方向向量法向量及空间线面关系的判定

合集下载

直线的方向向量与法向量

直线的方向向量与法向量

3 | n | 2
问题:如何求平面的法向量?
(1)设出平面的法向量为 ( x, y, z) n
(2)找出(求出)平面内的 两个不共线的 向量的坐标a (a1, b1, c1 ),b (a2 , b2 , c2 )平面的法向
(3)根据法向量的定义建立关于x , y , z的 na 0 a1 x b1 y c1 z 0 方程组 nb 0 a2 x b2 y c2 z 0
n

A
几点注意: 1.法向量一定是非零向量; 2.一个平面的所有法向量都互相平行; 3.向量 n是平面的法向量,向量 m 是 与平面平行或在平面内,则有
n m 0
例 1:在正方体 ABCD A1 B1C1 D1 中,求 证: DB1 是平面 ACD1 的法向量
为了用向量来研究空间的线面位置关系,首先我 们要用向量来表示直线和平面的“方向”。那么 如何用向量来刻画直线和平面的“方向”呢?
一、直线的方向向量
空间中任意一条直线 l 的位置可以由 l 上一 个定点 A 以及一个定方向确定.
l
Байду номын сангаас e
直线l上的向量 e
以及与 e 共线
e
A
的向量叫做直线l的方向向量。 B
单位法向量。
(x,y,z) (4,5,3) 0,
1 2 x 2 y z 0 x 即 , 取z 1,得 2 4 x 5 y 3 z 0 y 1
1 2 2 求平面ABC的单位法向量为 ( , ,) 3 3 3
1 n ( , 1,1), 2
二、平面的法向量
由于垂直于同一平面的直线是互相平行的, 所以,可以 用垂直于平面的直线的方向向量来刻画平面的“方向”。 平面的法向量:如果表示向量 n 的有向线段所在直线垂 直于平面 ,则称这个向量垂直于平面 ,记作 n ⊥ , 如果 n⊥ ,那 么 向 量 n 叫做平面 的法向量. 给定一点A和一个向量 n ,那么过点A, l 以向量 n 为法向量的平面是完全确定的.

方向向量和法向量

方向向量和法向量
所以 DB1 平面 ACD ,从而 DB1 是 平面 ACD1 的一个法向量.
2、法向量的求法 待定系数法
(1)(设):设出平面法向量的坐标为 n(u,v,w)
(2)(列):根据 na0,,n列b出0方程组;
(3)(解):把u(或v或w)看作常数,用u(或v或w) 表示另外两个量
(4)(取):取u为任意一个数(当然取得越特殊越好),
练习:已知底面边长为1,高为3的正三 棱柱,试建立合适的空间直角坐标系, 确定三个侧面的面对角线所在直线的 一个方向向量。z
A1
C13Biblioteka B1A xD1 C y B
二、平面的法向量 1、定义
对于非零的空间向量 n ,如果它所在 的直线与平面α垂直,那么向量 n叫做
平面α的一个法向量。
n
α
注:
1、一个平面α有无穷多个法向量, 这些法向量之间互相平行。
平行的非零向量 d 叫做直线l的一个方
向向量。
z
l
d
y
d2
O
d1
x
注:
1、一条直线l 有无穷多个方向向量, 这些方向向量之间互相平行。
2、直线l 的方向向量也是所有与l平行 的直线的方向向量。
2、方向向量的求法
可根据直线l上的任意两点的坐标 写出直线l的一个方向向量。
dAB
z
(x2x1,y2y1,z2z1)
z
(1)平面BDE (1,-1,0) D 1
C1
(2)平面ACE (1,1,-2) A 1
B1
(3)平面DC1E (1,-2,2)
(4)平面A1EC (-1,1,2) D
A
x
x
E
y
C

32(二)向量方法证明空间线面垂直关系

32(二)向量方法证明空间线面垂直关系

学习目标 1.能用向量法判断一些简单线线、线面、面面垂直关系.2.能用向量语言表述直线与直线、直线与平面、平面与平面的垂直关系.3.能用向量方法证明空间线面垂直关系的有关定理.知识点一 向量法判断线线垂直思考 若直线l 1的方向向量为μ1=(1,3,2),直线l 2的方向向量为μ2=(1,-1,1),那么两直线是否垂直?用向量法判断两条直线垂直的一般方法是什么?答案 l 1与l 2垂直,因为μ1·μ2=1-3+2=0,所以μ1⊥μ2,又μ1,μ2是两直线的方向向量,所以l 1与l 2垂直.判断两条直线是否垂直的方法:(1)在两直线上分别取两点A 、B 与C 、D ,计算向量AB →与CD →的坐标,若AB →·CD →=0,则两直线垂直,否则不垂直.(2)判断两直线的方向向量的数量积是否为零,若数量积为零,则两直线垂直,否则不垂直. 梳理 设直线l 的方向向量为a =(a 1,a 2,a 3),直线m 的方向向量为b =(b 1,b 2,b 3),则l ⊥m ⇔a·b =0⇔a 1b 1+a 2b 2+a 3b 3=0. 