苏州市立达中学2016-2017学年第二学期初一数学期末考试试卷及答案

合集下载

江苏省苏州市七年级下学期数学期末考试试卷

江苏省苏州市七年级下学期数学期末考试试卷

江苏省苏州市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列二次根式中,属于最简二次根式的是()A .B .C .D .2. (2分) (2017七下·黔南期末) 如图,下列条件中能判定直线l1∥l2的是()A . ∠1=∠2B . ∠1=∠5C . ∠1+∠3=180°D . ∠3=∠53. (2分) (2016七下·潮州期中) 方程组的解也是方程3x+y=4的解,则k的值是()A . 6B . 10C . 9D .4. (2分) (2017七下·蓟州期中) 如图,已知AB∥CD,∠B=120°,∠D=150°,则∠O等于()A . 50°B . 60°C . 80°D . 90°5. (2分) (2019七上·长春期末) 下列运算结果正确的是()A . 4+5ab=9abB . 6xy﹣y=6xC . 6x3+4x7=10x10D . 8a2b﹣8ba2=06. (2分)(2018·昆山模拟) 平面直角坐标系中点P(x,﹣x2﹣4x﹣3),则点P所在的象限不可能是()A . 第一象限B . 第二象限C . 第三象限D . 第四象限7. (2分)在一个不透明的口袋里,装了只有颜色不同的黄球、白球若干只.某小组做摸球实验:将球搅匀后从中随机摸出一个,记下颜色,再放回袋中,不断重复.下表是活动中的一组数据,则摸到黄球的概率约是()摸球的次数n1001502005008001000摸到黄球的次数m526996266393507摸到黄球的频率0.520.460.480.5320.4910.507A . 0.4B . 0.5C . 0.6D . 0.78. (2分)已知命题“关于x的一元二次方程x2+bx+1=0,当b<0时必有实数解”,能说明这个命题是假命题的一个反例是()A . b=0B . b=﹣1C . b=2D . b=﹣29. (2分) (2016七下·随县期末) 下列调查中,适宜采用全面调查(普查)方式的是()A . 调查市场上老酸奶的质量情况B . 调查某品牌圆珠笔芯的使用寿命C . 调查乘坐飞机的旅客是否携带了危禁物品D . 调查我市市民对伦敦奥运会吉祥物的知晓率10. (2分) (2016八上·滨湖期末) 在-0.101001,,,-,0中,无理数的个数是()A . 1个B . 2个C . 3个D . 4个二、填空题 (共5题;共6分)11. (1分)写出一个大于1且小于2的无理数________ .12. (1分) (2017七上·重庆期中) 若有理数a、b满足|a+6|+(b﹣4)2=0,则a+b的值为________.13. (2分) (2015七下·绍兴期中) 如图,已知AB∥DE,∠ABC=75°,∠CDE=150°,则∠BCD的度数为________.14. (1分)某地区有36所中学,其中九年级学生共7000名.为了了解该地区九年级学生的体重情况,请你运用所学的统计知识,将解决上述问题所要经历的几个主要步骤进行排序.①抽样调查;②设计调查问卷;③用样本估计总体;④整理数据;⑤分析数据.排序:________ (只写序号)15. (1分) (2017七下·肇源期末) 对于有理数a、b,定义一种新运算a☆ b=a2﹣|b|,则2☆(﹣3)=________三、综合题 (共9题;共46分)16. (5分)解下列方程组.(1)(2).17. (5分) (2016九上·长清开学考) 解不等式组:,并把解集在数轴上表示出来.18. (5分) (2017七下·城北期中) 已知:如图,,,.求证:.19. (7分)某校为了解七年级学生最喜欢的校本课程(厨艺课数字与生活、足球、采花戏)情况,随机抽取了七年级部分学生进行问卷调查,每名同学选且只选一门现将调查结果绘制成如下所示的两幅统计图:请结合这两幅统计图,解决下列问题:(1)在这次问卷调查中,一共抽取了________名学生;(2)请补全条形统计图;(3)若该校七年级共有1050名学生,请你估计其中最喜欢数字与生活的学生人数.20. (5分)画图:(1)如图,已知△ABC和点O.将△ABC绕点O顺时针旋转90°得到△A1B1C1 ,在网格中画出△A1B1C1;(2)如图,AB是半圆的直径,图1中,点C在半圆外;图2中,点C在半圆内,请仅用无刻度的直尺(只能画线)按要求画图.(ⅰ)在图1中,画出△ABC的三条高的交点;(ⅱ)在图2中,画出△ABC中AB边上的高.21. (5分) (2015七下·茶陵期中) 甲、乙两个水池共存水40吨,甲池注进水4吨,乙池放出水8吨后,两池的水正好相等,两池原来各有水多少吨?22. (2分)(2010·华罗庚金杯竞赛) 甲、乙、丙三个工程队单独完成某项工程,分别需要140小时、87.5小时、77 时。

2016-2017学年苏科版七年级下册期末数学试卷含答案

2016-2017学年苏科版七年级下册期末数学试卷含答案

2016-2017学年苏科版七年级下册期末数学试卷含答案2016-2017学年七年级(下)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分。

请将下列各题唯一正确的选项代号涂在答题卡相应的位置上)1.下列由2和3组成的四个算式中,值最小的是()A。

2-3 B。

2÷3 C。

2 D。

2/32.下列计算正确的是()A。

a÷a=a B。

a+a=a C。

(-3a)=9a D。

(a+b)=a+b3.已知a>b,则下列各式的判断中一定正确的是()A。

3a>3b B。

3-a>3-b C。

-3a>-3b D。

3/a>3/b4.如图,在四边形ABCD中,要得到AB∥CD,只需要添加一个条件,这个条件可以是()A。

∠1=∠3 B。

∠2=∠4 C。

∠B=∠D D。

∠1+∠2+∠B=180°5.下列各式从左到右的变形属于因式分解且分解正确的是()A。

(x+1)(x-1)=x-1 B。

2x-y=(2x+y)(2x-y) C。

a+2a+1=a(a+2)+1 D。

-a+4a-4=-(a-2)6.已知三角形的两边长分别为3和5,则此三角形的周长不可能是()A。

11 B。

13 C。

15 D。

177.“龟鹤同池,龟鹤共100只,共有脚350只,问龟鹤各多少只?”设龟有x只,鹤有y只,则下列方程组中正确的是()A。

2x+4y=350.x+y=100 B。

2x+2y=350.x+y=100 C。

4x+2y=350.x+y=100 D。

4x+4y=350.x+y=1008.如果多项式x+1与x-bx+c的乘积中既不含x项,也不含x项,则b、c的值是()A。

b=c=1 B。

b=c=-1 C。

b=c=0 D。

b=0,c=19.如图,用四个完全一样的长、宽分别为x、y的长方形纸片围成一个大正方形ABCD,中间是空的小正方形EFGH.若AB=a,EF=b,判断以下关系式:①x+y=a;②x-y=b;③a-b=2xy;④x-y=ab;⑤x+y=a+b。

