空间几何体的外接球问题

合集下载

立体几何之外接球问题含答案

立体几何之外接球问题含答案

立体几何之外接球问题一讲评课1课时总第课时月日1、已知如图所示的三棱锥的四个顶点均在球的球面上,和所在的平面互相垂直,,,,则球的表面积为( ? )A. B. C. D.2、设三棱柱的侧棱垂直于底面,所有棱的长都为,顶点都在一个球面上,则该球的表面积为(??)A.B. C.D.3、已知是球的球面上两点,,为该球面上的动点,若三棱锥体积的最大值为,则球的表面积为( ? ?)A. B. C. D.4、如图是某几何体的三视图,正视图是等边三角形,侧视图和俯视图为直角三角形,则该几何体外接球的表面积为(?)A.B. C.D.5、已知都在半径为的球面上,且,,球心到平面的距离为1,点是线段的中点,过点作球的截面,则截面面积的最小值为()A. B.C. D.6、某几何体的三视图如图所示,这个几何体的内切球的体积为(? )A.B.C. D.7、四棱锥的所有顶点都在同一个球面上,底面是正方形且和球心在同一平面内,当此四棱锥的体积取得最大值时,它的表面积等于,则球的体积等于(?)A. B. C. D.8、一个三条侧棱两两互相垂直并且侧棱长都为的三棱锥的四个顶点全部在同一个球面上,则该球的表面积为( ? )A.B. C.D.9、一个棱长都为的直三棱柱的六个顶点全部在同一个球面上,则该球的表面积为( ?)A.B.C. D.10、一个几何体的三视图如图所示,其中正视图是正三角形,则几何体的外接球的表面积为( ? )A. B. C. D.立体几何之外接球问题二讲评课1课时总第课时月日11、若圆锥的内切球与外接球的球心重合,且内切球的半径为,则圆锥的体积为__________.12、底面为正三角形且侧棱与底面垂直的三棱柱称为正三棱柱,则半径为的球的内接正三棱柱的体积的最大值为__________.13、底面为正三角形且侧棱与底面垂直的三棱柱称为正三棱柱,则棱长均为的正三棱柱外接球的表面积为__________.14、若一个正四面体的表面积为,其内切球的表面积为,则__________. 15、若一个正方体的表面积为,其外接球的表面积为,则__________. 16.已知边长为的正的三个顶点都在球的表面上,且与平面所成的角为,则球的表面积为__________. 16、在三棱锥中,平面,,,,则此三棱锥外接球的体积为__________18、底面是正多边形,顶点在底面的射影是底面中心的棱锥叫正棱锥.如图,半球内有一内接正四棱锥,该四棱锥的体积为,则该半球的体积为__________.17、三棱柱的底面是直角三角形,侧棱垂直于底面,面积最大的侧面是正方形,且正方形的中心是该三棱柱的外接球的球心,若外接球的表面积为,则三棱柱的最大体积为__________.20、一长方体的各顶点均在同一个球面上,且一个顶点上的三条棱长分别为,则这个球的表面积为__________.立体几何之三视图问题1讲评课 1课时 总第 课时 月 日3、一个几何体的三视图如下图所示,则这个几何体的体积是( ) A. B. C. D.4、如图,网格纸上小正方形的边长为,粗线画出的是某几何体的三视图,则它的体积为(??? ) A.B.C.D.5、某几何体的三视图如图所示,则它的表面积为( ? ?)A.B.C.D.6、某几何体三视图如图所示,则该几何体的体积为(?? ) A. B. C.D.7、多面体的底面矩形,其正(主)视图和侧(左)视图如图,其中正(主)视图为等腰梯形,侧(左)视图为等腰三角形,则该多面体的体积为( ???) A.B.C.D.8、某一简单几何体的三视图如图所示,该几何体的外接球的表面积是(?? ) A.B.C.D.9、如图,网格纸上小正方形的边长为,粗实线画出的是某多面体的三视图,则该多面体的各面中,面积的最大值是(?? ) A. B.C. D. 10、一个几何体的三视图如图,则这个几何体的表面积是(?? )A.B.C.D.11、若某空间几何体的三视图如图所示,根据图中数据,可得该几何体的表面积是(?? ) A.B.C.D.12、某几何体三视图如下图所示,则该几何体的体积是(?? )D.A. B. C.13、一个三棱锥的三视图如图所示,则该棱锥的外接球的体积为(?)A. B.C. D.14、已知一空间几何体的三视图如图所示,其中正视图与左视图都是等腰梯形,则该几何体的体积为(?)A.D.B. C.15、如图,网格纸上小正方形的边长为,粗实线画出的是某几何体的三视图,则该几何体的的体积为(?)C. D.A. B.立体几何之三视图问题2讲评课1课时总第课时月日16、某长方体的三视图如右图,长度为的体对角线在正视图中的长度为,在侧视图中的长度为,则该长方体的全面积为__________.17、一个空间几何体的三视图如下图所示,则该几何体外接球的表面积为__________.18、一个正三棱柱的三视图如图所示,求这个正三棱柱的表面积__________.19、已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:),则该四棱锥的体积为__________.20、一个几何体的三视图如图所示(单位:),则该几何体的体积为__________.21、已知一个几何体的三视图如图所示(单位:),则该几何体的体积为__________.22、某三棱锥的三视图如图所示,其中俯视图是正方形,则该三棱锥最长棱的长是__________.23、一个多面体的三视图如图所示,则该多面体的表面积为____.24、2016年11月18日13时59分,神舟十一号飞船返回舱在内蒙古中部预定区域成功着陆. 神舟十一号载人飞行,是我国迄今为止时间最长的一次载人航天飞行,在轨33天飞行中,航天员景海鹏、陈冬参与的实验和实验多达38项. “跑台束缚系统”是未来空间站长期飞行的关键锻炼设备,本次任务是国产跑台首次太空验证. 如图所示是“跑台束缚系统”中某机械部件的三视图(单位:),则此机械部件的表面积为__________.25、一个几何体的三视图如图所示,则该几何体的表面积为__________.立体几何之外接球问题答案解析第1题答案C第1题解析如图所示,∵,∴为直角,即过的小圆面的圆心为的中点,和所在的平面互相垂直,则圆心在过的圆面上,即的外接圆为球的大圆,由等边三角形的重心和外心重合易得球半径,球的表面积为,故选.第2题答案B第2题解析设球心为,设正三棱柱上底面为,中心为,因为三棱柱所有棱的长都为,则可知?,,又由球的相关性质可知,球的半径,所以球的表面积为,故选.第3题答案C第3题解析如图所示,当点位于垂直于面的直径端点时,三棱锥的体积最大,设球的半径为,此时,故,则球的表面积为,故选.第4题答案D第4题解析该几何体为三棱锥,设球心为,分别为和的外心,易求得,,∴球的半径,∴该几何体外接球的表面积为.第5题答案B第5题解析∵,∴,∴圆心在平面的射影为的中点,∴,∴.∴,当线段为截面圆的直径时,面积最小,∴截面面积的最小值为.第6题答案C第6题解析此几何体是底面边长为,高为的正四棱锥,可算出其体积为,表面积为. 令内切球的半径为,则,从而内切球的体积为,故选C.第7题答案B第7题解析由题意可知四棱锥的所有顶点都在同一个球面上,底面是正方形且和球心在同一平面内,当体积最大时,可以判定该棱锥为正四棱锥,底面在球大圆上,可得知底面正方形的对角线长度为球的直径,且四棱锥的高半径,进而可知此四棱锥的四个侧面均是边长为的正三角形,底面为边长为的正方形,所以该四棱锥的表面积为?,于是,,进而球的体积. 故选.第8题答案B第8题解析由题可知该三棱锥为一个棱长的正方体的一角,则该三棱锥与该正方体有相同的外接球,又正方体的对角线长为,则球半径为,则. 故选.第9题答案A第9题解析如图:设、为棱柱两底面的中心,球心为的中点.又直三棱柱的棱长为,可知,,所以,因此该直三棱柱外接球的表面积为,故选.?第10题答案D第10题解析此几何体是三棱锥,底面是斜边长为的等腰直角三角形,且顶点在底面内的射影是底面直角三角形斜边的中点.易知,三棱锥的外接球的球心在上.设球的半径为,则,∵,∴,解得:,∴外接球的表面积为.第11题答案第11题解析过圆锥的旋转轴作轴截面,得及其内切圆⊙和外切圆⊙,且两圆同圆心,即的内心与外心重合,易得为正三角形,由题意⊙的半径为,∴的边长为,∴圆锥的底面半径为,高为,∴.第12题答案第12题解析设球心为,正三棱柱的上下底面的中心分别为,,底面正三角形的边长为,则,由已知得底面,在中,,由勾股定理得,故三棱柱体积,又,所以,则.第13题答案第13题解析底面正三角形外接圆的半径为,圆心到底面的距离为,从而其外接圆的半径,则该球的表面积.第14题答案第14题解析设正四面体棱长为,则正四面体表面积为,其内切球半径为正四面体高的,即,因此内切球表面积为,则.第15题答案第15题解析设正方体棱长为,则正方体表面积为,其外接球半径为正方体体对角线长的,即为,因此外接球表面积为,则.第16题答案第16题解析设正的外接圆圆心为,易知,在中,,故球的表面积为.第17题答案第17题解析根据题意球心到平面的距离为,在的外接圆的半径为,所以球的半径为,所以此三棱锥的外接球的体积为,所以答案为:.第18题答案第18题解析设所给半球的半径为,则棱锥的高,底面正方形中有,所以其体积,则,于是所求半球的体积为.第19题答案第19题解析依题意,外接球的表面积为,所以.如图所示,三棱柱外接圆球心为,设,在直角三角形中,所以.三棱柱的体积为,当且仅当时取得最大值.第20题答案第20题解析由已知可得长方体的体对角线为球的直径:,所以.所以球的面积为.。

