理解二次函数的一般形式,并能初步理解实际问题中对自变量的取值范围的限制。
二次函数的图象第二课时教案

二次函数的图象第二课时教案一、教学目标:1. 让学生理解二次函数的图象特征,掌握二次函数图象的顶点、开口方向等基本概念。
2. 培养学生利用二次函数图象解决实际问题的能力。
3. 引导学生通过观察、分析、归纳等方法,探索二次函数图象的性质。
二、教学重点与难点:1. 教学重点:二次函数的图象特征,如何利用二次函数图象解决实际问题。
2. 教学难点:二次函数图象的顶点、开口方向等概念的理解与应用。
三、教学方法:1. 采用问题驱动法,引导学生自主探究二次函数图象的性质。
2. 利用数形结合法,让学生直观地理解二次函数图象的特点。
3. 采用案例分析法,培养学生运用二次函数图象解决实际问题的能力。
四、教学准备:1. 教师准备二次函数图象的PPT、案例素材等教学资源。
2. 学生准备笔记本、笔等学习用品。
五、教学过程:1. 导入新课:回顾上一课时内容,引出本课时的主题——二次函数的图象。
2. 自主学习:让学生自主探究二次函数图象的性质,引导学生观察、分析、归纳。
3. 课堂讲解:结合PPT,讲解二次函数图象的顶点、开口方向等基本概念,并通过案例进行分析。
4. 练习巩固:布置一些有关二次函数图象的练习题,让学生独立完成,检验学习效果。
5. 课堂小结:总结本节课的主要内容,强调二次函数图象在实际问题中的应用。
6. 课后作业:布置一些有关二次函数图象的课后作业,让学生进一步巩固所学知识。
7. 课后反思:鼓励学生反思本节课的学习过程,总结收获,发现不足,为下一节课做好准备。
六、教学评价:1. 通过课堂讲解、练习巩固等环节,评价学生对二次函数图象的基本概念和性质的掌握程度。
2. 观察学生在解决实际问题时的表现,评价其运用二次函数图象的能力。
3. 结合课后作业,评价学生对课堂所学知识的巩固情况。
七、教学反思:1. 教师在课后对自己的教学进行反思,分析教学过程中的优点和不足,为下一节课的教学做好准备。
2. 学生对自己的学习进行反思,总结在本节课中的收获,发现存在的问题,制定改进措施。
二次函数的图象第二课时教案
二次函数的图象第二课时教案一、教学目标:1. 理解二次函数图象的性质,掌握二次函数图象的开口方向、对称轴、顶点等特征。
2. 学会通过观察二次函数图象来判断函数的单调性、极值等性质。
3. 能够运用二次函数图象解决实际问题,提高解决问题的能力。
二、教学内容:1. 复习一次函数和反比例函数的图象性质。
2. 学习二次函数图象的性质,包括开口方向、对称轴、顶点等。
3. 分析二次函数图象的单调性和极值。
4. 运用二次函数图象解决实际问题。
三、教学重点:1. 二次函数图象的开口方向、对称轴、顶点的确定。
2. 二次函数图象的单调性和极值的判断。
四、教学难点:1. 理解二次函数图象的性质,并能灵活运用。
2. 解决实际问题时,如何正确运用二次函数图象。
五、教学方法:1. 采用直观演示法,通过展示二次函数图象,让学生直观地理解其性质。
2. 运用实例讲解法,结合具体例子,让学生学会分析二次函数图象的性质。
3. 运用问题驱动法,引导学生主动探究二次函数图象的性质,提高解决问题的能力。
4. 小组合作学习,让学生在讨论中互相学习,共同提高。
教案一、导入(5分钟)1. 复习一次函数和反比例函数的图象性质。
2. 提问:同学们,你们认为二次函数的图象会有哪些特殊的性质呢?二、新课讲解(15分钟)1. 讲解二次函数图象的开口方向、对称轴、顶点等性质。
2. 分析二次函数图象的单调性和极值。
3. 通过实例,讲解如何运用二次函数图象解决实际问题。
三、课堂练习(10分钟)1. 让学生独立完成练习题,巩固所学知识。
2. 教师选取部分学生的练习题,进行讲解和分析。