知识点二 向量法判断线面垂直思考 若直线l 的方向向量为μ1=⎝⎛⎭⎫2,43,1,平面α的法向量为μ2=⎝⎛⎭⎫3,2,32,则直线l 与平面α的位置关系是怎样的?如何用向量法判断直线与平面的位置关系?答案 垂直,因为μ1=23μ2,所以μ1∥μ2,即直线的方向向量与平面的法向量平行,所以直线l 与平面α垂直.判断直线与平面的位置关系的方法:(1)直线l 的方向向量与平面α的法向量共线⇒l ⊥α.(2)直线的方向向量与平面的法向量垂直⇒直线与平面平行或直线在平面内. (3)直线l 的方向向量与平面α内的两相交直线的方向向量垂直⇒l ⊥α.梳理 设直线l 的方向向量a =(a 1,b 1,c 1),平面α的法向量μ=(a 2,b 2,c 2),则l ⊥α⇔a ∥μ⇔a =k μ(k ∈R ).知识点三 向量法判断面面垂直思考 平面α,β的法向量分别为μ1=(x 1,y 1,z 1),μ2=(x 2,y 2,z 2),用向量坐标法表示两平面α,β垂直的关系式是什么? 答案 x 1x 2+y 1y 2+z 1z 2=0.梳理 若平面α的法向量为μ=(a 1,b 1,c 1),平面β的法向量为ν=(a 2,b 2,c 2),则α⊥β⇔μ⊥ν⇔μ·ν=0⇔a 1a 2+b 1b 2+c 1c 2=0.类型一 证明线线垂直例1 已知正三棱柱ABC -A 1B 1C 1的各棱长都为1,M 是底面上BC 边的中点,N 是侧棱CC 1上的点,且CN =14CC 1.求证:AB 1⊥MN .证明 设AB 中点为O ,作OO 1∥AA 1.以O 为坐标原点,OB 为x 轴,OC 为y 轴,OO 1为z 轴建立如图所示的空间直角坐标系.由已知得A ⎝⎛⎭⎫-12,0,0,B ⎝⎛⎭⎫12,0,0,C ⎝⎛⎭⎫0,32,0,N ⎝⎛⎭⎫0,32,14,B 1⎝⎛⎭⎫12,0,1, ∵M 为BC 中点, ∴M ⎝⎛⎭⎫14,34,0.∴MN →=⎝⎛⎭⎫-14,34,14,AB 1→=(1,0,1),∴MN →·AB 1→=-14+0+14=0.∴MN →⊥AB 1→, ∴AB 1⊥MN .反思与感悟 证明两直线垂直的基本步骤:建立空间直角坐标系→写出点的坐标→求直线的方向向量→证明向量垂直→得到两直线垂直.跟踪训练1 如图,在直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,AB =5,AA 1=4,求证:AC ⊥BC 1.证明 ∵直三棱柱ABC -A 1B 1C 1底面三边长AC =3,BC =4,AB =5, ∴AC 、BC 、C 1C 两两垂直.如图,以C 为坐标原点,CA 、CB 、CC 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系.则C (0,0,0),A (3,0,0),C 1(0,0,4),B (0,4,0), ∵AC →=(-3,0,0),BC 1→=(0,-4,4), ∴AC →·BC 1→=0.∴AC ⊥BC 1. 类型二 证明线面垂直例2 如图所示,正三棱柱ABC -A 1B 1C 1的所有棱长都为2,D 为CC 1的中点.求证:AB 1⊥平面A 1BD .证明 如图所示,取BC 的中点O ,连接AO .因为△ABC 为正三角形,所以AO ⊥BC .因为在正三棱柱ABC -A 1B 1C 1中,平面ABC ⊥平面BCC 1B 1, 所以AO ⊥平面BCC 1B 1.取B 1C 1的中点O 1,以O 为原点,以OB →,OO 1→,OA →分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,则B (1,0,0),D (-1,1,0),A 1(0,2,3),A (0,0,3),B 1(1,2,0). 所以AB 1→=(1,2,-3),BA 1→=(-1,2,3),BD →=(-2,1,0). 因为AB 1→·BA 1→=1×(-1)+2×2+(-3)×3=0. AB 1→·BD →=1×(-2)+2×1+(-3)×0=0.所以AB 1→⊥BA 1→,AB 1→⊥BD →,即AB 1⊥BA 1,AB 1⊥BD . 又因为BA 1∩BD =B ,所以AB 1⊥平面A 1BD . 反思与感悟 用坐标法证明线面垂直的方法及步骤 方法一:(1)建立空间直角坐标系. (2)将直线的方向向量用坐标表示.(3)找出平面内两条相交直线,并用坐标表示它们的方向向量. (4)分别计算两组向量的数量积,得到数量积为0. 