立体几何专题:外接球问题中常见的8种模型(学生版)

立体几何专题:外接球问题中常见的8种模型(学生版)

立体几何专题:外接球问题中常见的8种模型1.知识梳理一、墙角模型适用范围:3组或3条棱两两垂直;可在长方体中画出该图且各顶点与长方体的顶点重合直接用公式(2R )2=a 2+b 2+c 2,即2R =a 2+b 2+c 2,求出R【补充】图1为阳马,图2和图4为鳖臑二、麻花模型适用范围:对棱相等相等的三棱锥对棱相等指四面体的三组对棱分别对应相等,且这三组对棱构成长方体的三组对面的对角线。

推导过程:三棱锥(即四面体)中,已知三组对棱分别相等,(AB =CD ,AD =BC ,AC =BD )第一步:画出一个长方体,标出三组互为异面直线的对棱;第二步:设出长方体的长宽高分别为a ,b ,c ,AD =BC =x ,AB =CD =y ,AC =BD =z ,列方程组,a 2+b 2=x 2b 2+c 2=y 2c 2+a 2=z 2⇒(2R )2=a 2+b 2+c 2=x 2+y 2+z 22,补充:V A −BCD =abc −16abc ×4=13abc 第三步:根据墙角模型,2R =a 2+b 2+c 2=x 2+y 2+z 22,R 2=x 2+y 2+z 28,R =x 2+y 2+z 28,求出R .三、垂面模型适用范围:有一条棱垂直于底面的棱锥。