四、课堂小结(5分钟)1. 总结本节课所学内容,强调二次函数图象的性质及其运用。
2. 提醒学生在解决实际问题时,注意灵活运用二次函数图象。
五、课后作业(课后自主完成)1. 完成课后练习题,巩固二次函数图象的知识。
2. 结合生活实际,寻找一个可以用二次函数图象解决的问题,并尝试解决。
教学反思:在课后,教师应认真反思本节课的教学效果,针对学生的掌握情况,调整教学策略,以提高学生对二次函数图象的理解和运用能力。
《二次函数》第二课时参考教案
26.1 二次函数(2)教学目标:1、使学生会用描点法画出y=ax2的图象,理解抛物线的有关概念。
2、使学生经历、探索二次函数y=ax2图象性质的过程,培养学生观察、思考、归纳的良好思维习惯.重点难点:重点:使学生理解抛物线的有关概念,会用描点法画出二次函数y=ax2的图象是教学的重点。
难点:用描点法画出二次函数y=ax2的图象以及探索二次函数性质是教学的难点。
教学过程:一、提出问题1,同学们可以回想一下,一次函数的性质是如何研究的?(先画出一次函数的图象,然后观察、分析、归纳得到一次函数的性质)2.我们能否类比研究一次函数性质方法来研究二次函数的性质呢?如果可以,应先研究什么?(可以用研究一次函数性质的方法来研究二次函数的性质,应先研究二次函数的图象)3.一次函数的图象是什么?二次函数的图象是什么?二、范例例1、画二次函数y=ax2的图象。
解:(1)列表:在x的取值范围内列出函数对应值表:(2)在直角坐标系中描点:用表里各组对应值作为点的坐标,在平面直角坐标系中描点(3)连线:用光滑的曲线顺次连结各点,得到函数y=x2的图象,如图所示。
提问:观察这个函数的图象,它有什么特点?让学生观察,思考、讨论、交流,归结为:它有一条对称轴,且对称轴和图象有一点交点。
抛物线概念:像这样的曲线通常叫做抛物线。
顶点概念:抛物线与它的对称轴的交点叫做抛物线的顶点.三、做一做1.在同一直角坐标系中,画出函数y=x2与y=-x2的图象,观察并比较两个图象,你发现有什么共同点?又有什么区别?2.在同一直角坐标系中,画出函数y=2x2与y=-2x2的图象,观察并比较这两个函数的图象,你能发现什么?3.将所画的四个函数的图象作比较,你又能发现什么?对于1,在学生画函数图象的同时,教师要指导中下水平的学生,讲评时,要引导学生讨论选几个点比较合适以及如何选点。
两个函数图象的共同点以及它们的区别,可分组讨论。
交流,让学生发表不同的意见,达成共识,两个函数的图象都是抛物线,都关于y轴对称,顶点坐标都是(0,0),区别在于函数y=x2的图象开口向上,函数y=-x2的图象开口向下。
新人教版九年级数学下第二十六章二次函数教案
新人教版九年级数学下二次函数教案课题:26.1二次函数教学目标:1、 从实际情景中让学生经历探索分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法去描述变量之间的数量关系。
2、 理解二次函数的概念,掌握二次函数的形式。
3、 会建立简单的二次函数的模型,并能根据实际问题确定自变量的取值范围。
4、 会用待定系数法求二次函数的解析式。
教学重点:二次函数的概念和解析式教学难点:本节“合作学习”涉及的实际问题有的较为复杂,要求学生有较强的概括能力。
教学设计:一、创设情境,导入新课问题1、现有一根12m 长的绳子,用它围成一个矩形,如何围法,才使举行的面积最大?小明同学认为当围成的矩形是正方形时 ,它的面积最大,他说的有道理吗?问题2、很多同学都喜欢打篮球,你知道吗:投篮时,篮球运动的路线是什么曲线?怎样计算篮球达到最高点时的高度?这些问题都可以通过学习俄二次函数的数学模型来解决,今天我们学习“二次函数”(板书课题)二、合作学习,探索新知请用适当的函数解析式表示下列问题中情景中的两个变量y 与x 之间的关系: (1)面积y (cm 2)与圆的半径 x ( Cm )(2)王先生存人银行2万元,先存一个一年定期,一年后银行将本息自动转存为又一个一年定期,设一年定期的年存款利率为文 x 两年后王先生共得本息y 元;(3)拟建中的一个温室的平面图如图,如果温室外围是一个矩形,周长为12Om , 室内通道的尺寸如图,设一条边长为 x (cm), 种植面积为 y (m2)(一) 教师组织合作学习活动:1、 先个体探求,尝试写出y 与x 之间的函数解析式。