方法二:(1)建立空间直角坐标系. (2)将直线的方向向量用坐标表示. (3)求出平面的法向量.(4)判断直线的方向向量与平面的法向量平行.跟踪训练2 如图,在长方体ABCD -A 1B 1C 1D 1中,AB =AD =1,AA 1=2,点P 为DD 1的中点.求证:直线PB 1⊥平面P AC .证明 如图建系,C (1,0,0),A (0,1,0),P (0,0,1),B 1(1,1,2),PC →=(1,0,-1),P A →=(0,1,-1),PB 1→=(1,1,1),B 1C →=(0,-1,-2),B 1A →=(-1,0,-2).PB 1→·PC →=(1,1,1)·(1,0,-1)=0, 所以PB 1→⊥PC →,即PB 1⊥PC .又PB 1→·P A →=(1,1,1)·(0,1,-1)=0, 所以PB 1→⊥P A →,即PB 1⊥P A .又P A ∩PC =P ,所以PB 1⊥平面P AC . 类型三 证明面面垂直例3 在三棱柱ABC -A 1B 1C 1中,AA 1⊥平面ABC ,AB ⊥BC ,AB =BC =2,AA 1=1,E 为BB 1的中点,求证:平面AEC 1⊥平面AA 1C 1C .证明 由题意知直线AB ,BC ,B 1B 两两垂直,以点B 为原点,分别以BA ,BC ,BB 1所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系,则A (2,0,0),A 1(2,0,1),C (0,2,0),C 1(0,2,1),E (0,0,12),故AA 1→=(0,0,1),AC →=(-2,2,0),AC 1→=(-2,2,1),AE →=(-2,0,12).设平面AA 1C 1C 的法向量为n 1=(x ,y ,z ), 则⎩⎪⎨⎪⎧n 1·AA 1→=0,n 1·AC →=0,即⎩⎪⎨⎪⎧z =0,-2x +2y =0.令x =1,得y =1,故n 1=(1,1,0). 设平面AEC 1的法向量为n 2=(a ,b ,c ), 则⎩⎪⎨⎪⎧ n 2·AC 1→=0,n 2·AE →=0,即⎩⎪⎨⎪⎧-2a +2b +c =0,-2a +12c =0. 令c =4,得a =1,b =-1,故n 2=(1,-1,4). 因为n 1·n 2=1×1+1×(-1)+0×4=0, 所以n 1⊥n 2.所以平面AEC 1⊥平面AA 1C 1C . 反思与感悟 证明面面垂直的两种方法(1)常规法:利用面面垂直的判定定理转化为线面垂直、线线垂直去证明.(2)向量法:证明两个平面的法向量互相垂直.跟踪训练3 在四面体ABCD 中,AB ⊥平面BCD ,BC =CD ,∠BCD =90°,∠ADB =30°,E 、F 分别是AC 、AD 的中点,求证:平面BEF ⊥平面ABC .证明 以B 为原点建立如图所示的空间直角坐标系,设A (0,0,a ),则易得B (0,0,0),C ⎝⎛⎭⎫32a ,32a ,0,D (0,3a ,0),E ⎝⎛⎭⎫34a ,34a ,a 2,F (0,32a ,a 2),故AB →=(0,0,-a ),BC →=⎝⎛⎭⎫32a ,32a ,0.设平面ABC 的法向量为n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧n 1·AB →=0,n 1·BC →=0,即⎩⎪⎨⎪⎧-az 1=0,x 1+y 1=0,取x 1=1,∴n 1=(1,-1,0)为平面ABC 的一个法向量. 设n 2=(x 2,y 2,z 2)为平面BEF 的一个法向量, 同理可得n 2=(1,1,-3).∵n 1·n 2=(1,-1,0)·(1,1,-3)=0, ∴平面BEF ⊥平面ABC .1.下列命题中,正确命题的个数为( )①若n 1,n 2分别是平面α,β的法向量,则n 1∥n 2⇔α∥β; ②若n 1,n 2分别是平面α,β的法向量,则α⊥β ⇔ n 1·n 2=0; ③若n 是平面α的法向量,a 与平面α平行,则n ·a =0; ④若两个平面的法向量不垂直,则这两个平面不垂直. A.1 B.2 C.3 D.4 答案 C解析 ①中平面α,β可能平行,也可能重合,结合平面法向量的概念,易知②③④正确. 2.已知两直线的方向向量为a ,b ,则下列选项中能使两直线垂直的为( ) A.a =(1,0,0),b =(-3,0,0) B.a =(0,1,0),b =(1,0,1) C.a =(0,1,-1),b =(0,-1,1)D.a=(1,0,0),b=(-1,0,0)答案 B解析因为a=(0,1,0),b=(1,0,1),所以a·b=0×1+1×0+0×1=0,所以a⊥b,故选B.3.