苏州立达中学人教版七年级下册数学期末压轴难题试卷及答案-百度文库

苏州立达中学人教版七年级下册数学期末压轴难题试卷及答案-百度文库

苏州立达中学人教版七年级下册数学期末压轴难题试卷及答案-百度文库一、选择题1.如图,属于同位角的是( )A .2∠与3∠B .1∠与4∠C .1∠与3∠D .2∠与4∠ 2.下列运动属于平移的是( )A .汽车在平直的马路上行驶B .吹肥皂泡时小气泡变成大气泡C .铅球被抛出D .红旗随风飘扬3.点()3,5A -在平面直角坐标系中所在的象限是( ) A .第一象限 B .第二象限 C .第三象限D .第四象限 4.给出以下命题:①对顶角相等;②在同一平面内, 垂直于同一条直线的两条直线平行;③相等的角是对顶角;④内错角相等.其中假命题有( )A .1个B .2个C .3个D .4个5.已知,如图,点D 是射线AB 上一动点,连接CD ,过点D 作//DE BC 交直线AC 于点E ,若84ABC ∠=︒,20CDE ∠=︒,则ADC ∠的度数为( )A .104︒B .76︒C .104︒或76︒D .104︒或64︒ 6.下列说法:①两个无理数的和可能是有理数:②任意一个有理数都可以用数轴上的点表示;③33mn π-+是三次二项式;④立方根是本身的数有0和1;其中正确的是( ) A .①② B .①③ C .①②③ D .①②④ 7.一把直尺和一块直角三角尺(含30°、60°角)如图所示摆放,直尺的一边与三角尺的两直角边BC 、AC 分别交于点D 、点E ,直尺的另一边过A 点且与三角尺的直角边BC 交于点F ,若∠CAF =42°,则∠CDE 度数为( )A .62°B .48°C .58°D .72°8.在平面直角坐标系中,对于点P (x ,y ),我们把点P ′(y ﹣1,﹣x ﹣1)叫做点P 的友好点,已知点A 1的友好点为点A 2,点A 2的友好点为点A 3,点A 3的友好点为点A 4,⋯⋯以此类推,当点A 1的坐标为(2,1)时,点A 2021的坐为( )A .(2,1)B .(0,﹣3)C .(﹣4,﹣1)D .(﹣2,3)二、填空题9.算术平方根等于本身的实数是__________.10.点()4,3P 关于x 轴的对称点Q 的坐标是__________.11.如图,,BO CO 是ABC ACB ∠∠、的两条角平分线,100A ∠=︒,则BOC ∠的度数为_________.12.如图,a ∥b ,∠1=68°,∠2=42°,则∠3=_____________.13.如图,将一张长方形纸片沿EF 折叠后,点C ,D 分别落在C ',D 的位置,若65EFB ∠=︒,则AED '∠的度数为______.14.如图,按照程序图计算,当输入正整数x 时,输出的结果是161,则输入的x 的值可能是__________.15.在平面直角坐标系xOy 中,若(4,9)P m m --在y 轴上,则线段OP 长度为________. 16.如图,在平面直角坐标系中,////AB EG x 轴,////////BC DE HG AP y 轴,点D 、C 、P 、H 在x 轴上,()1,2A ,()1,2B -,()3,0D -,()3,2E --,()3,2G -,把一条长为2021个单位长度且无弹性的细线(线的粗细忽略不计)的一端固定在A 处,并按A B C D E F G H P A→→→→→→→→→的规律紧绕在图形“凸”的边上,则细线的另一端所在位置的点的坐标________.三、解答题17.(1)已知2(1)4x -=,求x 的值;(2)计算:23112(2)8--+-. 18.求下列各式中的x 值(1)x 2﹣614= (2)12(2x ﹣1)3=﹣4 19.如图,C 、E 分别在AB 、DF 上,小华想知道∠ACE 和∠DEC 是否互补,但是他又没有带量角器,只带了一副三角尺,于是他想了这样一个办法:首先连接CF ,再找出CF 的中点O ,然后连接EO 并延长EO 和直线AB 相交于点B ,经过测量,他发现EO =BO ,因此他得出结论:∠ACE 和∠DEC 互补.请将小华的想法补充完整:∵CF 和BE 交于点O .∴COB EOF ∠=∠;( )而O 是CF 的中点,那么CO FO =,又已知EO BO =,∴COB FOE △≌△( ),∴BC EF =,(全等三角形对应边相等)∴BCO F ∠=∠,( )∴//AB DF ,( )∴ACE ∠和DEC ∠互补.( )20.在平面直角坐标系中,△ABC 三个顶点的坐标分别是A (﹣2,2)、B (2,0),C (﹣4,﹣2).(1)在平面直角坐标系中画出△ABC ;(2)若将(1)中的△ABC 平移,使点B 的对应点B ′坐标为(6,2),画出平移后的△A ′B ′C ′;(3)求△A ′B ′C ′的面积.21.已知:31a +的立方根是2-,21b -的算术平方根3,c 是43的整数部分. (1)求,,a b c 的值;(2)求922a b c -+的平方根. 二十二、解答题22.如图,纸上有五个边长为1的小正方形组成的图形纸,我们可以把它剪开拼成一个正方形.(1)拼成的正方形的面积与边长分别是多少?(2)如图所示,以数轴的单位长度的线段为边作一个直角三角形,以数轴的-1点为圆心,直角三角形的最大边为半径画弧,交数轴正半轴于点A ,那么点A 表示的数是多少?点A 表示的数的相反数是多少?(3)你能把十个小正方形组成的图形纸,剪开并拼成正方形吗?若能,请画出示意图,并求它的边长二十三、解答题23.如图1,已知直线m ∥n ,AB 是一个平面镜,光线从直线m 上的点O 射出,在平面镜AB上经点P反射后,到达直线n上的点Q.我们称OP为入射光线,PQ为反射光线,镜面反射有如下性质:入射光线与平面镜的夹角等于反射光线与平面镜的夹角,即∠OPA=∠QPB.(1)如图1,若∠OPQ=82°,求∠OPA的度数;(2)如图2,若∠AOP=43°,∠BQP=49°,求∠OPA的度数;(3)如图3,再放置3块平面镜,其中两块平面镜在直线m和n上,另一块在两直线之间,四块平面镜构成四边形ABCD,光线从点O以适当的角度射出后,其传播路径为O→P→Q→R→O→P→…试判断∠OPQ和∠ORQ的数量关系,并说明理由.24.课题学习:平行线的“等角转化”功能.阅读理解:如图1,已知点A是BC外一点,连接AB,AC,求∠BAC+∠B+∠C的度数.(1)阅读并补充下面推理过程解:过点A作ED∥BC,∴∠B=∠EAB,∠C=又∵∠EAB+∠BAC+∠DAC=180°∴∠B+∠BAC+∠C=180°解题反思:从上面推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC,∠B,∠C“凑”在一起,得出角之间的关系,使问题得以解决.方法运用:(2)如图2,已知AB∥ED,求∠B+∠BCD+∠D的度数.(提示:过点C作CF∥AB)深化拓展:(3)如图3,已知AB∥CD,点C在点D的右侧,∠ADC=70°,点B在点A的左侧,∠ABC=60°,BE平分∠ABC,DE平分∠ADC,BE,DE所在的直线交于点E,点E在AB与CD两条平行线之间,求∠BED的度数.25.如图,在ABC 中,ABC ∠与ACB ∠的角平分线交于O 点.(1)若40A ∠=︒,则BOC ∠= ︒;(2)若A n ∠=︒,则BOC ∠= ︒;(3)若A n ∠=︒,ABC ∠与ACB ∠的角平分线交于O 点,ABO ∠的平分线与ACO ∠的平分线交于点1O ,,2016O BD ∠的平分线与2016O CE ∠的平分线交于点2017O ,则2017O ∠=︒.26.如图①所示,在三角形纸片ABC 中,70C ∠=︒,65B ∠=︒,将纸片的一角折叠,使点A 落在ABC 内的点A '处.(1)若140∠=︒,2∠=________.(2)如图①,若各个角度不确定,试猜想1∠,2∠,A ∠之间的数量关系,直接写出结论. ②当点A 落在四边形BCDE 外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,A ∠,1∠,2∠之间又存在什么关系?请说明.(3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的123456∠+∠+∠+∠+∠+∠和是________.【参考答案】一、选择题1.A解析:A【分析】根据同位角、内错角、同旁内角的意义进行判断即可.【详解】解:∠2与∠3是两条直线被第三条直线所截形成的同位角,因此选项A 符合题意. ∠1与∠4是对顶角,因此选项B 不符合题意.∠1与∠3是内错角,因此选项C 不符合题意.∠2与∠4同旁内角,因此选项D 不符合题意.故选:A .【点睛】本题考查同位角、内错角、同旁内角,理解和掌握同位角、内错角、同旁内角的意义是正确判断的前提.2.A【分析】根据平移的定义,对选项进行一一分析,排除错误答案.【详解】解:A 、汽车在笔直公路上运动沿直线运动,符合平移定义,属于平移,故A 选项符合;B 、吹肥皂泡时小气泡变成大气泡,不属于平移解析:A【分析】根据平移的定义,对选项进行一一分析,排除错误答案.【详解】解:A 、汽车在笔直公路上运动沿直线运动,符合平移定义,属于平移,故A 选项符合; B 、吹肥皂泡时小气泡变成大气泡,不属于平移,故B 选项不符合;C 、铅球被抛出是旋转与平移组合,故C 选项不符合;D 、随风摆动的红旗,不属于平移,故D 选项不符合.故选:A .【点睛】此题主要考查了平移定义,平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等.3.B【分析】根据坐标的特点即可求解.【详解】点()3,5A -在平面直角坐标系中所在的象限是第二象限故选B .【点睛】此题主要考查坐标所在象限,解题的关键是熟知直角坐标系的特点.4.B【分析】根据对顶角的性质、平行线的判定和性质进行判断即可.【详解】解:①对顶角相等,是真命题;②在同一平面内,垂直于同一条直线的两条直线平行,是真命题;③相等的角不一定是对顶角,原命题是假命题;④两直线平行,内错角相等,原命题是假命题.故选:B.【点睛】考查了命题与定理的知识,解题的关键是了解对顶角的性质、平行线的判定和性质,难度较小.5.D【分析】分点D在线段AB上及点D在线段AB的延长线上两种情况考虑:当点D在线段AB上时,由DE∥BC可得出∠ADE的度数,结合∠ADC=∠ADE+∠CDE可求出∠ADC的度数;当点D 在线段AB的延长线上时,由DE∥BC可得出∠ADE的度数,结合∠ADC=∠ADE-∠CDE可求出∠ADC的度数.