推导过程:第一步:将ABC 画在小圆面上,A 为小圆直径的一个端点,作小圆的直径AD ,连接PD ,则PD 必过球心O .第二步:O 1为ABC 的外心,所以OO 1⊥平面ABC ,算出小圆O 1的半径O 1D =r(三角形的外接圆直径算法:利用正弦定理a sin A =b sin B=csin C =2r ,OO 1=12PA .第三步:利用勾股定理求三棱锥的外接球半径:(1)(2R )2=PA 2+(2r )2⇔2R =PA 2+(2r )2;(2)R 2=r 2+OO 21⇔R =r 2+OO 21.公式:R 2=r 2+h 24四、切瓜模型适用范围:有两个平面互相垂直的棱锥推导过程:分别在两个互相垂直的平面上取外心O 1、O 2过两个外心做两个垂面的垂线,两条垂线的交点即为球心0,取B C 的中点为E ,连接OO 1、OO 2、O 2E 、O 1E 为矩形由勾股可得|OC |2=|O 2C |2+|OO 2|2=|O 2C |2+|O 1C |2-|CE |2∴R 2=r 21+r 22-l 24公式:R 2=r 21+r 22-l 24五、斗笠模型适用于:顶点的投影在底面的外心上的棱锥推导过程:取底面的外心01,连接顶点与外心,该线为空间几何体的高h ,在h 上取一点作为球心0,根据勾股定理R 2=(h -R )2+r 2⇔R =r 2+h 22h公式:R =r 2+h 22h六、矩形模型适用范围:两个直角三角形的斜边为同一边,则该边为球的直径推导过程:图中两个直角三角形ΔPAB 和ΔQAB ,其中∠APB =∠AQB =90°,求外接圆半径取斜边AB 的中点O ,连接OP ,OQ ,则OP =12AB =OA =OB =OQ 所以O 点即为球心,然后在ΔPOQ 中解出半径R 公式:R 2=l22(l 为斜边长度)七、折叠模型适用范围:两个全等三角形或等腰三角形拼在一起,或菱形折叠.推导过程:两个全等的三角形或者等腰拼在一起,或者菱形折叠,设折叠的二面角∠A EC =α,CE =A E =h .如图,作左图的二面角剖面图如右图:H 1和H 2分别为△BCD ,△A BD 外心,分别过这两个外心做这两个平面的垂线且垂线相交于球心O CH 1=r =BD 2sin ∠BCD,EH 1=h -r ,OH 1=(h -r )tanα2由勾股定理可得:R 2=OC 2=OH 21+CH 21=r 2+(h -r )2tan 2α2.公式:R 2=r 2+(h -r )2tan 2α2八、鳄鱼模型适用范围:所有二面角构成的棱锥,普通三棱锥方法:找两面外接圆圆心到交线的距离m ,n ,找二面角α,找面面交线长度l 推导过程:取二面角两平面的外心分别为O 1,O 2并过两外心作这两个面的垂线,两垂线相交于球心O ,取二面角两平面的交线中点为E ,则O ,O 1,E ,O 2四点共圆,由正弦定理得:OE =2r =O 1O 2sin α①在ΔO 1O 2E 中,由余弦定理得:O 1O 2 2=O 1E 2+O 2E 2-2O 1E O 2E cos α②由勾股定理得:OD 2=O 1O 2+O 1D 2③由①②③整理得:OD2=O 1O 2+O 1D 2=OE 2-O 1E 2+O 1D 2=O 1O 2sin α2-O 1E 2+O 1D 2=O 1E2+O 2E 2-2O 1E O 2E cos αsin 2α-O 1E 2+O 1D 2=O1E2+O2E2-2O1EO2Ecosαsin2α-O1E2+O1B2记O1E=m,O2E=n,AB=l,则R2=m2+n2-2mn cosαsin2α+l22公式:R2=m2+n2-2mn cosαsin2α+l222.常考题型3.题型精析题型一:墙角模型1(2023·高一单元测试)三棱锥A-BCD中,AD⊥平面BCD,DC⊥BD,2AD=BD=DC=2,则该三棱锥的外接球表面积为()A.3π2B.9π2C.9πD.36π1.(2022秋·陕西西安·高一统考期末)在《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑.已知在鳖臑A-BCD中,满足AB⊥平面BCD,且AB=BD=5,BC=3,CD=4,则此鳖臑外接球的表面积为()A.25πB.50πC.100πD.200π2.(2023·高一课时练习)《九章算术》是我国古代数学名著,它在几何学中的研究比西方早1000多年.在《九章算术》中,将底面为矩形且一侧棱垂直于底面的四棱锥称为阳马.如图P-ABCD是阳马,PA⊥平面ABCD,PA=5,AB=3,BC=4.则该阳马的外接球的表面积为()A.1252π3B.50πC.100πD.500π33.(2023·广西南宁·统考二模)在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑A -BCD 中,AB ⊥平面BCD ,CD ⊥AD ,AB =BD =2,已知动点E 从C 点出发,沿外表面经过棱AD 上一点到点B 的最短距离为10,则该棱锥的外接球的体积为.4.(2023春·辽宁朝阳·高二北票市高级中学校考阶段练习)已知四棱锥P -ABCD 的外接球O 的表面积为64π,PA ⊥平面ABCD ,且底面ABCD 为矩形,PA =4,设点M 在球O 的表面上运动,则四棱锥M -ABCD 体积的最大值为.题型二:麻花模型1(2023春·广东梅州·高二统考期中)已知三棱锥S -ABC 的四个顶点都在球O 的球面上,且SA =BC =2,SB =AC =7,SC =AB =5,则球O 的体积是()A.83π B.3223π C.423π D.823π1.(2022春·江西景德镇·高一景德镇一中校考期中)在△ABC 中,AB =AC =2,cos A =34,将△ABC 绕BC 旋转至△BCD 的位置,使得AD =2,如图所示,则三棱锥D -ABC 外接球的体积为.2.(2023秋·吉林·高一吉林一中校考阶段练习)如图,在△ABC 中,AB =25,BC =210,AC =213,D ,E ,F 分别为三边中点,将△BDE ,△ADF ,△CEF 分别沿DE ,EF ,DF 向上折起,使A ,B ,C 重合为点P ,则三棱锥P -DEF 的外接球表面积为()A.72π B.7143π C.14π D.56π3.(2023·江西·统考模拟预测)在三棱锥P -ABC 中,已知PA =BC =213,AC =BP =41,CP =AB =61,则三棱锥P -ABC 外接球的表面积为()A.77πB.64πC.108πD.72π4.(2022·全国·高三专题练习)已知四面体ABCD 的棱长满足AB =AC =BD =CD =2,BC =AD =1,现将四面体ABCD 放入一个轴截面为等边三角形的圆锥中,使得四面体ABCD 可以在圆锥中任意转动,则圆锥侧面积的最小值为.题型三:垂面模型1(2023·高一单元测试)在三棱锥P -ABC 中,PA ⊥平面ABC ,PA =6,BC =3,∠CAB =π6,则三棱锥P -ABC 的外接球半径为()A.3B.23C.32D.61.(2023·全国·高一专题练习)已知A ,B ,C ,D 在球O 的表面上,△ABC 为等边三角形且边长为3,AD ⊥平面ABC ,AD =2,则球O 的表面积为()A.4πB.8πC.16πD.32π2.(2020春·天津宁河·高一校考期末)在三棱锥P -ABC 中,AP =2,AB =3,PA ⊥面ABC ,且在△ABC 中,C =60°,则该三棱锥外接球的表面积为()A.20π3B.8πC.10πD.12π3.