若直线l的方向向量为a=(1,0,2),平面α的法向量为μ=(-2,0,-4),则()A.l∥αB.l⊥αC.l⊂αD.l与α斜交答案 B解析∵a∥μ,∴l⊥α.4.平面α的一个法向量为m=(1,2,0),平面β的一个法向量为n=(2,-1,0),则平面α与平面β的位置关系是()A.平行B.相交但不垂直C.垂直D.不能确定答案 C解析∵(1,2,0)·(2,-1,0)=0,∴两法向量垂直,从而两平面垂直.5.已知平面α与平面β垂直,若平面α与平面β的法向量分别为μ=(-1,0,5),ν=(t,5,1),则t的值为________.答案 5解析∵平面α与平面β垂直,∴平面α的法向量μ与平面β的法向量ν垂直,∴μ·ν=0,即(-1)×t+0×5+5×1=0,解得t=5.空间垂直关系的解决策略40分钟课时作业一、选择题1.设直线l 1,l 2的方向向量分别为a =(-2,2,1),b =(3,-2,m ),若l 1⊥l 2,则m 等于( ) A.-2 B.2 C.6 D.10 答案 D解析 因为a ⊥b ,故a ·b =0,即-2×3+2×(-2)+m =0,解得m =10.2.若平面α,β的法向量分别为a =(-1,2,4),b =(x ,-1,-2),并且α⊥β,则x 的值为( )A.10B.-10C.12D.-12答案 B解析 因为α⊥β,则它们的法向量也互相垂直, 所以a ·b =(-1,2,4)·(x ,-1,-2)=0, 解得x =-10.3.已知点A (0,1,0),B (-1,0,-1),C (2,1,1),P (x ,0,z ),若P A ⊥平面ABC ,则点P 的坐标为( )A.(1,0,-2)B.(1,0,2)C.(-1,0,2)D.(2,0,-1) 答案 C解析 由题意知AB →=(-1,-1,-1),AC →=(2,0,1),AP →=(x ,-1,z ),又P A ⊥平面ABC ,所以有AB →·AP →=(-1,-1,-1)·(x ,-1,z )=0,得-x +1-z =0, ① AC →·AP →=(2,0,1)·(x ,-1,z )=0,得2x +z =0,②联立①②得x =-1,z =2,故点P 的坐标为(-1,0,2).4.在正方体ABCD -A 1B 1C 1D 1中,若E 为A 1C 1的中点,则直线CE 垂直于( ) A.AC B.BD C.A 1D D.A 1A 答案 B解析 建立如图所示的空间直角坐标系.设正方体的棱长为1,则A (0,1,0),B (1,1,0),C (1,0,0),D (0,0,0),A 1(0,1,1),C 1(1,0,1),E ⎝⎛⎭⎫12,12,1,∴CE →=⎝⎛⎭⎫-12,12,1,AC →=(1,-1,0), BD →=(-1,-1,0),A 1D →=(0,-1,-1),A 1A →=(0,0,-1), ∵CE →·BD →=(-1)×(-12)+(-1)×12+0×1=0,∴CE ⊥BD .5.若平面α,β垂直,则下面可以作为这两个平面的法向量的是( ) A.n 1=(1,2,1),n 2=(-3,1,1) B.n 1=(1,1,2),n 2=(-2,1,1) C.n 1=(1,1,1),n 2=(-1,2,1) D.n 1=(1,2,1),n 2=(0,-2,-2) 答案 A解析 ∵1×(-3)+2×1+1×1=0, ∴n 1·n 2=0,故选A.6.两平面α,β的法向量分别为μ=(3,-1,z ),v =(-2,-y ,1),若α⊥β,则y +z 的值是( )A.-3B.6C.-6D.-12 答案 B解析 α⊥β⇒μ·v =0⇒-6+y +z =0,即y +z =6. 二、填空题7.在三棱锥S -ABC 中,∠SAB =∠SAC =∠ACB =90°,AC =2,BC =13,SB =29,则异面直线SC 与BC 是否垂直________.(填“是”或“否”) 答案 是解析 如图,以A 为原点,AB ,AS 分别为y 轴,z 轴建立空间直角坐标系,则由AC =2,BC =13,SB =29, 得B (0,17,0),S (0,0,23),C ⎝ ⎛⎭⎪⎫21317,417,0, SC →=⎝⎛⎭⎪⎫21317,417,-23,CB →=⎝⎛⎭⎪⎫-21317,1317,0. 因为SC →·CB →=0,所以SC ⊥BC .8.已知点P 是平行四边形ABCD 所在的平面外一点,如果AB →=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1).对于结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的法向量;④AP →∥BD →.其中正确的是________.