综上,此题得解.【详解】解:当点D在线段AB上时,如图1所示.∵DE∥BC,∴∠ADE=∠ABC=84°,∴∠ADC=∠ADE+∠CDE=84°+20°=104°;当点D在线段AB的延长线上时,如图2所示.∵DE∥BC,∴∠ADE=∠ABC=84°,∴∠ADC=∠ADE-∠CDE=84°-20°=64°.综上所述:∠ADC =104°或64°.故选:D .【点睛】本题考查了平行线的性质,分点D 在线段AB 上及点D 在线段AB 的延长线上两种情况,求出∠ADC 的度数是解题的关键.6.A【分析】根据无理数的运算、数轴的定义、多项式的定义、立方根的运算逐个判断即可.【详解】①两个无理数的和可能是有理数,说法正确(0=,0是有理数②有理数属于实数,实数与数轴上的点是一一对应关系,则任意一个有理数都可以用数轴上的点表示,说法正确③3327mn mn ππ=-+-+是二次二项式,说法错误④立方根是本身的数有0和±1,说法错误综上,说法正确的是①②故选:A .【点睛】本题考查了无理数的运算、数轴的定义、多项式的定义、立方根的运算,熟记各运算法则和定义是解题关键.7.B【分析】先根据平行线的性质求出∠CED ,再根据三角形的内角和等于180°即可求出∠CDE .【详解】解:∵DE ∥AF ,∠CAF =42°,∴∠CED =∠CAF =42°,∵∠DCE =90°,∠CDE +∠CED +∠DCE =180°,∴∠CDE =180°-∠CED -∠DCE =180°-42°-90°=48°,故选:B .【点睛】本题主要考查了平行线的性质以及三角形内角和等于180°,熟练掌握平行线的性质:两直线平行,同位角相等是解决问题的关键.8.A【分析】根据友好点的定义及点A1的坐标为(2,1),顺次写出几个友好点的坐标,可发现循环规律,据此可解.【详解】解:观察,发现规律:A1(2,1),A2(0,-3),A3(-4,-1),A解析:A【分析】根据友好点的定义及点A1的坐标为(2,1),顺次写出几个友好点的坐标,可发现循环规律,据此可解.【详解】解:观察,发现规律:A1(2,1),A2(0,-3),A3(-4,-1),A4(-2,3),A5(2,1),…,∴A4n+1(2,1),A4n+2(0,-3),A4n+3(-4,-1),A4n+4(-2,3)(n为自然数).∵2021=505×4+1,∴点A2021的坐标为(2,1).故选:A.【点睛】本题考查了规律型的点的坐标,从已知条件得出循环规律:每4个点为一个循环是解题的关键.二、填空题9.0或1【详解】根据负数没有算术平方根,一个正数的算术平方根只有一个,1和0的算术平方根等于本身,即可得出答案.解:1和0的算术平方根等于本身.故答案为1和0“点睛”本题考查了算术平方根的知解析:0或1【详解】根据负数没有算术平方根,一个正数的算术平方根只有一个,1和0的算术平方根等于本身,即可得出答案.解:1和0的算术平方根等于本身.故答案为1和0“点睛”本题考查了算术平方根的知识,注意掌握1和0的算术平方根等于本身.10.【分析】关于x轴对称的点横坐标不变,纵坐标互为相反数,据此可解答.【详解】点关于轴的对称点的坐标是,故答案为:.【点睛】本题考查了关于x轴对称的点的坐标,关于x轴对称的两个点,横坐标不解析:(4,3)关于x 轴对称的点横坐标不变,纵坐标互为相反数,据此可解答.【详解】点()4,3P 关于x 轴的对称点Q 的坐标是(4,3)-,故答案为:(4,3)-.【点睛】本题考查了关于x 轴对称的点的坐标,关于x 轴对称的两个点,横坐标不变,纵坐标互为相反数.11.140°.【分析】△ABC 中,已知∠A 即可得到∠ABC 与∠ACB 的和,而BO 和CO 分别是∠ABC ,∠ACB 的两条角平分线,即可求得∠OBC 与∠OCB 的度数,根据三角形的内角和定理即可求解.【详解析:140°.【分析】△ABC 中,已知∠A 即可得到∠ABC 与∠ACB 的和,而BO 和CO 分别是∠ABC ,∠ACB 的两条角平分线,即可求得∠OBC 与∠OCB 的度数,根据三角形的内角和定理即可求解.【详解】△ABC 中,∠ABC +∠ACB =180°−∠A =180°−100°=80°,∵BO 、CO 是∠ABC ,∠ACB 的两条角平分线.∴∠OBC =12∠ABC ,∠OCB =12∠ACB ,∴∠OBC +∠OCB =12(∠ABC +∠ACB )=40°,在△OBC 中,∠BOC =180°−(∠OBC +∠OCB )=140°.故填:140°.【点睛】本题主要考查了三角形的内角和定理,以及三角形的角平分线的定义. 12.110°【分析】如图,利用平行线的性质,求得∠4=∠5=∠1,计算∠2+∠5,再次利用平行线的性质,得到∠3=∠2+∠5.【详解】如图,∵a ∥b ,∴∠4=∠1=68°,∴∠5=∠4=68解析:110°如图,利用平行线的性质,求得∠4=∠5=∠1,计算∠2+∠5,再次利用平行线的性质,得到∠3=∠2+∠5.【详解】如图,∵a∥b,∴∠4=∠1=68°,∴∠5=∠4=68°,∵∠2=42°,∴∠5+∠2=68°+42°=110°,∵a∥b,∴∠3=∠2+∠5,∴∠3=110°,故答案为:110°.【点睛】本题考查了平行线的性质,对顶角相等,熟练掌握平行线的性质,对顶角相等是解题的关键.13.50°【分析】先根据平行线的性质得出∠DEF的度数,再根据翻折变换的性质得出∠D′EF的度数,根据平角的定义即可得出结论.【详解】解:∵AD∥BC,∠EFB=65°,∴∠DEF=65°,解析:50°【分析】先根据平行线的性质得出∠DEF的度数,再根据翻折变换的性质得出∠D′EF的度数,根据平角的定义即可得出结论.【详解】解:∵AD∥BC,∠EFB=65°,∴∠DEF=65°,又∵∠DEF=∠D′EF,∴∠D ′EF =65°,∴∠AED ′=50°.故答案是:50°.【点睛】本题考查的是折叠的性质以及平行线的性质,用到的知识点为:两直线平行,内错角相等.14.、、、.【详解】解:∵y=3x+2,如果直接输出结果,则3x+2=161,解得:x=53;如果两次才输出结果:则x=(53-2)÷3=17;如果三次才输出结果:则x=(17-2)÷3=5;解析:53、17、5、1.【详解】解:∵y =3x +2,如果直接输出结果,则3x +2=161,解得:x =53;如果两次才输出结果:则x =(53-2)÷3=17;如果三次才输出结果:则x =(17-2)÷3=5;如果四次才输出结果:则x =(5-2)÷3=1;则满足条件的整数值是:53、17、5、1.故答案为53、17、5、1.点睛:此题的关键是要逆向思维.它和一般的程序题正好是相反的.15.5【分析】先根据在轴上,计算出m 的值,根据纵坐标的绝对值即是线段长度可得到答案.【详解】∵在轴上,∴横坐标为0,即,解得:,故,∴线段长度为,故答案为:5.【点睛】本题只要考查解析:5【分析】先根据(4,9)P m m --在y 轴上,计算出m 的值,根据纵坐标的绝对值即是线段OP 长度可得到答案.∵(4,9)P m m --在y 轴上,∴横坐标为0,即40m -=,解得:4m =,故(0,5)P -,∴线段OP 长度为|5|5-=,故答案为:5.【点睛】本题只要考查了再y 轴的点的特征(横坐标为零),在计算线段的长度时,注意线段长度不为负数.16.【分析】先求出“凸”形的周长为20,得到的余数为1,由此即可解决问题.【详解】解:,,,,,∴,“凸”形的周长为20,又∵的余数为1,细线另一端所在位置的点在的中点处,坐标为.故解析:(0,2)【分析】先求出“凸”形ABCDEGHP 的周长为20,得到202120÷的余数为1,由此即可解决问题.【详解】解:(1,2)A ,(1,2)B -,(3,0)D -,(3,2)E --,(3,2)G -,∴2,2,2,2,6,2,2AB BC AP CD DE EG GH PH ========,∴ “凸”形ABCDEGHP 的周长为20,又∵202120÷的余数为1,∴细线另一端所在位置的点在AB 的中点处,坐标为(0,2).故答案为:(0,2).【点睛】本题考查规律型:点的坐标,解题的关键是理解题意,求出“凸”形的周长,属于中考常考题型.三、解答题17.(1)x=3或x=-1;(2)【分析】(1)根据平方根的性质求解;(2)根据绝对值、算术平方根和立方根的性质求解.(1)解:∵;∴∴x=3或x=-1 (2)原式=,【解析:(1)x=3或x=-1;(21 2【分析】(1)根据平方根的性质求解;(2)根据绝对值、算术平方根和立方根的性质求解.【详解】(1)解:∵()214x-=;∴12x-=±∴x=3或x=-1(2)原式1122-+ 12=,【点睛】本题考查平方根、算术平方根和立方根的运算,熟练掌握运算法则是解题关键. 18.(1);(2).【分析】(1)根据平方根的定义解答即可;(2)根据立方根的定义解答即可.【详解】(1)x2﹣6,移项得:,开方得:x,解得:;(2)(2x﹣1)3=﹣4,变形得:解析:(1)52x=±;(2)12x=-.【分析】(1)根据平方根的定义解答即可;(2)根据立方根的定义解答即可.【详解】(1)x2﹣614 =,移项得:2125644x=+=,开方得:x=解得:52x=±;(2)12(2x﹣1)3=﹣4,变形得:(2x﹣1)3=﹣8,开立方得:212x-=-,∴2x=﹣1,解得:12x=-.【点睛】本题考查了立方根及平方根的应用,注意一个正数的平方根有两个,且互为相反数,一个数的立方根只有一个.19.对顶角相等;SAS;全等三角形的对应角相等;内错角相等,两直线平行;两直线平行,同旁内角互补【分析】由“SAS”可证△COB≌△FOE,可得∠BCO=∠F,可证AB∥DF,可得结论.【详解】解析:对顶角相等;SAS;全等三角形的对应角相等;内错角相等,两直线平行;两直线平行,同旁内角互补【分析】由“SAS”可证△COB≌△FOE,可得∠BCO=∠F,可证AB∥DF,可得结论.【详解】解:∵CF和BE相交于点O,∴∠COB=∠EOF;(对顶角相等),而O是CF的中点,那么CO=FO,又已知EO=BO,∴△COB≌△FOE(SAS),∴BC=EF,(全等三角形对应边相等),∴∠BCO=∠F,(全等三角形的对应角相等),∴AB∥DF,(内错角相等,两直线平行),∴∠ACE和∠DEC互补.(两直线平行,同旁内角互补),故答案为:对顶角相等;SAS;全等三角形的对应角相等;内错角相等,两直线平行;两直线平行,同旁内角互补.【点睛】本题考查了全等三角形的判定和性质,平行线的判定和性质,掌握全等三角形的判定定理是解题的关键.20.