(2023·全国·高一专题练习)已知A ,B ,C ,D 在球O 的表面上,△ABC 为等边三角形且其面积为334,AD ⊥平面ABC ,AD =2,则球O 的表面积为()A.πB.2πC.4πD.8π4.(2022春·山东聊城·高一山东聊城一中校考阶段练习)在四棱锥P -ABCD 中,PA ⊥平面ABCD ,四边形ABCD 为矩形,BC =2,PC 与平面PAB 所成的角为30o ,则该四棱锥外接球的体积为()A.433π B.43πC.823πD.833π题型四:切瓜模型1(2023·贵州贵阳·校联考模拟预测)在三棱锥A -BCD 中,已知AC ⊥BC ,AC =BC =2,AD =BD =6,且平面ABD ⊥平面ABC ,则三棱锥A -BCD 的外接球表面积为()A.8πB.9πC.10πD.12π1.(2023·四川达州·统考二模)三棱锥A -BCD 的所有顶点都在球O 的表面上,平面ABD ⊥平面BCD ,AB =AD =6,AB ⊥AD ,∠BDC =2∠DBC =60°,则球O 的体积为()A.43πB.32π3C.49π3D.323π2.(2023春·陕西西安·高一长安一中校考期中)在直三棱柱ABC -A 1B 1C 1中,AB ⊥BC ,AB =BC =AA 1=4,点P 为B 1C 1的中点,则四面体PABC 的外接球的体积为()A..41416π B.41413π C.41412π D.4141π3.(2022·高一单元测试)四棱锥P -ABCD 的顶点都在球O 的表面上,△PAD 是等边三角形,底面ABCD 是矩形,平面PAD ⊥平面ABCD ,若AB =2,BC =3,则球O 的表面积为()A.12πB.16πC.20πD.32π4.(2021·高一课时练习)在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,且ABCD 为矩形,∠DPA =π2,AD =23,AB =2,PA =PD ,则四棱锥P -ABCD 的外接球的体积为()A.163π B.323π C.643π D.16π5.(2023春·全国·高一专题练习)在四棱锥P-ABCD中,ABCD是边长为2的正方形,AP=PD=10,平面PAD⊥平面ABCD,则四棱锥P-ABCD外接球的表面积为()A.4πB.8πC.136π9D.68π3题型五:斗笠模型1(2023·全国·高一专题练习)正四面体S-ABC内接于一个半径为R的球,则该正四面体的棱长与这个球的半径的比值为()A.64B.33C.263D.31.(2022·高一专题练习)已知正四棱锥P-ABCD(底面四边形ABCD是正方形,顶点P在底面的射影是底面的中心)的各顶点都在同一球面上,底面正方形的边长为10,若该正四棱锥的体积为50 3,则此球的体积为()A.18πB.86πC.36πD.323π2.(2022·全国·高一专题练习)某四棱锥的底面为正方形,顶点在底面的射影为正方形中心,该四棱锥内有一个半径为1的球,则该四棱锥的表面积最小值是()A.16B.8C.32D.243.(2022春·安徽·高三校联考阶段练习)在三棱锥P-ABC中,侧棱PA=PB=PC=10,∠BAC=π4,BC=22,则此三棱锥外接球的表面积为.题型六:矩形模型1(2022春·全国·高一期末)已知三棱锥A-BCD中,CD=22,BC=AC=BD=AD=2,则此几何体外接球的表面积为()A.2π3B.2π C.82π3D.8π1.(2022春·广东惠州·高一校考期中)在矩形ABCD中,AB=6,BC=8,现将△ABC沿对角线AC翻折,得到四面体DABC,则该四面体外接球的体积为()A.1963π B.10003π C.4003π D.5003π2.(2022春·河北沧州·高一校考阶段练习)矩形ABCD中,AB=4,BC=3,沿AC将三角形ABC折起,得到的四面体A-BCD的体积的最大时,则此四面体外接球的表面积值为()A.25πB.30πC.36πD.100π3.(2022春·四川成都·高一统考期末)在矩形ABCD 中,AB =6,AD =8,将△ABC 沿对角线AC 折起,则三棱锥B -ACD 的外接球的表面积为()A.36πB.64πC.100πD.与二面角B -AC -D 的大小有关题型七:折叠模型1(2022春·陕西西安·高一长安一中校考期末)已知菱形ABCD 的边长为3,∠ABC =60°,沿对角线AC 折成一个四面体,使平面ACD 垂直平面ABC ,则经过这个四面体所有顶点的球的体积为().A.5152π B.6πC.515πD.12π1.已知等边△ABC 的边长为2,将其沿边AB 旋转到如图所示的位置,且二面角C -AB -C 为60°,则三棱锥C -ABC 外接球的半径为2.(2023·广西南宁·统考二模)蹴鞠,又名“蹴球”“蹴圈”等,“蹴”有用脚蹴、踢的含义,鞠最早系外包皮革、内饰米糠的球,因而“蹴鞠”就是指古人以脚蹴、踢皮球的活动,类似今日的足球,现已知某“鞠”的表面上有四个点A ,B ,C ,D 满足AB =BC =CD =DA =DB =433cm ,AC =23cm ,则该“鞠”的表面积为cm 2.3.(2022秋·福建泉州·高三校考开学考试)在三棱锥S -ABC 中,SA =SB =AC =BC =2,SC =1,二面角S -AB -C 的大小为60°,则三棱锥S -ABC 的外接球的表面积为.4.(2022秋·山东德州·高二统考期中)已知在三棱锥中,S -ABC 中,BA ⊥BC ,BA =BC =2,SA =SC =22,二面角B -AC -S 的大小为5π6,则三棱锥S -ABC 的外接球的表面积为()A.56π3B.58π3C.105π4D.124π9题型八:鳄鱼模型1(2022春·四川成都·高一树德中学校考期末)已知在三棱锥S-ABC中,AB⊥BC,AB=BC=2,SA =SC=22,二面角B-AC-S的大小为2π3,则三棱锥S-ABC的外接球的表面积为()A.124π9B.105π4C.105π9D.104π91.(2023春·全国·高一专题练习)如图,在三棱锥P-ABC,△PAC是以AC为斜边的等腰直角三角形,且CB=22,AB=AC=6,二面角P-AC-B的大小为120°,则三棱锥P-ABC的外接球表面积为()A.5103π B.10π C.9π D.4+23π2.(2023·陕西榆林·统考三模)在三棱锥A-BCD中,AB⊥BC,BC⊥CD,CD=2AB=2BC= 4,二面角A-BC-D为60°,则三棱锥A-BCD外接球的表面积为()A.16πB.24πC.18πD.20π3.(2023春·安徽阜阳·高三阜阳市第二中学校考阶段练习)如图1,四边形ABCD中,AB=AD =2,CB=CD=2,AB⊥AD,将△ABD沿BD翻折至△PBD,使二面角P-BD-C的正切值等于2,如图2,四面体PBCD的四个顶点都在同一个球面上,则该球的表面积为()A.4πB.6πC.8πD.9π4.(2023·江西南昌·校联考模拟预测)在平面四边形ABCD中,AD=CD=3,∠ADC=∠ACB =90°,∠ABC=60°,现将△ADC沿着AC折起,得到三棱锥D-ABC,若二面角D-AC-B的平面角为135°,则三棱锥D-ABC的外接球表面积为.5.(2023春·广东广州·高三统考阶段练习)在三棱锥P-ABC中,△ABC为等腰直角三角形,AB=AC=2,△PAC为正三角形,且二面角P-AC-B的平面角为π6,则三棱锥P-ABC的外接球表面积为.。