(填序号) 答案 ①②③解析 ∵AP →·AB →=(-1,2,-1)·(2,-1,-4)=-1×2+2×(-1)+(-1)×(-4)=0,∴AP ⊥AB ,即①正确;∵AP →·AD →=(-1,2,-1)·(4,2,0)=(-1)×4+2×2+(-1)×0=0,∴AP ⊥AD ,即②正确; 又∵AB ∩AD =A , ∴AP ⊥平面ABCD ,即AP →是平面ABCD 的一个法向量,即③正确; ∵AP →是平面ABCD 的法向量, ∴AP →⊥BD →,即④不正确.9.在空间直角坐标系Oxyz 中,已知点P (2cos x +1,2cos 2x +2,0)和点Q (cos x ,-1,3),其中x ∈[0,π].若直线OP 与直线OQ 垂直,则x 的值为________. 答案 π2或π3解析 由题意得OP →⊥OQ →,∴cos x ·(2cos x +1)-(2cos 2x +2)=0. ∴2cos 2x -cos x =0, ∴cos x =0或cos x =12.又x ∈[0,π], ∴x =π2或x =π3.10.在△ABC 中,A (1,-2,-1),B (0,-3,1),C (2,-2,1).若向量n 与平面ABC 垂直,且|n |=21,则n 的坐标为________________. 答案 (-2,4,1)或(2,-4,-1)解析 据题意,得AB →=(-1,-1,2),AC →=(1,0,2).设n =(x ,y ,z ),∵n 与平面ABC 垂直,∴⎩⎪⎨⎪⎧ n ·AB →=0,n ·AC →=0,即⎩⎪⎨⎪⎧ -x -y +2z =0,x +2z =0,可得⎩⎪⎨⎪⎧y =4z ,y =-2x . ∵|n |=21,∴x 2+y 2+z 2=21,解得y =4或y =-4.当y =4时,x =-2,z =1;当y =-4时,x =2,z =-1.三、解答题11.如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,AB =4,BC =3,AD =5,∠DAB =∠ABC =90°,E 是CD 的中点.证明:CD ⊥平面P AE .证明 如图,以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.设P A =h ,则相关各点的坐标为A (0,0,0),B (4,0,0),C (4,3,0),D (0,5,0),E (2,4,0),P (0,0,h ).易知CD →=(-4,2,0),AE →=(2,4,0),AP →=(0,0,h ).因为CD →·AE →=-8+8+0=0,CD →·AP →=0,所以CD ⊥AE ,CD ⊥AP ,而AP ,AE 是平面P AE 内的两条相交直线,所以CD ⊥平面P AE .12.如图,在四棱锥P -ABCD 中,底面ABCD 是矩形,P A ⊥底面ABCD ,P A =AB =1,AD =3,点F 是PB 的中点,点E 在边BC 上移动.求证:无论点E 在BC 边的何处,都有PE ⊥AF .证明 建立如图所示空间直角坐标系,则P (0,0,1),B (0,1,0),F ⎝⎛⎭⎫0,12,12,D ()3,0,0,设BE =x (0≤x ≤3),则E (x ,1,0),PE →·AF →=(x ,1,-1)·⎝⎛⎭⎫0,12,12=0, 所以x ∈[0, 3 ]时都有PE ⊥AF ,即无论点E 在BC 边的何处,都有PE ⊥AF .13.已知正方体ABCDA 1B 1C 1D 1中,E 为棱CC 1上的动点.(1)求证:A 1E ⊥BD ;(2)若平面A 1BD ⊥平面EBD ,试确定E 点的位置.(1)证明 以D 为坐标原点,以DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.设正方体棱长为a ,则 A (a ,0,0),B (a ,a ,0),C (0,a ,0),A 1(a ,0,a ),C 1(0,a ,a ).设E (0,a ,e ) (0≤e ≤a ),A 1E →=(-a ,a ,e -a ),BD →=(-a ,-a ,0),A 1E →·BD →=a 2-a 2+(e -a )·0=0,∴A 1E →⊥BD →,即A 1E ⊥BD .(2)解 设平面A 1BD ,平面EBD 的法向量分别为n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2). ∵DB →=(a ,a ,0),DA 1→=(a ,0,a ),DE →=(0,a ,e ),∴⎩⎪⎨⎪⎧ ax 1+ay 1=0,ax 1+az 1=0,⎩⎪⎨⎪⎧ ax 2+ay 2=0,ay 2+ez 2=0. 取x 1=x 2=1,得n 1=(1,-1,-1),n 2=(1,-1,a e), 由平面A 1BD ⊥平面EBD 得n 1⊥n 2,∴2-a e =0,即e =a 2. ∴当E 为CC 1的中点时,平面A 1BD ⊥平面EBD .。