(1)见解析;(2)见解析;(3)10【分析】(1)根据点A、B、C的坐标描点,从而可得到△ABC;(2)利用点B和B′的坐标关系可判断△ABC先向右平移4个单位,再向上平移2个单位得到△A′解析:(1)见解析;(2)见解析;(3)10【分析】(1)根据点A、B、C的坐标描点,从而可得到△ABC;(2)利用点B和B′的坐标关系可判断△ABC先向右平移4个单位,再向上平移2个单位得到△A′B′C′,利用此平移规律写出A′、C′的坐标,然后描点即可得到△A′B′C′;(3)用一个矩形的面积分别减去三个三角形的面积去计算△A′B′C′的面积.【详解】解:(1)如图,△ABC为所作;(2)如图,△A′B′C′为所作;(3)△A′B′C′的面积=111 6426244210 222⨯-⨯⨯-⨯⨯-⨯⨯=.【点睛】本题考查了平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.21.(1);(2)其平方根为.【分析】(1)根据立方根,算术平方根,无理数的估算即可求出的值;(2)将(1)题求出的值代入,求出值之后再求出平方根.【详解】解:(1)由题得..又,解析:(1)3,5,6a b c =-==;(2)其平方根为4±.【分析】(1)根据立方根,算术平方根,无理数的估算即可求出,,a b c 的值;(2)将(1)题求出的值代入922a b c -+,求出值之后再求出平方根. 【详解】解:(1)由题得318,219a b +=--=.3,5a b ∴=-=.<67∴<.6c ∴=.3,5,6a b c ∴=-==.(2)当3,5,6a b c =-==时,()99223561622a b c -+=⨯--+⨯=. ∴其平方根为4±.【点睛】本题考查了立方根,平方根,无理数的估算.正确把握相关定义是解题的关键. 二十二、解答题22.(1)5;;(2);;(3)能,.【分析】(1)易得5个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长.(2)求出斜边长即可.(3)一共有10个小正解析:(1)521;13【分析】(1)易得5个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长.(2)求出斜边长即可.(3)一共有10个小正方形,那么组成的大正方形的面积为10,边长为10的算术平方根,画图.【详解】试题分析:解:(1)拼成的正方形的面积与原面积相等1×1×5=5,边长为5,如图(1)(2)斜边长=222222+=,故点A表示的数为:222-;点A表示的相反数为:222-(3)能,如图拼成的正方形的面积与原面积相等1×1×10=1010考点:1.作图—应用与设计作图;2.图形的剪拼.二十三、解答题23.(1)49°,(2)44°,(3)∠OPQ=∠ORQ【分析】(1)根据∠OPA=∠QPB.可求出∠OPA的度数;(2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度数,转化为(1)来解解析:(1)49°,(2)44°,(3)∠OPQ=∠ORQ【分析】(1)根据∠OPA=∠QP B.可求出∠OPA的度数;(2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度数,转化为(1)来解决问题;(3)由(2)推理可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,从而∠OPQ=∠ORQ.【详解】解:(1)∵∠OPA=∠QPB,∠OPQ=82°,∴∠OPA=(180°-∠OPQ)×12=(180°-82°)×12=49°,(2)作PC∥m,∵m∥n,∴m∥PC∥n,∴∠AOP=∠OPC=43°,∠BQP=∠QPC=49°,∴∠OPQ=∠OPC+∠QPC=43°+49°=92°,∴∠OPA=(180°-∠OPQ)×12=(180°-92°)×1244°,(3)∠OPQ=∠ORQ.理由如下:由(2)可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,∵入射光线与平面镜的夹角等于反射光线与平面镜的夹角,∴∠AOP=∠DOR,∠BQP=∠RQC,∴∠OPQ=∠ORQ.【点睛】本题主要考查了平行线的性质和入射角等于反射角的规定,解决本题的关键是注意问题的设置环环相扣、前为后用的设置目的.24.(1)∠DAC;(2)360°;(3)65°【分析】(1)根据平行线的性质即可得到结论;(2)过C作CF∥AB根据平行线的性质得到∠D=∠FCD,∠B=∠BCF,然后根据已知条件即可得到结论;解析:(1)∠DAC;(2)360°;(3)65°【分析】(1)根据平行线的性质即可得到结论;(2)过C作CF∥AB根据平行线的性质得到∠D=∠FCD,∠B=∠BCF,然后根据已知条件即可得到结论;(3)过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数.【详解】解:(1)过点A作ED∥BC,∴∠B=∠EAB,∠C=∠DCA,又∵∠EAB+∠BAC+∠DAC=180°,∴∠B+∠BAC+∠C=180°.故答案为:∠DAC;(2)过C作CF∥AB,∵AB∥DE,∴CF∥DE,∴∠D=∠FCD,∵CF∥AB,∴∠B=∠BCF,∵∠BCF+∠BCD+∠DCF=360°,∴∠B+∠BCD+∠D=360°;(3)如图3,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠ABE=∠BEF,∠CDE=∠DEF,∵BE平分∠ABC,DE平分∠ADC,∠ABC=60°,∠ADC=70°,∴∠ABE=12∠ABC=30°,∠CDE=12∠ADC=35°,∴∠BED=∠BEF+∠DEF=30°+35°=65°.【点睛】此题考查了平行线的判定与性质,解题的关键是正确添加辅助线,利用平行线的性质进行推算.25.(1)110(2)(90 +n)(3)×90°+n°【分析】(1)根据角平分线的性质,结合三角形的内角和定理可得到角之间的关系,然后求解即可;(2)根据BO、CO分别是∠ABC与∠ACB的角平解析:(1)110(2)(90 +12n)(3)201712×90°+20182018212n°【分析】(1)根据角平分线的性质,结合三角形的内角和定理可得到角之间的关系,然后求解即可;(2)根据BO、CO分别是∠ABC与∠ACB的角平分线,用n°的代数式表示出∠OBC与∠OCB 的和,再根据三角形的内角和定理求出∠BOC 的度数;(3)根据规律直接计算即可.【详解】解:(1)∵∠A=40°,∴∠ABC+∠ACB=140°,∵点O 是∠AB 故答案为:110°;C 与∠ACB 的角平分线的交点,∴∠OBC+∠OCB=70°,∴∠BOC=110°.(2)∵∠A=n°,∴∠ABC+∠ACB=180°-n°,∵BO 、CO 分别是∠ABC 与∠ACB 的角平分线,∴∠OBC +∠OCB =12∠ABC +12∠ACB =12(∠ABC +∠ACB ) =12(180°﹣n °)=90°﹣12n °,∴∠BOC =180°﹣(∠OBC +∠OCB )=90°+12n °.故答案为:(90+12n );(3)由(2)得∠O =90°+12n °,∵∠ABO 的平分线与∠ACO 的平分线交于点O 1, ∴∠O 1BC =34∠ABC ,∠O 1CB =34∠ACB , ∴∠O 1=180°﹣34(∠ABC +∠ACB )=180°﹣34(180°﹣∠A )=14×180°+34n °, 同理,∠O 2=18×180°+78n °, ∴∠O n =112n +×180°+11212n n ++- n °, ∴∠O 2017=201812×180°+20182018212-n °, 故答案为:201712×90°+20182018212-n °. 【点睛】 本题考查了三角形内角和定理,角平分线定义的应用,注意:三角形的内角和等于180°. 26.(1)50°;(2)①见解析;②见解析;(3)360°.【分析】(1)根据题意,已知,,可结合三角形内角和定理和折叠变换的性质求解; (2)①先根据折叠得:∠ADE=∠A′DE ,∠AED=∠A′解析:(1)50°;(2)①见解析;②见解析;(3)360°.【分析】(1)根据题意,已知70C ∠=︒,65B ∠=︒,可结合三角形内角和定理和折叠变换的性质求解;(2)①先根据折叠得:∠ADE=∠A′DE ,∠AED=∠A′ED ,由两个平角∠AEB 和∠ADC 得:∠1+∠2等于360°与四个折叠角的差,化简得结果;②利用两次外角定理得出结论;(3)由折叠可知∠1+∠2+∠3+∠4+∠5+∠6等于六边形的内角和减去(∠B'GF+∠B'FG )以及(∠C'DE+∠C'ED )和(∠A'HL+∠A'LH ),再利用三角形的内角和定理即可求解.【详解】解:(1)∵70C ∠=︒,65B ∠=︒,∴∠A′=∠A=180°-(65°+70°)=45°,∴∠A′ED+∠A′D E =180°-∠A′=135°,∴∠2=360°-(∠C+∠B+∠1+∠A′ED+∠A′DE )=360°-310°=50°;(2)①122A ∠+∠=∠,理由如下由折叠得:∠ADE=∠A′DE ,∠AED=∠A′ED ,∵∠AEB+∠ADC=360°,∴∠1+∠2=360°-∠ADE-∠A′DE -∠AED-∠A′ED=360°-2∠ADE-2∠AED ,∴∠1+∠2=2(180°-∠ADE-∠AED )=2∠A ;②221A ∠=∠+∠,理由如下:∵2∠是ADF 的一个外角∴2A AFD ∠=∠+∠.∵AFD ∠是A EF '△的一个外角∴1AFD A '∠=∠+∠又∵A A '∠=∠∴221A ∠=∠+∠(3)如图由题意知,∠1+∠2+∠3+∠4+∠5+∠6=720°-(∠B'GF+∠B'FG )-(∠C'DE+∠C'ED )-(∠A'HL+∠A'LH )=720°-(180°-∠B')-(180°-C')-(180°-A')=180°+(∠B'+∠C'+∠A')又∵∠B=∠B',∠C=∠C',∠A=∠A',∠A+∠B+∠C=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°.【点睛】题主要考查了折叠变换、三角形、四边形内角和定理.注意折叠前后图形全等;三角形内角和为180°;四边形内角和等于360度.。