2、 上述三个问题先易后难,在个体探求的基础上,小组进行合作交流,共同探讨。
(1)y =πx 2 (2)y = 2000(1+x)2 = 20000x 2+40000x+20000 (3) y = (60-x-4)(x-2)=-x 2+58x-112(二)上述三个函数解析式具有哪些共同特征?x让学生充分发表意见,提出各自看法。
华师大版数学九年级下册《26.1 二次函数》说课稿
华师大版数学九年级下册《26.1 二次函数》说课稿一. 教材分析华师大版数学九年级下册《26.1 二次函数》这一节的内容,主要介绍了二次函数的定义、性质和图像。
二次函数是中学数学中的重要内容,对于学生来说,掌握二次函数的知识对于理解高中阶段的函数学习和解决实际问题具有重要意义。
本节内容首先介绍了二次函数的定义,包括函数的表达式、自变量和函数值的限制条件等。
接着,通过实例讲解,让学生理解二次函数的图像特征,包括开口方向、顶点坐标、对称轴等。
然后,引导学生学习二次函数的性质,包括单调性、极值等。
最后,通过练习题,让学生巩固所学知识,并能应用于解决实际问题。
二. 学情分析九年级的学生已经学习了函数的基本知识,对于一次函数和二次函数的概念有一定的了解。
但是,对于二次函数的性质和图像的深入理解还需要加强。
此外,学生对于实际问题的解决能力也有待提高。
三. 说教学目标1.知识与技能目标:让学生掌握二次函数的定义、性质和图像,能够解决简单的实际问题。
2.过程与方法目标:通过实例讲解和练习,培养学生的观察能力、分析能力和解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的耐心和细心,使学生感受到数学在生活中的应用。
四. 说教学重难点1.重点:二次函数的定义、性质和图像。
2.难点:二次函数的图像特征的理解和应用。
五. 说教学方法与手段1.教学方法:采用讲授法、案例教学法和练习法。
2.教学手段:利用多媒体课件进行教学,展示二次函数的图像和实例。
六. 说教学过程1.导入:通过一个实际问题,引出二次函数的概念,激发学生的兴趣。
2.讲解:讲解二次函数的定义、性质和图像,通过实例进行解释和展示。
3.练习:让学生进行练习,巩固所学知识,并能应用于解决实际问题。
4.总结:对本节内容进行总结,强调二次函数的重要性和应用价值。
七. 说板书设计板书设计包括二次函数的定义、性质和图像的主要内容,以及相关的重要概念和公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
思考以下问题:
观察函数y=-x2、y=-2x2的图象,试作出类似的概括,当a<O时,抛物线y=ax2有些什么特点?它反映了当a<O时,函数y=ax2具有哪些性质?
让学生讨论、交流,达成共识,当a<O时,抛物线y=ax2开口向上,在对称轴的左边,曲线自左向右上升;在对称轴的右边,曲线自左向右下降,顶点抛物线上位置最高的点。图象的这些特点,反映了当a<O时,函数y=ax2的性质;当x<0时,函数值y随x的增大而增大;与x>O时,函数值y随x的增大而减小,当x=0时,函数值y=ax2取得最大值,最大值是y=0。
(可以用研究一次函数性质的方法来研究二次函数的性质,应先研究二次函数的图象)
3.一次函数的图象是什么?二次函数的图象是什么?