外接球公式总结

外接球公式总结

外接球公式总结
外接球公式是几何中的重要问题,涉及到多面体、旋转体等空间几何图形的外接球问题。

一般情况下,外接球公式可以用来计算几何体的表面积或体积。

以下是一些关于外接球公式的总结:
1. 多面体外接球公式:对于正多面体,各顶点同在一球面上,这个球叫做正多面体的外接球。

正四棱锥的外接球公式为:DU2tR,其中 D 是底面直径,U 是底面边长,t 是棱锥的高,R 是外接球半径。

2. 旋转体外接球公式:旋转体的外接球公式比较复杂,需要根据旋转轴的不同进行分类。

一般情况下,可分为三类:
(1) 旋转轴与底面垂直时,外接球公式为:S=frac{4}{3}R^2,其中 S 是外接球表面积,R 是外接球半径。

(2) 旋转轴与底面平行时,外接球公式为:S=pi R^2,其中 S 是外接球表面积,R 是外接球半径。

(3) 旋转轴不与底面垂直或平行时,需要分类讨论,一般情况下可以采用轴对称性来求解。

3. 球体外接球公式:球体的外接球公式为:S=4pi R^2,其中 S 是外接球表面积,R 是外接球半径。

在实际应用中,外接球公式常常用于计算几何体的面积或体积,也可以用于求解几何体的表面积或体积最小值等问题。

人教版高中数学必修二《空间简单几何体的外接球问题》

人教版高中数学必修二《空间简单几何体的外接球问题》

r1 R R r2
d1
R
O O2 d2
O2 O d2
R R r2
M P1
R O d r O1
R
底面多边形有外接圆的直棱柱 底面多边形有外接圆时, 棱台存在外接球 存在外接球
底面多边形有外接圆时, 棱锥存在外接球
r1=r2=r h h1=h2= 2 h 2 2 2 R =r +( ) 2
R2=r12+d12 R2=r22+d22 h-d1=± d2 r22-r12=d12-d22=h2-2hd1 r12+h2-r22 2 2 2 d1= ,R =r1 +d1 2h
R2=r12+d12 R2=r22+d22 h-d1=± d2 r22-r12=d12-d22=h2-2hd1 r12+h2-r22 2 2 2 d1= ,R =r1 +d1 2h
侧棱相等的三棱锥存在 外接球,球心在高 O1O2上
C A
O'
B
d2=h-R R2=r22+(h-R)2
直三棱柱都有外接球 斜三棱柱无外接球
设底面正方形的中心为 解: P ABCD为正四棱锥 PO' 面ABCD且球心O在线段PO' 上 r BD 2 d OO' 4 R R2 d 2 r 2 R 2 16 8R R 2 2 R 9 4
A D O' B A C D d O' P P
2
空间简单几何体的 外接球问题
空间简单几何体的外接球问题
两条主线:
空间简单几何体的 外接球 柱体的外接球
锥体的外接球 台体的外接球
旋转 体 圆柱
圆锥 圆台

高考数学空间几何体的外接球与内切球常见题型

高考数学空间几何体的外接球与内切球常见题型

高考数学空间几何体的外接球与内切球常见题型本文介绍了空间几何体的外接球与内切球的经典类型,其中第一种类型为墙角模型,即三条棱两两垂直,不需要找球心的位置即可求出球半径。

具体方法是找到三条两两垂直的线段,然后使用公式2R=a+b+c或2R=a^2+b^2+c^2来求出R。

例如,在已知各顶点都在同一球面上的正四棱柱的高为4,体积为16的情况下,可以求出该球的表面积为32π。

第二种类型为对棱相等模型,补形为长方体。

在这种情况下,需要找到对棱相等的空间几何体,并补成长方体。

例如,如果三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球的表面积为36π。

除此之外,文章还给出了一些具体的例子,如正三棱锥S-ABC中,M、N分别是棱SC、BC的中点,且AM⊥MN,若侧棱SA=23,则正三棱锥S-ABC外接球的表面积为36π。

同时,文章还提到了一些需要注意的引理,如正三棱锥的对棱互相垂直等。

需要注意的是,文章中存在一些格式错误和明显有问题的段落,需要进行删除或修改。

题设:三棱锥(即四面体)中,已知三组对棱分别相等,求外接球半径(AB=CD,AD=BC,AC=BD)首先,我们可以画出一个长方体,标出三组互为异面直线的对棱,如图2-1所示。

设出长方体的长宽高分别为a,b,c,AD=BC=x,AB=CD=y,AC=BD=z,列方程组:a^2+b^2=x^2b+c=yc^2+a^2=z^2根据墙角模型,我们可以得到2R=a+b+c=2(x^2+y^2+z^2)/(x^2+y^2+z^2),化简得到R=sqrt(2)/2*(x^2+y^2+z^2)/(x^2+y^2+z^2),求出R即可。