苏州立达中学七年级数学下册期末试卷选择题汇编精选培优复习考试试题

苏州立达中学七年级数学下册期末试卷选择题汇编精选培优复习考试试题

一、选择题1.以下11个命题:①负数没有平方根;②内错角相等;③同旁内角互补,两直线平行;④一个正数有两个立方根,它们互为相反数;⑤无限不循环小数是无理数;⑥数轴上的点与实数有一一对应关系;⑦过一点有且只有一条直线和已知直线垂直;⑧不相交的两条直线叫做平行线;⑨从直线外一点到这条直线的垂线段,叫做这点到直线的距离.⑩开方开不尽的数是无理数;⑪相等的两个角是对顶角;其中真命题的个数为( ) A .5B .6C .7D .8答案:A解析:A 【分析】根据相关知识逐项判断即可求解. 【详解】解:①“负数没有平方根”,是真命题②“内错角相等”,缺少两直线平行这一条件,是假命题;③“同旁内角互补,两直线平行”,是真命题;④“一个正数有两个立方根,它们互为相反数”,一个正数有一个立方根,是假命题;⑤“无限不循环小数是无理数”,是真命题;⑥“数轴上的点与实数有一一对应关系”,是真命题;⑦“过一点有且只有一条直线和已知直线垂直”,缺少在同一平面内条件,是假命题;⑧“不相交的两条直线叫做平行线”,缺少在同一平面内条件,是假命题;⑨“从直线外一点到这条直线的垂线段,叫做这点到直线的距离”,应为“从直线外一点到这条直线的垂线段的长度,叫做这点到直线的距离”,是假命题.⑩“开方开不尽的数是无理数”,是真命题;⑪“相等的两个角是对顶角”,相等的角有可能是对顶角,但不一定是对顶角,是假命题. 所以真命题有5个. 故选:A 【点睛】本题考查判断真假命题、平方根、立方根、平行线的判定、无理数、实数与数轴关系、直线外一点到直线的距离、对顶角等知识,综合性较强,熟知相关知识点是解题关键. 2.已知2,4,6a b c -,且12a b c -=-,则12abc =( )A .48-B .24-C .24D .48答案:B解析:B 【分析】由12a b c -=-可得12a c b +=+,而根据2,4,6a b c -,可得8a c +≤,128b +≥,由此确定a 、b 、c 的取值,进而求解. 【详解】解:∵12a b c -=-, ∴12a c b +=+,又∵2,4,6a b c -, ∴8a c +≤,128b +≥, ∴8a c +=,128b +=, ∴=2a ,=4b -,=6c , ∴()11246=2422abc =⨯⨯-⨯-. 故选B . 【点睛】本题综合考查了不等式性质和代数式求值;解题关键是根据a 、b 、c 的取值范围求出a 、b 、c 的值.3.如图,一个质点在第一象限及x 轴、y 轴上运动,在第一秒钟,它从原点(00),运动到(0)1,,然后接着按图中箭头所示方向运动,即(00)(01)(11)(10)→→→→,,,,…,且每秒移动一个单位,那么第80秒时质点所在位置的坐标是( )A .(0,9)B .(9,0)C .(0,8)D .(8,0)答案:C解析:C 【解析】【分析】由题目可以知道,质点每秒运动一次,(0,0)→(0,1)→(1,1)→(1,0)用的秒数分别是1秒钟,2秒钟,3秒钟,到(1,1)用2秒,到(2,2)用6秒,到(3,3)用12秒,到(4,4)用20秒,依此类推:到点(n ,n ),用n 2+n 秒,这样可以先确定,第80秒钟时所在的点所在正方形,然后就可以进一步推得点的坐标.【详解】质点每秒运动一次,(0,0)→(0,1)→(1,1)→(1,0)用的秒数分别是1秒钟,2秒钟,3秒钟,到(1,1)用2秒,到(2,2)用6秒,到(3,3)用12秒,到(4,4)用20秒,依此类推:到点(n ,n ),用n 2+n 秒, ∵当n=8时,n 2+n=82+8=72,∴当质点运动到第72秒时到达(8,8), ∴质点接下来向左运动,运动时间为80-72=8秒, ∴此时质点的横坐标为8-8=0, ∴此时质点的坐标为(0,8),∴第80秒后质点所在位置的坐标是(0,8), 故选C.【点睛】本题考查了规律题——点的坐标,解决本题的关键是读懂题意,并总结出一定的规律,难度较大.4.如图,长方形ABCD 中,7AB =,第一次平移长方形ABCD 沿AB 的方向向右平移5个单位,得到长方形1111D C B A ,第3次平移将长方形1111D C B A 沿11A B 的方向向右平移5个单位,得到长方形2222A B C D ,…第n 次平移将长方形1111n n n n A B C D ----的方向平移5个单位,得到长方形(2)n n n n A B C D n >,若n AB 的长度为2022,则n 的值为( )A .403B .404C .405D .406答案:A解析:A 【分析】根据平移的性质得出AA 1=5,A 1A 2=5,A 2B 1=A 1B 1-A 1A 2=7-5=2,进而求出AB 1和AB 2的长,然后根据所求得出数字变化规律,进而得出AB n =(n +1)×5+2求出n 即可. 【详解】解:∵AB =7,第1次平移将长方形ABCD 沿AB 的方向向右平移5个单位,得到长方形A 1B 1C 1D 1,第2次平移将长方形A 1B 1C 1D 1沿A 1B 1的方向向右平移5个单位,得到长方形A 2B 2C 2D 2…, ∴AA 1=5,A 1A 2=5,A 2B 1=A 1B 1-A 1A 2=7-5=2, ∴AB 1=AA 1+A 1A 2+A 2B 1=5+5+2=12, ∴AB 2的长为:5+5+7=17; ∵AB 1=2×5+2=12,AB 2=3×5+2=17, ∴AB n =(n +1)×5+2=2022, 解得:n =403. 故选:A . 【点睛】此题主要考查了平移的性质以及一元一次方程的应用,根据平移的性质得出AA 1=5,A 1A 2=5是解题关键.5.如图,将整数按规律排列,若有序数对(a ,b )表示第a 排从左往右第b 个数,则(9,4)表示的数是( )A .49B .﹣40C .﹣32D .25答案:B解析:B 【分析】根据有序数对(m ,n )表示第m 行从左到右第n 个数,对如图中给出的有序数对和(3,2)表示整数5可得规律,进而可求出(9,4)表示的数. 【详解】解:根据有序数对(m ,n )表示第m 行从左到右第n 个数, 对如图中给出的有序数对和(3,2)表示整数5可知: (3,2):3(31)2⨯-25+=; (3,1):()331142⎡⎤⨯--+=-⎢⎥⎣⎦; (4,4):()4414102⎡⎤⨯--+=-⎢⎥⎣⎦; …由此可以发现,对所有数对(m ,n )(n ≤m )有,()12m m n ⨯-+.表示的数是偶数时结果为负数,奇数时结果为正数,所以(9,4)表示的数是:()9914402⎡⎤⨯--+=-⎢⎥⎣⎦. 故选:B . 【点睛】本题考查了规律型-图形的变化类,解决本题的关键是观察数字的变化寻找规律,总结规律.6.在直角坐标系xOy 中,一个质点从()12,A a a 出发沿图中路线依次经过()34,B a a ,()56,C a a ,()78,D a a ,…按此规律一直运动下去,则201920202021a a a ++=( )A .1009B .1010C .1011D .1012答案:B解析:B 【分析】根据题意可得A (1,1),B (-1,2),C (2,3),D (-2,4),E (3,5),F (-3,6),则11a =,21a =,31a =-,42a =,52a =,63a =,72a =-,84a =,由此可知当n 为偶数时2n na =;11a =,31a =-,52a =,72a =-,可得 130a a +=,570a a +=,可以得到21210n n a a -++=,由此求解即可. 【详解】解:由题意可知A (1,1),B (-1,2),C (2,3),D (-2,4),E (3,5),F (-3,6),∴11a =,21a =,31a =-,42a =,52a =,63a =,72a =-,84a =,由此可知当n 为偶数时2n n a = , ∴2020202010102a == ∵11a =,31a =-,52a =,72a =-,可得 130a a +=,570a a +=, ∴可以得到21210n n a a -++=, ∴201920210a a +=, ∴2019202020211010a a a ++=, 故选B .【点睛】本题主要考查了点坐标规律的探索,解题的关键在于能够准确找到相应的规律进行求解. 7.已知1x ,2x ,…,2019x 均为正数,且满足()()122018232019M x x x x x x =++++++,()()122019232018N x x x x x x =++++++,则M ,N 的大小关系是( )A .M N <B .M N >C .M ND .M N ≥答案:B解析:B 【分析】 设122018p x x x =+++,232018q x x x =++,然后求出M -N 的值,再与0进行比较即可.【详解】解:根据题意,设122018p x x x =+++,232018q x x x =++,∴1p q x -=, ∴()()12201823201920192019()M x x x x x x p q x pq p x =++++++=•+=+•;()()12201923201820192019()N x x x x x x p x q pq q x =++++++=+•=+•;∴20192019()M N pq p x pq q x -=+•-+• =2019()x p q •-=201910x x •>; ∴M N >; 故选:B. 【点睛】本题考查了比较实数的大小,以及数字规律性问题,解题的关键是熟练掌握作差法比较大小.8.下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,依此类推,则第⑦个图形中五角星的个数是( )A .98B .94C .90D .86答案:A解析:A 【分析】学会寻找规律,第①个图2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,那么第n 个图呢,能求出这个即可解得本题。

苏科版数学七年级下册江苏省苏州市立达中学-期末试卷.docx

苏科版数学七年级下册江苏省苏州市立达中学-期末试卷.docx

初中数学试卷马鸣风萧萧苏州市立达中学2015-2016学年第二学期期末试卷初一数学一、选择题(本大题共8小题,每小题3分,共24分;在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列运算不正确的是( )A. 336x x x +=B. 633x x x ÷=C. 235x x x ⋅= D. 3412()x x -=2.如图,//AB CD ,则根据图中标注的角,下列关系中成立的是( ) A. 13∠=∠ B. 23180∠+∠=︒ C. 24180∠+∠<︒ D. 35180∠+∠=︒3.不等式组 24357x x >-⎧⎨-≤⎩的解集在数轴上可以表示为()4. 20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵。

设男生有x 人,女生有y 人,根据题意,列方程组正确的是( )A. 52xy += B. 52x y += C. 20x y += D. 20x y +=3220x y += 2320x y += 3252x y += 2352x y +=5.小明不慎将一块三角形的玻璃摔碎成如图的四块(即图中标有1, 2, 3, 4的四块),你认为将其中的哪一块带去玻璃店,就能配一块与 原来一样大小的三角形玻璃.应该带( ) A.第1块 B.第2块 C.第3块 D.第4块6.下列命题:①两直线平行,同旁内角互补; ②三角形的外角和是180°; ③面积相等的三角形是全等三角形;④若1n <,则210n -<;其中,假命题的个数有( )A. 1个B. 2个C. 3个D. 4个7.如图,己知,AE CF AFD CEB =∠=∠,那么添加下列一个条件后,仍无法判定ADF CBE ∆≅∆的是( )A. A C ∠=∠B. AD CB =C. BE DF =D. //AD BC8.在锐角三角形ABC 中,AH 是边BC 上的高,分别以AB 、AC 为一边,向外作正方形ABDE 和ACFG ,连接,CE BG 和EG ,EG 与HA 的延长线交于点M ,则①BG CE =;②BG CE ⊥;③AM 是AEG ∆的中线; ④EAM ABC ∠=∠.其中正确的结论有( )个. A. 1个 B. 2个 C. 3个 D. 4个二、填空题(本大题共10小题,每小题2分,共20分,把答案填在答题卡相应横线上.) 9.一种花瓣的花粉颗粒直径约为0.0000065米,将数据0.0000065用科学记数法表示为 . 10.若二次三项式225x kx -+是完全平方式,则k 的值为 . 11.“直角三角形的两个锐角互余”的逆命题是 . 12.内角和等于外角和2倍的多边形是 边形.13.己知ABC ∆中,B ∠是A ∠的2倍,C ∠比A ∠大20°,则A ∠等于 °. 14.己知三角形的三边长分别为2,1x -, 3,则三角形周长y 的取值范围是 .15.如图是重叠的两个直角三角形,将其中一个直角三角形沿BC 方向平移得到DEF ∆,如果AB =8cm,BE =4cm, DH =3cm ,则图中阴影部分面积为 cm 2.16.如图,有一个直角三角形ABC , 90,10,5C AC BC ∠=︒==,一条线段,,PQ AB P Q =两点分别在线段AC 和过点A 且垂直于AC 的射线AX 上运动,问AP = 时,ABC ∆和APQ ∆全等. 17.如图,,,A B C 分别是线段111,,A B B C C A 的中点,若ABC ∆的面积是1,那么111A B C ∆的面积是 .18.如图, ,,,ABC ACB AD BD CD ∠=∠分别平分ABC ∆的外角EAC ∠、内角ABC ∠、外角ACF ∠.以下结论: ①//AD BC ;②2ACB ADB ∠=∠;③BD 平分A D C ∠;④90ADC ABD ∠=︒-∠; ⑤12BDC BAC ∠=∠其中正确的结论是 . 三、解答题(本大题共9题,共56分,请写出必要的计算过程或推演步骤) 19.(每小题3分,共9分)分解因式(1) 32242x x x -+ (2) 268x y xy y -+- (3) 22222()4x y x y +-20.(本题满分5分) 先化简,再求值: 2(2)(2)3(2)x y x y x y +-+-,其中1,2x y ==-.21. (本题5分)解方程组 244523x y x y -=-⎧⎨-=-⎩22.(本题7分)如图,点,,,A B C D 在一条直线上,填写下列空格://CE DF (已知)F ∴∠=∠ ( ) E F ∠=∠(已知)∴∠ E =∠( )∴ // ( ).23.(本题6分)如图,在ABC ∆中, AB AC =.分别以,B C 为圆心,BC 长为半径在BC 下方画弧,设两弧交于点D ,与,AB AC 的延长线分别交于点,E F ,连接,,AD BD CD .求证:AD 平分BAC ∠.24.(本题7分)己知关于,x y 的方程组 24221x y mx y m +=⎧⎨+=+⎩(实数m 是常数).(1)若15x y -≤-≤,求m 的取值范围;(2)在(1)的条件下,化简: 23m m ++-25.(本题8分)如图,在ABC ∆中, ,90,AB CB ABC F =∠=︒为AB 延长线上一点,点E 在BC 上,且AE CF =.(1)若30CAE ∠=︒,求ACF ∠度数; (2)求证: AB CE BF =+.26.(本题满分9分)如图,在边长为8cm 的正方形ABCD 中,动点P 从点A 出发,沿线段AB 以每秒1 cm 的速度向点B 运动;同时动点Q 从点B 出发,沿线段BC 以每秒3cm 的速度向点C 运动.当点Q 到达C 点时,点P 同时停止,设运动时间为t 秒.(1)CQ 的长为 cm(用含t 的代数式表示);(2)连接DQ 并把DQ 沿DC 翻折交BC 延长线于点F ,连接,,DP DQ PQ . ①若ADP DFQ S S ∆∆=,求t 的值;②当DP DF ⊥时,求t 的值,并判断PDQ ∆与FDQ ∆是否全等、PDQ ∠是否等于45°?附加题(本题10分):如图,Rt ABC ∆中,90,37,5,4,3C CAB AB AC BC ∠=︒∠=︒===,直线MN 经过点C ,交边AB 于点D ,分别过点,A B 作,AF MN BE MN ⊥⊥,垂足分别为点,E F ,设线段,BE AF 的长度分别为12,d d 。