二、范例
例1、画二次函数y=x2的图象。
解:(1)列表:在x的取值范围内列出函数对应值表:
x
…
-3
-2
-1
0
1
2
3
…
y
…
9
4
1
0
1
4
9
…
(2)在直角坐标系中描点:用表里各组对应值作为点的坐标,在平面直角坐标系中描点
教学时间
课题
26.1二次函数(2)
课型
新授课
教
学
目
标
知 识和Βιβλιοθήκη 能 力使学生会用描点法画出y=ax2的图象,理解抛物线的有关概念。
过 程
和
方 法
使学生经历、探索二次函数y=ax2图象性质的过程
情 感
态 度
价值观
培养学生观察、思考、归纳的良好思维习惯
教学重点
使学生理解抛物线的有关概念,会用描点法画出二次函数y=ax2的图象是教学的重点。
(2)yA、yB大小关系如何?
(3)XC、XD大小关系如何?是否都大于0?
(4)yC、yD大小关系如何?
(XA<XB,且XA<0,XB<0;yA>yB;XC<XD,且XC>0,XD>0,yC<yD)
其次,让学生填空。
当X<0时,函数值y随着x的增大而______,当X>O时,函数值y随X的增大而______;当X=______时,函数值y=ax2(a>0)取得最小值,最小值y=______
让学生观察y=x2、y=2x2的图象,填空;
当a>0时,抛物线y=ax2开口______,在对称轴的左边,曲线自左向右______;在对称轴的右边,曲线自左向右______,______是抛物线上位置最低的点。
图象的这些特点反映了函数的什么性质?
先让学生观察下图,回答以下问题;
(1)XA、XB大小关系如何?是否都小于0?
作业
设计
必做
教科书P14:3、4
选做
教科书P14:8
教学
反思
2.在同一直角坐标系中,画出函数y=2x2与y=-2x2的图象,观察并比较这两个函数的图象,你能发现什么?
3.将所画的四个函数的图象作比较,你又能发现什么?
在学生画函数图象的同时,教师要指导中下水平的学生,讲评时,要引导学生讨论选几个点比较合适以及如何选点。两个函数图象的共同点以及它们的区别,可分组讨论。交流,让学生发表不同的意见,达成共识,两个函数的图象都是抛物线,都关于y轴对称,顶点坐标都是(0,0),区别在于函数y=x2的图象开口向上,函数y=-x2的图象开口向下。
(3)连线:用光滑的曲线顺次连结各点,得到函数y=x2的图象,如图所示。
提问:观察这个函数的图象,它有什么特点?
让学生观察,思考、讨论、交流,归结为:它有一条对称轴,且对称轴和图象有一点交点。
抛物线概念:像这样的曲线通常叫做抛物线。
顶点概念:抛物线与它的对称轴的交点叫做抛物线的顶点.
三、做一做
1.在同一直角坐标系中,画出函数y=x2与y=-x2的图象,观察并比较两个图象,你发现有什么共同点?又有什么区别?
四、归纳、概括
函数y=x2、y=-x2、y=2x2、y=-2x2是函数y=ax2的特例,由函数y=x2、y=-x2、y=2x2、y=-2x2的图象的共同特点,可猜想:
函数y=ax2的图象是一条________,它关于______对称,它的顶点坐标是______。
如果要更细致地研究函数y=ax2图象的特点和性质,应如何分类?为什么?
教学难点
用描点法画出二次函数y=ax2的图象以及探索二次函数性质是教学的难点。
教学准备
教师
多媒体课件
学生
“预习课文、学习袋、学习用具”
课堂教学程序设计
设计意图
一、提出问题
1,同学们可以回想一下,一次函数的性质是如何研究的?
(先画出一次函数的图象,然后观察、分析、归纳得到一次函数的性质)
2.我们能否类比研究一次函数性质方法来研究二次函数的性质呢?如果可以,应先研究什么?