第10讲 用空间向量研究直线、平面的位置关系4种常见方法归类(解析版)-新高二数学暑假自学课讲义

第10讲 用空间向量研究直线、平面的位置关系4种常见方法归类(解析版)-新高二数学暑假自学课讲义

第10讲用空间向量研究直线、平面的位置关系4种常见方法归类1.理解与掌握直线的方向向量,平面的法向量.2.会用方向向量,法向量证明线线、线面、面面间的平行关系;会用平面法向量证明线面和面面垂直,并能用空间向量这一工具解决与平行、垂直有关的立体几问题.知识点1空间中点、直线和平面的向量表示1.空间直线的向量表示式设A 是直线上一点,a 是直线l 的方向向量,在直线l 上取AB →=a ,设P 是直线l 上任意一点,(1)点P 在直线l 上的充要条件是存在实数t ,使AP →=ta ,即AP →=tAB →.(2)取定空间中的任意一点O ,点P 在直线l 上的充要条件是存在实数t .使OP →=OA →+ta .(3)取定空间中的任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使OP →=OA →+tAB →.注意点:(1)空间中,一个向量成为直线l 的方向向量,必须具备以下两个条件:①是非零向量;②向量所在的直线与l 平行或重合.(2)直线上任意两个不同的点都可构成直线的方向向量.与直线l 平行的任意非零向量a 都是直线的方向向量,且直线l 的方向向量有无数个.(3)空间任意直线都可以由直线上一点及直线的方向向量唯一确定.2.空间平面的向量表示式①如图,设两条直线相交于点O ,它们的方向向量分别为a 和b ,P 为平面α内任意一点,由平面向量基本定理可知,存在唯一的有序实数对(x ,y ),使得OP →=xa +yb.②如图,取定空间任意一点O ,空间一点P 位于平面ABC 内的充要条件是存在实数x ,y ,使OP →=OA →+xAB →+yAC →.我们把这个式子称为空间平面ABC的向量表示式.③由此可知,空间中任意平面由空间一点及两个不共线向量唯一确定.如图,直线l ⊥α,取直线l 的方向向量a ,我们称向量a 为平面α的法向量.给定一个点A 和一个向量a ,那么过点A ,且以向量a 为法向量的平面完全确定,可以表示为集合{P |a ·AP →=0}.注意点:(1)平面α的一个法向量垂直于平面α内的所有向量.(2)一个平面的法向量有无限多个,它们相互平行.易错辨析:(1)空间中给定一个点A 和一个方向向量能唯一确定一条直线吗?答案:能(2)一个定点和两个定方向向量能否确定一个平面?答案:不一定,若两个定方向向量共线时不能确定,若两个定方向向量不共线能确定.(3)由空间点A 和直线l 的方向向量能表示直线上的任意一点?答案:能知识点2空间平行、垂直关系的向量表示1、理解直线方向向量的概念(1)直线上任意两个不同的点都可构成直线的方向向量.(2)直线的方向向量不唯一.2、利用待定系数法求法向量的步骤3、求平面法向量的三个注意点(1)选向量:在选取平面内的向量时,要选取不共线的两个向量(2)取特值:在求n的坐标时,可令x,y,z中一个为一特殊值得另两个值,就是平面的一个法向量(3)注意0:提前假定法向量n=(x,y,z)的某个坐标为某特定值时一定要注意这个坐标不为04、用空间向量证明平行的方法(1)线线平行:证明两直线的方向向量共线.(2)线面平行:①证明直线的方向向量与平面内任意两个不共线的向量共面,即可用平面内的一组基底表示.②证明直线的方向向量与平面内某一向量共线,转化为线线平行,利用线面平行判定定理得证.③先求直线的方向向量,然后求平面的法向量,证明直线的方向向量与平面的法向量垂直.在证明线面平行时,需注意说明直线不在平面内.(3)面面平行:①证明两平面的法向量为共线向量;②转化为线面平行、线线平行问题.5、用空间向量证明垂直的方法(1)线线垂直:证明两直线的方向向量互相垂直,即证明它们的数量积为零.(2)线面垂直:①基向量法:选取基向量,用基向量表示直线所在的向量,证明直线所在向量与两个不共线向量的数量积均为零,从而证得结论.②坐标法:建立空间直角坐标系,求出直线方向向量的坐标,证明直线的方向向量与两个不共线向量的数量积均为零,从而证得结论.③法向量法:建立空间直角坐标系,求出直线方向向量的坐标以及平面法向量的坐标,然后说明直线方向向量与平面法向量共线,从而证得结论.