江苏省苏州市立达中学2016-2017学年七年级下学期期中考试数学试卷

江苏省苏州市立达中学2016-2017学年七年级下学期期中考试数学试卷

苏州市立达中学2016-2017学年第二学期期中考试试卷初一数学试卷 2017.4注意事项:1.本试卷共3大题,27小题,总分100分,考试用时90分钟。

2.答题前,考生将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡相对应的位置上。

3.答选择题时必须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题。

4.考生答题必须答在答题卡上,答在试卷和草稿纸上一律无效。

一、选择题(本大题共10小题,每小题2分,共20分) 1.下列选项中能由左图平移得到的是( ▲ )2.下列运算正确的是( ▲ )A .632a a a =⋅B .538a a a +=C .()523a a =D .155=÷a a (a ≠0) 3.下列三条线段能构成三角形的是( ▲ )A .1,2,3B .3,4,5C .7,10,18D .4,12,7 4.若162+-ax x 是完全平方式,则a = ( ▲ ) A. 4 B. 8 C. 4± D. 8± 5.如右图,CD AB ∥,直线l 分别交AB 、CD 于E 、F , ︒=∠561,则2∠的度数是( ▲ )A .56°B . 146°C .134°D .124°6.若))(3(152n x x mx x ++=-+,则mn 的值为( ▲ ) A .5 B .-5 C . 10 D .-10CADB l 12ABC DEF第5题7.已知-个多边形的内角和等于它的外角和的两倍,则这个多边形的边数为( ▲ ) A .6 B .7 C .8 D .9 8.若a <b ,则下列不等式变形错误..的是( ▲ ) A .a +1 < b +1B . a 2 < b2C . 3a -4>3b -4D .4-3a >4-3b9.若关于x 的不等式0,521x a x -≤⎧⎨-<⎩的整数解共有4个,则a 的取值范围是 ( ▲ )A .67a <<B .67a ≤< C. 67a ≤≤ D .67a <≤ 10.如图,△ABC , ∠ABC 、∠ACB 的三等分线交于点E 、D , 若∠BFC =132°,∠BGC =118°,则∠A 的度数为( ▲ ) A .65° B.66° C.70° D.78° 二、填空题(本大题共8小题,每小题2分,共16分)11.计算:21()3-= ▲ .12.最薄的金箔的厚度为0.000091mm ,将0.000091用科学记数法表示为 ▲ .13.计算:20172016221⨯⎪⎭⎫ ⎝⎛= ▲ .14.已知3,2m n a a ==,则m n a -= ▲ . 15.若()()28x x mx -+-中不含x 的一次项,则m 的值为 ▲ .16.一个等腰三角形的边长分别是4cm 和9cm ,则它的周长是 ▲ cm.17.如图,将一张长方形纸片与一张直角三角形纸片(∠EFG =90°)按如图所示的位置摆放, 使直角三角形纸片的一个顶点E 恰好落在长方形纸片的一边AB 上,已知∠BEF =21°, 则 ∠CMF = ▲ . 18.已知a =120152016+,120162016b =+,120172016c =+,则代数式 2(a 2+b 2+c 2-ab -bc -ac)的值是 ▲ .三、解答题(共64分)19.计算(每小题3分,共21分)(第10题)GFE BDAC第17题FDCBAGNM(1) 2021(3)2π-⎛⎫-+- ⎪⎝⎭; (2)10199⨯;(用简便运算)(3) 3221(2)()()4xy xy x y -⋅-⋅ (4) 25(21)x x x --++(5) 2(23)(5)x x +- (6) 2(2)(2)(3)a b b a a b +---(7) (3)(3)a b c a b c -+--.20.解不等式(组). (每小题3分,共6分)(1) 4325x x ->+(把解集在数轴上表示出来) (2)21.(本题满分4分)若不等式组()231132x x x +<⎧⎪⎨>-⎪⎩,的整数解是关于x 的方程2x -4=ax 的根,求a 的值.22.(本题满分4分)如图,在正方形网格中,每个小正方形的边长均为1,△ABC 的三个顶点的位置如图所示,将△ABC 经过一次平移后得到△A′B′C′,图中标出了点B 的对应点B′.利用网格点画图: (1) 画出△A′B′C′; (2) 画出AB 边上的中线CD ; (3) 画出BC 边上的高线AE ;(4) △A′B′C′的面积为 .23.(本题满分6分)填写下列解题过程中的推理根据:已知:如图,点F 、E 分别在AB 、CD 上,AE 、DF 分别与BC 相交于H 、G , ∠A =∠D ,∠1+∠2=180°.说明:AB ∥CD 解:∵ ∠1=∠CGD (______________) ∠1+∠2=180°∴ ______________.∴ AE//FD (_____________________) ∴ ______________(两直线平行,同位角相等)又 ∠A =∠D∴ ∠D =∠BFD ∴______________(________________________)24. (本题满分4分) 已知2,3==-ab b a ,求下列各式的值。