例2(1)如下图所示三棱锥A-BCD,其中AB=CD=5,AC=BD=6,AD=BC=7,则该三棱锥外接球的表面积为。

2)在三棱锥A-BCD中,AB=CD=2,AD=BC=3,AC=BD=4,则三棱锥A-BCD外接球的表面积为。

3)正四面体的各条棱长都为2,则该正面体外接球的体积为。

破解外接球问题三法定义,构造,交轨

破解外接球问题三法定义,构造,交轨

㊀㊀㊀破解外接球问题三法:定义,构造,交轨◉湖北省大冶市实验高中㊀石晓皎㊀㊀摘要:理解并掌握一些相关的基本技巧方法,正确确定空间几何体的外接球的球心位置或球的半径,是破解空间几何体外接球问题的关键.结合几个常见的破解此类问题的技巧方法与策略,通过对相关实例的剖析,归纳总结题目类型与解题技巧,为数学教学与复习备考提供参考.关键词:空间几何体;外接球;定义;构造;交轨1引言空间几何体的外接球问题,其问题创设的形式各样,变化多端,是一类常考常新的综合应用问题.解决问题时,关键是利用空间几何体的结构特征,以及外接球的定义㊁性质等,确定空间几何体外接球的球心位置或球的半径.下面结合具体案例,从球的定义(定义法)㊁几何体的结构特征(构造法)以及球的性质(交轨法)等视角来分析与处理空间几何体的外接球问题,并巧妙归类与总结.2破解三法2.1定义法通过题目中所给的空间几何体的结构特征,结合球的定义确定其外接球的球心位置或半径.其实就是抓住球的定义本质进行求解.例1㊀[2022届吉林省白山市高三(上)期末数学试卷(文科)]已知四棱锥P GA B C D 的底面是矩形,P A ʅ平面A B C D ,A B =4,B C =2㊀5,P A =8,则四棱锥P GA B C D 外接球的表面积为(㊀㊀).A.72π㊀㊀B .144π㊀㊀C .50π㊀㊀D.100π分析:根据给定条件,取P C 中点O ,结合线面垂直的判定与性质,利用直角三角形的性质,结合球的定义来确定四棱锥P GA B C D 外接球的球心位置,进而构建关系式计算出球半径,代入球的表面积公式计算即可.图2解析:四棱锥P GA B C D 的底面是矩形,取P C 中点O ,连接A C ,O A ,O B ,O D ,如图1所示.因为P A ʅ平面A B C D ,B C ⊂平面A B C D ,则P A ʅB C .而A B ʅB C ,A B ɘP A =A ,A B ,P A ⊂平面P A B ,则有B C ʅ平面P A B .又P B ⊂平面P A B ,所以B C ʅP B .同理,可证C D ʅP D .而P A ʅA C ,因此O A =O B =O C =O D =12P C .结合球的定义,可知四棱锥P GA B C D 外接球的球心为O ,半径为O A .在矩形A B C D 中,A C 2=A B 2+B C 2,从而得P C =㊀A C 2+P A 2=㊀42+(2㊀5)2+82=10,即球半径O A =5,所以四棱锥P GA B C D 外接球的表面积为S =4πˑ52=100π.故选择答案:D .点评:定义法确定空间几何体外接球的球心位置或半径,其实就是抓住球的定义这一实质,利用球心到球面上任意一点的距离都相等,巧妙综合空间几何体的对称性㊁平面几何图形的基本性质等,结合球的定义巧妙构建相应的关系式,实现问题的化归与应用的目的.2.2构造法通过题目中所给的空间几何体的结构特征,巧妙构造立体几何模型,如所给空间几何体是柱体㊁锥体等,可构造长方体或正方体等特殊立几模型来转化与应用.例2㊀[2022届山西省高三(上)期末考试数学试卷(理科)]已知三棱锥P GA B C 的顶点P 在底面的射影O 为әA B C 的垂心,若әA B C 的面积为S әA B C ,әO B C 的面积为S әO B C ,әP B C 的面积为S әP B C ,满足S әA B C S әO B C =S 2әP B C ,当әP A B ,әP B C ,әP A C 的面积之和的最大值为8时,则三棱锥P GA B C 外接球的体积为(㊀㊀).A.4π3㊀㊀B .8π3㊀㊀C .16π3㊀㊀D.32π3分析:如图2,连接A O ,并延长交B C 于点D .由顶点P 在底面的射影O 为әA B C 的垂心,可得B C ʅP A ,A C ʅP B ,A B ʅP C .由S әA B C S әO B C =S әP B C 2,可得әP O D ʐәA P D ,P A ʅP D .即可得P A ,P B ,P C 两两互相垂直.通过构造立体几何模型法,利用三棱锥P GA B C 的外接球为以P A ,P B ,P C为棱的长方体的外接球,即可建立涉及外接球半径的关系式,结372022年11月上半月㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀解法探究复习备考Copyright ©博看网. All Rights Reserved.㊀㊀㊀合三角形的面积公式以及基本不等式的应用来转化与应用.图2解析:如图2所示,连接A O并延长交B C于点D,连结P D.由于顶点P在底面的射影O为әA B C的垂心,则知A DʅC B.又P Oʅ平面A B C,可得P OʅB C.又A DɘP O=O,所以B Cʅ平面A P D,可得B CʅA P,B CʅP D.同理A CʅP B.由SәA B C SәO B C=S2әP B C,可得A D O D=P D2.又øP D O=øP D A,则有әP O DʐәA P D,所以øA P D=øP O D=90ʎ,即P AʅP D.又P AʅB C,B CɘP D=D,所以A Pʅ平面P B C,而P B⊂平面P B C,故P AʅP B.又P BʅA C,且A PɘA C=A,所以P Bʅ平面A P C,而P B⊂平面A P C,故P BʅP C.所以P A,P B,P C两两互相垂直.所以三棱锥PGA B C的外接球为以P A,P B,P C为棱的长方体的外接球.设三棱锥PGA B C的外接球半径为R,则有P A2+P B2+P C2=4R2.故SәP A B+SәP B C+SәP A C=12P A P B+12P BP C+12P A P Cɤ14(P A2+P B2+P B2+P C2+P A2+P C2)=2R2=8,当且仅当P A=P B=P C时等号成立,此时R=2.所以,三棱锥PGA B C外接球的体积V=43πR3=32π3.故选择答案:D.点评:构造法确定空间几何体的外接球的球心位置或半径,其实就是借助补形思维,通过合理补形等方式构造特殊的空间几何体 正方体或长方体等,利用原几何体与所构造的特殊空间几何体的外接球一致,合理转化,快捷处理,进而利用正方体或长方体外接球的球心是其体对角线的中点(体对角线恰是该外接球的直径)来解决问题.2.3交轨法通过题目中所给空间几何体的结构特征,结合外接球的几何特征,从不同视角确定球心所在的直线,而满足条件的两条相交直线的交点就是对应的外接球球心.例3㊀(2020年陕西省西安市高考数学一模试卷理科)已知әA B C是以B C为斜边的直角三角形,P为平面A B C外一点,且平面P B Cʅ平面A B C,B C=3,P B=2㊀2,P C=㊀5,则三棱锥PGA B C外接球的表面积为.分析:根据题目条件,利用交轨法求解.先求出到A,B,C三点等距离的点的轨迹是直线MN,再求出到P,B两点等距离的点的轨迹是直线D E,则直线MN与直线D E的交点即是三棱锥PGA B C外接球的球心,进而结合余弦定理㊁正弦定理加以分析与求解,确定外接球的半径,即可求解对应的表面积.解析:设M为B C的中点,在平面P B C内过点M作MNʅB C交P B于点N.因为平面P B Cʅ平面A B C,所以MNʅ平面A B C.又三角形A B C是以B C为斜边的直角三角形,所以直线MN上任意一点到A,B,C三点的距离相等.在平面P B C内作线段P B的垂直平分线D E,设D E与MN的交点为O,则点O到P,A,B,C四点的距离都相等,即点O为三棱锥PGA B C外接球的球心,并且点O也是三角形P B C的外心.因此,三棱锥PGA B C外接球的半径与三角形P B C外接圆的半径相等.又P B=2㊀2,B C=3,P C=㊀5,所以在әP B C中,由余弦定理可得c o søP B C=8+9-52ˑ2㊀2ˑ3=㊀22,则s i nøP B C=㊀22.设三棱锥PGA B C外接球的半径为R,结合正弦定理有2R=㊀5㊀22=㊀10,即R=㊀102.所以,三棱锥PGA B C外接球的表面积S=4πR2=10π.故填答案:10π.点评:交轨法确定空间几何体外接球的球心位置或半径,其实就是借助球的相关性质: 球心O与截面圆的圆心O1的连线垂直于截面圆 球心O与弦中点的连线垂直于弦 等,利用满足条件的两条相交直线的交点直接确定空间几何体外接球的球心.3结语解决空间几何体的外接球问题,除了以上借助球的定义(定义法)㊁几何体的结构特征(构造法)以及球的性质(交轨法)等方法来解决外,还可以结合空间坐标法㊁向量法以及其他一些相关的技巧来处理,关键就是要 心中有图 ,正确进行空间想象,构建不同元素之间的联系,合理数学运算,巧妙逻辑推理,实现数学运算㊁直观想象以及逻辑推理等核心素养的培养与提升.Z47复习备考解法探究㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2022年11月上半月Copyright©博看网. All Rights Reserved.。