(3)面面垂直:证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示.考点一:求直线的方向向量例1.(2023春·高二课时练习)如图,在四棱锥P -ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点,AB =AP =1,AD PC 的一个方向向量.【答案】1)-【分析】建立如图所示的空间直角坐标系,根据方向向量的定义可得.【详解】如图所示,建立空间直角坐标系A -xyz ,则(0,0,1)P ,C ,所以1)PC =-即为直线PC 的一个方向向量.变式1.(2023春·高二课时练习)已知直线1l 的一个方向向量为()5,3,2-,另一个方向向量为(),,8x y ,则x =________,y =________.【答案】-2012【分析】由直线的方向向量平行的性质即可求解.【详解】∵直线的方向向量平行,∴8532x y ==-,∴20,12x y =-=,故答案为:20-;12.变式2.(2022秋·广西钦州·高二校考阶段练习)已知直线l 的一个法向量是)n =,则l 的倾斜角的大小是()A .π3B .2π3C .π6D .π2【答案】A【分析】设直线l 的倾斜角为θ,[)0,πθ∈,直线l 的方向向量为(),u x y =,根据直线方向向量与法向量的关系得到得到y =,即可求解.【详解】设直线l 的倾斜角为θ,[)0,πθ∈,直线l 的方向向量为(),u x y =.则0u n y ⋅=-=,即y =,则tan y xθ==又[)0,πθ∈,解得π3θ=,故选:A.变式3.【多选】(2022秋·湖北十堰·高二校联考阶段练习)如图,在正方体1111ABCD A B C D -中,E 为棱1CC 上不与1C ,C 重合的任意一点,则能作为直线1AA 的方向向量的是()A .1AA B .1C EC .ABD .1A A【答案】ABD【分析】结合立体图形,得到平行关系,从而确定答案.【详解】因为111////C E AA A A ,所以1AA ,1C E ,1A A都可作为直线1AA 的方向向量.故选:ABD.变式4.(2023春·江苏常州·高二校联考期中)已知直线l 的一个方向向量()2,1,3m =-,且直线l 过A (0,y ,3)和B (-1,2,z )两点,则y -z 等于()A .0B .1C .2D .3【答案】A【分析】根据//m AB求解即可.【详解】由题知:()1,2,3AB y z =---,因为//m AB ,所以213123y z -==---,解得33,22y z ==,所以0y z -=.故选:A考点二:求平面的法向量例2.(2023春·四川成都·高二四川省成都市新都一中校联考期中)已知(2,0,0)A ,(0,2,0)B ,(0,0,2)C ,则平面ABC 的一个法向量可以是()A .(1,1,1)---B .(1,1,1)-C .(1,1,1)-D .(1,1,1)-【答案】A【分析】代入法向量的计算公式,即可求解.【详解】(2,2,0)AB =- ,(2,0,2)AC =- ,令法向量为(,,)m x y z = ,则220220x y x z -+=⎧⎨-+=⎩,y z x ∴==,可取(1,1,1)m =---.故选:A.变式1.(2023春·高二课时练习)已知()()()1,1,0,1,0,1,0,1,1A B C ,则平面ABC 的一个单位法向量是()A .()1,1,1B.C .111(,,)333D.(,)333-【答案】B【分析】待定系数法设平面ABC 的一个法向量为n,由法向量的性质建立方程组解出分析即可.【详解】设平面ABC 的一个法向量为(),,n x y z =,又()()0,1,1,1,1,0AB BC =-=- ,由0000AB n AB n y z x y BC n BC n ⎧⎧⊥⋅=-+=⎧⎪⎪⇒⇒⎨⎨⎨-+=⊥⋅=⎩⎪⎪⎩⎩ ,即x y z ==,又因为单位向量的模为1,所以B 选项正确,故选:B.变式2.(2023春·福建龙岩·高二校联考期中)《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑.在鳖臑A BCD -中,AB ⊥平面BCD ,=90BDC ∠︒,BD AB CD ==.若建立如图所示的“空间直角坐标系,则平面ACD 的一个法向量为()A .()0,1,0B .()0,1,1C .()1,1,1D .()1,1,0【答案】B【分析】根据题意,设1BD AB CD ===,可得A 、C 、D 的坐标,由此可得向量DC 、AD的坐标,由此可得关于x 、y 、z 的方程组,利用特殊值求出x 、y 、z 的值,即可得答案.