苏科版数学2017年七年级下册期末考试数学试卷含答案解析

苏科版数学2017年七年级下册期末考试数学试卷含答案解析

2015~2016学年度第二学期期末测试七 年 级 数 学一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.8的立方根是【▲】A .±2B .2C .-2D .2.下列图形中内角和等于360°的是【▲】A .三角形B .四边形C .五边形D .六边形3.如图,数轴上所表示关于x 的不等式组的解集是【▲】A .x ≥2B .x >2C .x >-1D .-1<x ≤24.如图,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是【▲】A .SSSB .SASC .AASD .ASA5.下列调查中,适合全面调查的是【▲】A .长江某段水域的水污染情况的调查B .你校数学教师的年龄状况的调查C .各厂家生产的电池使用寿命的调查D .我市居民环保意识的调查6.不等式组120x x +⎧⎨-<⎩≥0,的整数解为【▲】 A .-1,1 B .-1,1,2 C .-1,0,1 D .0,1,27的大小应在【▲】A .7.5~8.0之间B .8.0~8.5之间C .8.5~9.0之间D .9.0~9.5之间8. 如图,把△ABC 沿EF 对折,叠合后的图形如图所示.若∠A =60°,∠1=95°,则∠2的度数为【▲】A .24°B .25°C .30°D .35°9. 如图,AD 是ABC △的中线,E ,F 分别是AD 和AD延长线上的点,且DE DF =,连结BF ,CE .下列说法:①CE =BF ;②△ABD 和△ACD 面积相等;③BF ∥CE ;④△BDF ≌△CDE .其中正确的有【▲】A .1个B .2个C .3个D .4个10.某粮食生产专业户去年计划生产水稻和小麦共15吨,实际生产17吨,其中水稻超产10%,小麦超产15%,设该专业户去年计划生产水稻x 吨,生产小麦y 吨,则依据题意列出方程组是【▲】A .⎩⎨⎧=⨯+⨯=+17%15%10,15y x y x B .⎩⎨⎧=⨯+⨯=+15%15%10,17y x y x C .⎩⎨⎧=+++=+17%)151(%)101(,15y x y x D . ⎩⎨⎧=+++=+15%)151(%)101(,17y x y x 二、填空题(本大题共6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.16的值等于 ▲ .12.一个多边形的每一个外角都等于24°,则这个多边形的边数为 ▲ .13.二元一次方程3x +2y =10的非负整数解是 ▲ .14.在△ABC 中,AB = 5cm ,BC = 8cm ,则AC 边的取值范围是 ▲ .15.如果实数x 、y 满足方程组2224x y x y +=⎧⎨+=⎩,那么x +y = ▲ . 16.点A 在y 轴上,距离原点5个单位长度,则点A 的坐标为 ▲ .三、解答题(本大题共8小题,共52分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(本题8分)(1)计算:2(2)1-+(2)解方程组:4,42 2.x y x y -=⎧⎨+=-⎩ 18.(本题7分)解不等式组⎩⎨⎧≤≥+②,①,91-263x x 请结合题意填空,完成本题的解答:(1)解不等式①,得 ▲ ;(2)解不等式②,得 ▲ ;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集是 ▲ .19.(本题7分)如图所示的直角坐标系中,三角形ABC 的顶点坐标分别是A (0,0)、B (6,0)、C (5,5).(1)求三角形ABC 的面积;(2)如果将三角形ABC 向上平移3个单位长度,再向右平移2个单位长度,得到三角形A 1B 1C 1.画出三角形A 1B 1C 1,并试写出A 1、B 1、C 1的坐标.20.(本题5分)如图,AC =AE ,∠1=∠2,AB =AD .求证:BC =DE .21.(本题7分)为了深化改革,某校积极开展校本课程建设,计划成立“文学鉴赏”、“科学实验”、“音乐舞蹈”和“手工编织”等多个社团,要求每位学生都自主选择其中一个社团.为此,随机调查了本校各年级部分学生选择社团的意向,并将调查结果绘制成如下统计图表(不完善):根据统计图表中的信息,解答下列问题:(1)求本次调查的学生总人数及a ,b ,c 的值;(2)将条形统计图补充完整;(温馨提示:请画在答题卷相对应的图上)(3)若该校共有1200名学生,试估计全校选择“科学实验”社团的人数.22.(本题5分)P 表示n 边形的对角线的交点个数(指落在其内部的交点),如果这些交点都不重合,那么P 与n 的关系式是:)(24)1(2b an n n n P +-⋅-=,其中a 、b 是常数,n ≥4. (1)通过画图可得:四边形时,P = ▲ (填数字);五边形时,P = ▲ (填数字);(2)请根据四边形和五边形对角线交点的个数,结合关系式,求,a b 的值.(注:本题的多边形均指凸多边形)23.(本题6分)大学生小刘回乡创办小微企业,初期购得原材料若干吨,每天生产相同件数的某种产品,单件产品所耗费的原材料相同.当生产6天后剩余原材料36吨,当生产10天后剩余原材料30吨.若剩余原材料数量小于或等于3吨,则需补充原材料以保证正常生产.(1)求初期购得的原材料吨数与每天所耗费的原材料吨数;(2)若生产16天后,根据市场需求每天产量提高20%,则最多再生产多少天后必须补充原材料?24.(本题8分)如图1,AB =8cm ,AC ⊥AB ,BD ⊥AB ,AC =BD =6cm .点P 在线段AB 上以2cm/s 的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动.它们运动的时间为t (s ).(1)若点Q 的运动速度与点P 的运动速度相等,当t =1时,△ACP 与△BPQ 是否全等,请说明理由,并判断此时线段PC 和线段PQ 的位置关系;(2)如图2,将图1中的“AC ⊥AB ,BD ⊥AB ” 改为 “∠CAB =∠DBA =65°”,其他条件不变.设点Q 的运动速度为x cm/s ,是否存在实数x ,使得△ACP 与△BPQ 全等?若存在,求出相应的x 、t 的值;若不存在,请说明理由.附加题(满分20分)25.(本题2分)如图,A 、B 两点的坐标分别为(2,4),(6,0),点P 是x 轴上一点,且△ABP 的面积为6,则点P 的坐标为 ▲ .26.(本题2分)已知关于x 的不等式组⎩⎨⎧>-<+0052m x x ,的整数解有且只有2个,则m 的取值范围是 ▲ .27.(本题8分)在△ABC 中,∠BAC =90°,AB =AC ,∠ABC=∠ACB=45°,在△ABC 外侧作∠ACM ,使得∠ACM =12∠ABC ,点D 是射线CB 上的动点,过点D 作直线CM 的垂线,垂足为E ,交直线AC 于F .(1)当点D 与点B 重合时,如图1所示,线段DF 与EC 的数量关系是 ▲ ;(2)当点D 运动到CB 延长线上某一点时,线段DF 和EC 是否保持上述数量关系?请在图2中画出图形,并说明理由.28.(本题8分)直线MN 与直线PQ 垂直相交于O ,点A 在直线PQ 上运动,点B 在直线MN 上运动.(1)如图1,已知AE 、BE 分别是∠BAO 和∠ABO 角的平分线,点A 、B 在运动的过程中,∠AEB 的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,直接写出∠AEB 的大小.(2)如图2,已知AB 不平行CD , AD 、BC 分别是∠BAP 和∠ABM 的角平分线,又DE 、CE分别是∠ADC 和∠BCD 的角平分线,点A 、B 在运动的过程中,∠CED 的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值.(3)如图3,延长BA 至G ,已知∠BAO 、∠OAG 的角平分线与∠BOQ 的角平分线及延长线相交于E 、F ,在△AEF 中,如果有一个角是另一个角的3倍,请直接写出∠ABO 的度数.2015~2016学年度第二学期期末测试七年级数学参考答案必做题(满分100分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是二、填空题(本大题共6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.4 12.15 13.⎩⎨⎧==.5,0y x ⎩⎨⎧==.2,2y x 14.3<x <13 15.2 16.(0,5)或(0,-5)三、解答题(本大题共8小题,共52分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(1)解:原式=4+2-1-3……………………………2分=2……………………………4分(2)解:①×2得2x -2y =8 ③……………………………5分③+②得6x =6x =1……………………………6分把x =1代入①得y =-3 ……………………………7分∴方程的解为⎩⎨⎧==.3-,1y x ……………………………8分 18.(1) x ≥3(2分) (2)x ≤5(2分) (3)画图2分,图略(4)3≤x ≤5(1分)19.(1)S ABC =0.5×6×5=15……………………………2分(2)画图略,……………………………4分A 1(2,3)、B 1(2,9)、C 1(7,8)……………7分20.证明:∵∠1=∠2,∴∠CAB =∠EAD ……………………………1分在△CAB 和△EAD 中,AC AE CAB EAD AB AD =⎧⎪∠=∠⎨⎪=⎩……………………………3分∴△CAB ≌△EAD ,……………………………4分∴BC =DE .……………………………5分21.解:(1)本次调查的学生总人数:70÷35%=200(人)………………1分b =40÷200=20%,……………………………2分c =10÷200=5%,……………………………3分a =1-(35%+20%+10%+5%)=30%.………………………4分(2)补全的条形统计图如图所示……………………………6分(3)全校选择“科学实验”社团的学生人数约为1200×35%=420(人) …7分22.解:(1)1;5 .(每空1分,共2分)(2)将上述值代入公式可得:4(41)(164)1245(51)(255)524a b a b ⨯-⎧⋅-+=⎪⎪⎨⨯-⎪⋅-+=⎪⎩①②………,4分 化简得:414519a b a b -=⎧⎨-=⎩解之得:56a b =⎧⎨=⎩…………………………5分 23.解:(1)设初期购得原材料a 吨,每天所耗费的原材料为b 吨,根据题意得:6361030a b a b -=⎧⎨-=⎩,……………………………2分解得451.5a b =⎧⎨=⎩,. 答:初期购得原材料45吨,每天所耗费的原材料为1.5吨…………3分(2)设再生产x 天后必须补充原材料,依题意得:4516 1.5 1.5(120%)3x -⨯-+≤,………………………5分解得:10x ≥.答:最多再生产10天后必须补充原材料……………………………6分24.解:(1)当t =2时,AP =BQ =2,BP =AC =6,……………………………1分 又∠A =∠B =90°,在△ACP 和△BPQ 中,AP BQ A B AC BP=⎧⎪∠=∠⎨⎪=⎩∴△ACP ≌△BPQ (SAS )……………………………2分∴∠ACP =∠BPQ ,∴∠APC +∠BPQ =∠APC +∠ACP =90°.∴∠CPQ =90°,……………………………3分即线段PC 与线段PQ 垂直……………………………4分(2)①若△ACP ≌△BPQ ,则AC =BP ,AP =BQ ,⎩⎨⎧==.2,-86xt t t , 解得⎩⎨⎧==.2,2x t ;……………………………6分 ②若△ACP ≌△BQP ,则AC =BQ ,AP =BP ,⎩⎨⎧-==.8,6t t xt ,解得⎪⎪⎩⎪⎪⎨⎧==.38,49t x ;.……………………………8分 综上所述,存在⎩⎨⎧==.2,2x t 或⎪⎪⎩⎪⎪⎨⎧==.38,49t x 使得△ACP 与△BPQ 全等. 附加题(满分20分)25.(3,0)、(9,0)……………………………2分26. -5≤m <-4……………………………2分27.(1)DF =2EC .……………………………2分(2)DF =2EC ;……………………………3分理由如下:作∠PDE =22.5,交CE 的延长线于P 点,交CA 的延长线于N ,如图2所示:……………………………4分∵DE ⊥PC ,∠ECD =67.5,∴∠EDC =22.5°,∴∠PDE =∠EDC ,∠NDC =45°,∴∠DPC =67.5°,在△DPE和△DEC中,PDE CDEDPE DCE DE DE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DPE≌△DEC(AAS),∴PD=CD,PE=EC,∴PC=2CE,………5分∵∠NDC=45°,∠NCD=45°,∴∠NCD=∠NDC,∠DNC=90°,∴△NDC是等腰直角三角形∴ND=NC且∠DNC=∠PNC,在△DNF和△PNC中,DNC PNCND NCPDE PCN∠=∠⎧⎪=⎨⎪∠=∠⎩,……………………………7分∴△DNF≌△PNC(ASA),∴DF=PC,∴DF=2CE……………………………8分28.(1)135°……………………………2分(2)∠CED的大小不变,……………………………3分延长AD、BC交于点F.∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∴∠PAB+∠MBA=270°,∵AD、BC分别是∠BAP和∠ABM的角平分线,∴∠BAD=12∠BAP,∠ABC=12∠ABM,∴∠BAD+∠ABC=12(∠PAB+∠ABM)=135°,∴∠F=45°,……………………………5分∴∠FDC+∠FCD=135°,∴∠CDA+∠DCB=225°,∵DE、CE分别是∠ADC和∠BCD的角平分线,∴∠CDE+∠DCE=112.5°,∴∠E=67.5°……………………………6分(3)60°或45°……………………………8分。