空间几何体外接球问题精品课件(共27张ppt)全

空间几何体外接球问题精品课件(共27张ppt)全
(3)已知正四面体A-BCD,所有棱长都相等,点 A,B,C ,D都在球O 的表面上,如何求这个球的半径?
合作探究一:
(3)已知正四面体A-BCD,所有棱长都相等,点 A,B,C ,D都在球O 的表面上,如何求这个球的半径?
合作探究一:
(4)已知三棱锥 A-BCD,AB=CD=a,AD=BC=b,AC=BD=c,则三棱锥 A-BCD 外接球的半径?
合作探究二:
(5)已知正三棱锥 P-ABC,点 P,A,B,C 都在球 O 的表面上,顶点 P 到面 ABC 的距离为 h,底面△ABC 外接圆的半径为x,如何求这个球的半径?
O
O'
合作探究二:
(6)已知直三棱柱 ABC-A1B1C1,所有顶点都在球 O 的表面上,直三棱柱的高为 h,底面△ABC 外接圆的半径为x,如何求这个球的半径?
O
O'
O''
针对训练二: 1.正四棱锥的顶点都在同一球面上,若该棱锥的高为 4,底面边长为 2,则该球的表面积为( ) A. B.16π C.9π D. 2. 正三棱柱 ABC-A1B1C1中,AA1=AB=2,则该三棱柱的外接球半径为__________.
空间几何体外接球问题
几何体与球的组合问题,一种是内切球,一种是外接球。纵观高考题,这种位置关系在高考中既是考查的热点,也是考查的难点,这是因为与球有关的几何体能很好地考察学生的空间想象能力以及化归能力。下面就常见几何体的外接球问题进行分析,找出规律,以便同学们更好地迎接高考。
已知正方体ABCD-A1B1C1D1的长、宽、高分别为a、b、c且它的8个顶点都在球面上,求这个球的半径?
长方体外接球的直径等于长方体的体对角线。
复习回顾:

立体几何的外接球问题

立体几何的外接球问题

立体几何中的外接球问题概 述①长方形的外接圆圆心为对角线的中点,222a b R +=(,a b 为长方形的长、宽)。

长方体的外接球球心为体对角线的中点,222(,,2a b c R a b c ++=为长方体的长、宽、高)。

②三角形的外接圆圆心是底边的中垂线的交点,外接圆半径可由,余弦定理求得2sin a r A=;等边三角形的外心是高的三等分点(靠底边);直角三角形的外心是斜边中点。

③三棱锥或其它几何体,其外接球球心一定在过面的外心且与该面垂直的垂线上。

④过球心的截面截得的圆是大圆。

⑤勾股定理、正弦定理、余弦定理、射影定理、面积法、体积法等平面几何性质灵活应用。

1.圆柱、直棱柱、一侧棱垂直底面的棱锥设底面外接圆半径为r ,高为h ,则外接球半径224h R r =+'Rt OAO ∆。

2、圆锥、各侧棱都相等的棱锥(包括正三棱锥、正四棱锥)设底面外接圆半径为r ,高为H ,则外接球半径222H r R H +=,截面图中1Rt OAO ∆勾股定理解得。

()222222H r R H R r R H+=-+⇒=。

3、等腰四面体补成长、宽、高分别为,,x y z 的长方体,则2222222222222222x y b a b c x z c x y z z y a ⎧+=⎪+++=⇒++=⎨⎪+=⎩外接球半径222222222x y z a b c R ++++==。

注:(1)棱长为a 的正四面体外接球半径2226422a a a aR ++==; (2)从某顶点出发,三棱长为,,a b c 的直角三棱锥外接球半径2222a b c R ++=。