苏州市七年级下学期数学期末考试试卷

苏州市七年级下学期数学期末考试试卷

苏州市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列计算中,正确的是()A . a2+a3=a5B . a6a2=a3C . (a2)3=a6D . 2a3a=6a2. (2分)若x>y,则下列式子中错误的是()A . x﹣3>y﹣3B . x+3>y+3C . x>yD . ﹣3x>﹣3y3. (2分) (2017七下·涪陵期末) 不等式组的解集在数轴上表示为()A .B .C .D .4. (2分)关于x、y的方程组的解也是方程3x+2y=34的一组解,那么m的值是()A . 2B . -1C . 1D . -25. (2分)下列计算正确的是()A .B .C .D .6. (2分)如图,已知A.D.C.F在同一条直线上,AB=DE , BC=EF ,要使△ABC≌△DEF ,还需要添加一个条件是()A . BC∥EFB . ∠B=∠FC . AD=CFD . ∠A=∠EDF7. (2分) (2019九下·巴东月考) 下列运算正确的是()A . x3•x2=x6B . 3a2+2a2=5a2C . a(a﹣1)=a2﹣1D . (a3)4=a78. (2分) (2018八上·兰考期中) 若代数式x2﹣10x+k2是一个完全平方式,则k=()A . 25B . 25或﹣25C . 10D . 5或﹣59. (2分) (2017九·龙华月考) 如图4,已知五边形ABCDE是⊙O的内接正五边形,且⊙O的半径为1.则图中阴影部分的面积是()A .B .C .D .10. (2分) (2018七上·自贡期末) ,那么等于()A .B .C .D .二、填空题 (共8题;共8分)11. (1分) (2020七下·东台月考) 若0.0000103=1.03×10n ,则n=________.12. (1分) (2019九下·中山月考) 计算:(﹣)5×26=________.13. (1分)已知,用含的代数式表示为________.14. (1分) (2018七上·吴中月考) 已知2+ =22× ,3+ =32× ,4+ =42× ,10+ =102× ,则a+b=________.15. (1分) (2020九下·东台期中) 如图,将△ABC绕点C顺时针旋转90°得到△EDC,若点A、D、E在同一条直线上,∠ACD=70°,则∠EDC的度数是________.16. (1分)(2017七下·江东月考) 若方程组的解为,则方程组的解是________.17. (1分) (2016八上·浙江期中) 若等腰三角形的一个角为80°,则顶角为________.18. (1分)如图,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且∠EAF= ∠BAD,延长FD到点G,使DG=BE,连接AG,下列结论:①△ABE≌△ADG;②△AEF≌△AGF;③EF=BE+DF;④AD+BE >AF,正确的有________三、解答题 (共9题;共76分)19. (10分) (2017七下·盐都期中) 计算:(1);(2) .20. (10分) (2019八下·山亭期末)(1)因式分解:;(2)解方程:21. (10分) (2020七下·扬州期中) 解方程组:(1)(2)22. (5分) (2018八上·如皋期中) 先化简,再求值:,其中x=1,y=2.23. (1分) (2020七下·龙岩期中) 在如图所示的方格中,每个小方格都是边长为1个单位长度的正方形,的三个顶点都在格点(小方格的顶点)上.(1)请建立适当的平面直角坐标系,使,,并写出点的坐标;(2)在(1)的条件下,将先向右平移4个单位长度再向上平移2个单位长度后可得到,请在图中画出平移后的,并分别写出点,,的坐标.24. (5分)如图1,在四边形ABCD中,∠CDB=2∠ABD,∠ABC=105°,∠A=∠C=45°.(1)求∠ABD;(2)求证:CD=AB;(3)如图2,过点C作CF⊥BD于点E,交AB于点F,若AB=3,则BF+BE等于多少?25. (10分)(2017·五莲模拟) 骑自相车旅行越来越受到人们的喜爱,顺风车行经营的A型车2016年4月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售比去年增加400元,若今年4月份与去年4月份卖出的A型车数量相同,则今年4月份A型车销售总额将比去年4月份销售总额增加25%.(1)求今年4月份A型车每辆销售价多少元(用列方程的方法解答);(2)该车行计划5月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?A、B两种型号车的进货和销售价格如表:A型车B型车进货价格(元/辆)11001400销售价格(元/辆)今年的销售价格240026. (10分)(2020·桂阳模拟) 某商店购进A、B两种商品,购买1个A商品比购买1个B商品多花10元,并且花费300元购买A商品和花费100元购买B商品的数量相等.(1)求购买一个A商品和一个B商品各需要多少元;(2)商店准备购买A、B两种商品共80个,若A 商品的数量不少于B商品数量的4倍,并且购买A、B商品的总费用不低于1000元且不高于1050元,那么商店有哪几种购买方案?27. (15分) (2019八上·武汉月考) 如图,在平面直角坐标系中A(a,0),B(0,b),且a,b满足.(1)求A、B的坐标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏州市立达中学2016-2017学年第二学期期末考试试卷
初一数学试卷 2017.6
一.选择题 (每题2分,共16分)
1.某球形流感病毒的直径约为0.000 000 085 m ,用科学记数法表示该数据为
A. 8.5-8
B. 85 × 10-9
C. 0.85 ×10-7
D. 8.5 ×10-8 2.下列各式中,不能用平方差公式计算的是
A .(2x ﹣y )(2x + y )
B .(x ﹣y )(﹣y ﹣x )
C .(b ﹣a )(b + a )
D .(﹣x + y )(x ﹣y )
3.下列从左到右的变形,属于分解因式的是
A .(a + 3)(a ﹣3)=a 2﹣9
B .x 2 + x ﹣5= x (x ﹣1) ﹣5
C .a 2 + a =a (a + 1)
D .x 3 y =x ·x 2·y
4.若实数a ,b ,c 在数轴上对应点的位置如图所示,则下列 不等式成立的是
A .ac>bc
B .ab>cb
C .a + c>b + c
D .a + b>c + b 5.当x =1时,代数式ax 3﹣3bx +4的值是7,则当x =﹣1时,这个代数式的值是( ) A . 7
B . 3
C . 1
D . ﹣7
6.在ABC ∆中,23A B C ∠=∠=∠,则ABC ∆是( )
A.锐角三角形
B.直角三角形
C.钝角三角形
D.都有可能
7.一个多边形的内角和大于1100°,小于1400°这个多边形的边数是 A .6 B .7 C .8 D .9
8.若关于x 的不等式组{
0521x a x -≤-<.的整数解只有1个,则a 的取值范围是
A .2<a <3
B .3≤a <4
C .2<a ≤3
D .3<a ≤4 二.填空题 (每题2分,共16分) 9. x 5÷x 3= .
10.分解因式:2x-4y = .
11.已知m + n =5,m n =3,则m 2 n + m n 2= .
12.二元一次方程x -y =l 中,若x 的值大于0,则y 的取值范围是 . 13.写出命题“对顶角相等”的逆命题:
14.若x —2y —3=0,则2x ÷4y = .
15. 如图,△ABC ≌△ADE ,BC 的延长线交DA 于F ,交DE 于G ,∠D =25°,∠E =105°, ∠DAC =16°,则∠DGB 的度数为 .
第15题 16.如图,A 、B 、C 分别是线段1A B ,1B C ,1C A 的中点,若△A 1B 1C 1的面积是a , 那么△ABC 的面积是 .(用a 的代数式表示)
三.解答题
17. 计算(每题3分,共6分)
(1) (π
-1)0-
1
12-⎛⎫ ⎪⎝⎭
-22 (2) (-3a )2
﹒a 4 +(-2a 2)3
18.将下列各式分解因式:(每题3分,共9分) (1) 2
24x xy - (2) 32
44y y y -+ (3) 2
2
2
(1)(1)x y y -+-
19. 解下列方程组或不等式(组)(每题3分,共9分)
(1)
{
23
431y x x y =--=
(2)2252
3
x x x +--≤
(3)253(2),1.23x x x x
+≤+⎧⎪-⎨<⎪⎩
, 并写出其整数解
20.(6分)先化简,再求值:(2a + b )(2a ﹣b )+3(2a ﹣b )2+(﹣3a )(4a ﹣3b ),其中a =-1, b =-2
A
B
B 1
1
C
第16题
21.(6分)如图,已知AB ∥CD ,BC 平分∠ABE ,∠C =27°,求∠BED 的度数.
22.(8分)己知方程组5214x y a
x y a +=+⎧⎨
-=-⎩
的解x 、y 的值的符号相反. 求a 的取值范围;
23.(8分)如图1,△ABC 中,∠C=900,BC=3,AC=4,AB=5,将△ABC 绕着点B 旋转一
定的角度,得到△DEB
(1)、若点F 为AB 边上中点,连接EF ,则线段EF 的范围为
(2)、如图2当△DEB 直角顶点E 在AB 边上时,延长DE ,交AC 边于点G ,请问线段DE 、EG 、 AG 具有怎样的数量关系,请写出探索过程
24.(8分)某中学拟组织七年级师生去参观苏州博物馆.下面是李老师和小芳、小明同学有关租车问题的对话: 李老师:“客运公司有60座和45座两种型号的客车可供租用,60座客车每辆每天的租金比45座的贵150元.” 小芳:“八年级师生昨天在这个客运公司租了4辆60座和2辆45座的客车到苏州博物馆参观,一天的租金共计5100元.” 小明:“如果我们七年级租用45座的客车a 辆,那么还有15人没有座位;如果租用60座的客车可少租2辆,且正好坐满.”
图1 图2
G
B
A
E
F
D
B
E
根据以上对话,解答下列问题:
(1)、参加此次活动的七年级师生共有________人;
(2)、客运公司60座和45座的客车每辆每天的租金分别是多少元?
(3)、若同时租用两种或一种客车,要使每位师生都有座位,且每辆客车恰好坐满,问有几种租车方案?哪一种租车最省钱?
25.(8分)已知如图1梯形ADEB 中,AD ⊥MN ,BE ⊥MN ,垂足分别为点D 、点E,点C 在MN 上,CD=BE,∠ACB=90°.
(1)、求证:∠ACD=∠CBE
(2)、若DE=8,求梯形ADEB 的面积 (3)、如图2,设梯形ADEB 的周长为...m .,AB 边中点O 处有两个动点P 、Q 同时出发....
,沿着O →A →D →E →B →O 的方向移动,点P 的速度是点Q 的3.倍.,当点Q 第一..次到达...B .点.时,两点同时停止....
移动. ①、两点同时停止时,点P 移动的路程与点Q 移动的路程之差 2m (填“<”,“>”
或“=”)
②、移动过程中,点P 能否和点Q 相遇?如果能,则用直线错误!未找到引用源。

连接相遇点和点O ,并探索直线错误!未找到引用源。

与AB 的位置关系,写出推理过程;如果不能,写出理由.。

相关文档
最新文档