补体法:(1)正四面体;(2)等腰四面体;(3)直角三棱锥或其他。

4、有两个面互相垂直的三棱锥设两垂直面的交线长为l ,两垂直面的外接圆半径分别为12,r r 则外接球半径2222212124l R r d r r =+=+-。

cc b baa r 2O O 2O 1C A5、任意三棱锥已知两面外接圆半径分别为12,r r ,两面外心到交线的距离分别为12,d d ,两面的交线长为l ,已知或可求二面角α,2222111222,44l l O E d r O E d r ==-==-,221212122cos O O d d d d α=+-221212122cos sin sin d d d d O O OE ααα+-==,222222121222cos 4sin 4d d d d l l R OE αα+-=+=+。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A
解析:ΔABC为等边三角形,PA=PB=PC=3,
所以ΔPAB≅ ΔPBC≅ ΔPAC。
C
P
以PA,B PB,PC为过同一顶点的三条棱作正方体,
则正方体的外接球即为三棱锥P-ABC的外接球。
A
C
P
B
考点二 空间几何体的内切球
2、等体积法
训练:直三棱柱ABC﹣A1B1C1的各顶点都在同一球面上, 若AB=AC=AA1=2,∠BAC=120°,则此球的表面积等 于 20π.
在△ABC中AB=AC=2,∠BAC=120° C
解得
由正弦定理,可得△ABC外接圆半径r=2
AB
O
设此圆圆心为O',球心为O,在RT△OBO'中 C1
易得球半径 故此球的表面积为4πR2=20π
A1
B1
训练:已知正三棱锥的高为1,底面边长为2,内有一个球 与四个面都相切,则棱锥的内切球的半径为( D )
P
P
P
O
O
O
C
C
C
A
O1
D
A
O1
B
A
O1
B
B
图6
图7-1图8P来自PPA
O2 B
CB
D
O
A O2 O
A C
O2 D
B O
图8-1
图8-2
图8-3
方法点津3:顶点、底面外接圆的圆心与外接球球心三点共线
的锥体可以找“特征三角形”解决外接球问题。
考点一 空间几何体的外接球
堂小练
P C
O D A
B
考点一 空间几何体的外接球
考点一 空间几何体的外接球
2、构造法
A D
B
解析: 正四面体对棱相等,可构造为正 方体。
C
考点一 空间几何体的外接球
3、找特征三角形
A
DR
R
O
r
E
B
过A作AE ⏊面BCD于点E,则O在AE上,
连接DE,DO,
C
关键:顶点、底面外接圆圆心、球 心三点共线。
考点一 空间几何体的外接球
3、找特征三角形
注意:需要高h和底面外接圆半径r
考点一 空间几何体的外接球
2、构造法
解析:顶点P在底面的投影为B,B显然在 底面外接圆上,可构造圆柱
考点一 空间几何体的外接球
2、构造法
D A
C B
D1
C1
A1
B1
方法点津2 :2.可以构造长方体的几何体:
对棱分别相等的三棱锥;
其中最特殊的就是正四面体
课后思考:还有什么几何体能构造长方体?
球面上,SC是球O的直径。若平面SCA ⏊ 面SCB,SA=AC,
SB=BC,三棱锥S-ABC的体积为9,则球O的表面积为

考点一 空间几何体的外接球
堂小练
B
考点一 空间几何体的外接球
练习三棱锥P-ABC中,ΔABC为等边三角形,PA=PB=PC=3,
PA⏊PB,三棱锥P-ABC的外接球体积为( B)
D1 A1
C B
C1 B1
多面体的外接球:多面体的顶点都在球面上;
考点一 空间几何体的外接球
1、直接法
考方点法自点测津(12:01长7全方国体Ⅱ和1圆5)柱长,方可体以的不长找、球宽心、,高直分接别求为外3接,2球,1,
其半顶径点R都。在球O的球面上,则球O的表面积为

A A1
D
C
B
O D1
C1
B1
识梳理 相关知识:
1、相关公式:
2、用一个平面去截球,截面是__圆_面____ ; 3、球心和截面圆心的连线_垂__直_于截面;
4、球心到截面的距离d与球 的半径R及 截面的半径r 有下面的关系:
这个直角三角形我们称之为 “特征三角形”.
球与空间几何体的接、切问题(一)
以正方体的外接球为例:
D A
D
C
A
B
O
O
D1 A1
C1 B1
O
考点一 空间几何体的外接球
2、构造法 思考:哪些几何体能构造为能用“直接法”的柱体?
解析:以底面外接圆为底面,构造圆柱
设外接球半径为R,体积为V,底面外
接圆半径为r。
A
A1
C
B C1
B1
考点一 空间几何体的外接球
2、构造法 思考:哪些柱体和锥体能构造为圆柱?
方法点津2 :1.可以构造圆柱的几何体: 1) 底面存在外接圆的直棱柱; 2) 顶点在底面的投影在底面多边形外接圆的圆周上的棱锥.
纳总结
“接”的问题与方法:
1、直接法—— 适用于长方体和圆柱; 2、构造法—— 能构造为圆柱的几何体;
能构造为长方体的几何体; 3、找特征三角形—— 适用于顶点、底面外接圆的圆心与
外接球球心三点共线的锥体。 “两心一点”共线的锥体
考点一 空间几何体的外接球
堂小练
练习(2017全国Ⅰ16)已知三棱锥S-ABC 的所有顶点都在球O的
显然球心到截面距离为d越大,r越小, 易知OE为d的最大值,
∵PD=1,∴三棱锥的体积 V=13×3 3×1= 3. 设球的半径为 r,以球心 O 为顶点,三棱锥的四个面为底面把正三棱锥分割为四个小棱
锥,则 r=3
33 6+3
= 3
2-1.
思考题:正四面体ABCD的棱长为4,E为棱BC的中点,过E 作其外接球的截面,则截面面积的最小值为__________。 解析:用构造法将四面体ABCD放置 于如图所示的正方体中,则正方体的 外接球就是四面体ABCD的外接球,
球与空间几何体的接、切问题(一)
考纲要求
近年高考统计
了解球的表面积和体积 计算公式
2018全国Ⅲ,文12 2017全国Ⅲ,文8 2017全国Ⅰ,文16 2017全国Ⅱ,文15 2016全国Ⅱ,文4 2016全国Ⅲ,文11
命题规律及趋势
热点:以球与几何体内切 或外接为题的背景,求球 的表面积或体积。 难度:中等及偏下
如图,过点 P 作 PD⊥平面 ABC 于点 D,连接 AD 并延长交 BC 于点 E, 连接 PE,
∵△ABC 是正三角形,∴AE 是 BC 边上的高和中线,D 为△ABC 的中心.
∵AB=2 3,∴S△ABC=3 3,DE=1,PE= 2. ∴S 表=3×12×2 3× 2+3 3=3 6+3 3.
相关文档
最新文档