【详解】根据题意,设1BD AB CD ===,则()0,1,0D ,()1,1,0C ,()0,0,1A ,则()1,0,0DC = ,()0,1,1AD =- ,设平面ACD 的一个法向量为(),,m x y z=,则有00DC m x AD m y z ⎧⋅==⎪⎨⋅=-=⎪⎩ ,令1y =,可得1z =,则()0,1,1m = .故选:B .变式3.(2023秋·高二课时练习)在如图所示的坐标系中,1111ABCD A B C D -为正方体,给出下列结论:①直线1DD 的一个方向向量为(0,0,1);②直线1BC 的一个方向向量为(0,1,1);③平面11ABB A 的一个法向量为(0,1,0);④平面1B CD 的一个法向量为(1,1,1).其中正确的个数为()A .1个B .2个C .3个D .4个【答案】C【分析】根据空间直线的方向向量的概念以及平面的法向量的定义判断可得答案.【详解】设正方体的棱长为a ,则(0,,0)D a ,1(0,,)D a a ,1(0,0,)DD a = ,则1DD与(0,0,1)平行,故直线1DD 的一个方向向量为(0,0,1),故①正确;因为(,0,0)B a ,1(,,)C a a a ,所以1(0,,)BC a a = ,因为1BC与(0,1,1)平行,所以直线1BC 的一个方向向量为(0,1,1),故②正确;因为(0,0,0)A ,(0,,0)D a ,所以(0,,0)AD a = ,因为AD 是平面11ABB A 的一个法向量,且AD与(0,1,0)平行,所以平面11ABB A 的一个法向量为(0,1,0),故③正确;因为(,,0)C a a ,(0,,0)D a ,所以(,0,0)CD a =-,因为(1,1,1)(,0,0)(1,1,1)0CD a a ⋅=-⋅=-≠ ,所以CD与(1,1,1)不垂直,所以(1,1,1)不是平面1B CD 的一个法向量,故④不正确.故选:C变式4.(2023·全国·高三专题练习)放置于空间直角坐标系中的棱长为2的正四面体ABCD 中,H 是底面中心,DH ⊥平面ABC ,写出:平面BHD 的一个法向量___________;【答案】()(答案不唯一)【分析】利用向量法得出平面BHD的一个法向量.【详解】由题意可知23CH OC DH===,则(),0,1,0,0,,333H B D⎛⎫⎛⎫⎪ ⎪⎪ ⎪⎝⎭⎝⎭0,0,3HD⎛⎫= ⎪⎪⎝⎭,1,3BH⎛⎫=- ⎪⎪⎝⎭.设(),,n x y z=为平面BHD的一个法向量,则3n HD zn BH x y⎧⋅==⎪⎪⎨⎪⋅=-=⎪⎩,不妨设1x=,则()n=.故平面BHD的一个法向量为().故答案为:()(答案不唯一)变式5.(2023春·高二课时练习)在棱长为2的正方体1111ABCD A B C D-中,E,F分别为棱1111,A D A B的中点,在如图所示的空间直角坐标系中,求:(1)平面11BDD B的一个法向量;(2)平面BDEF的一个法向量.【答案】(1)(2,2,0)=-AC(答案不唯一)(2)(2,2,1)n=--(答案不唯一)【分析】(1)利用线面垂直的判定定理求解法向量;(2)利用空间向量的坐标运算求平面的法向量.【详解】(1)由题意,可得()()()()()0,0,0,2,2,0,2,0,0,0,2,0,1,0,2D B A C E ,连接AC ,因为底面为正方形,所以AC BD ⊥,又因为1DD ⊥平面ABCD ,AC ⊂平面ABCD ,所以1DD AC ⊥,且1BD DD D = ,则AC ⊥平面11BDD B ,∴(2,2,0)=-AC 为平面11BDD B 的一个法向量.(答案不唯一).(2)(2,2,0),(1,0,2).DB DE ==设平面BDEF 的一个法向量为(,,)n x y z =,则,0220,,120,.02y x n DB x y x z z x n DE =-⎧⎧⋅=+=⎧⎪⎪∴∴⎨⎨⎨+=-⋅=⎩⎪⎪⎩⎩令2x =,得2, 1.y z =-=-∴(2,2,1)n =--即为平面BDEF 的一个法向量.(答案不唯一).变式6.【多选】(2023春·福建宁德·高二校联考期中)已知空间中三个向量()2,1,0AB = ,()1,2,1AC =- ,()3,1,1BC =-,则下列说法正确的是()A .AB与AC 是共线向量B .与AB同向的单位向量是,55⎛⎫ ⎪ ⎪⎝⎭C .BC 在AB方向上的投影向量是()2,1,0--D .平面ABC 的一个法向量是()1,2,5-【答案】BCD【分析】A :由向量共线定理,应用坐标运算判断是否存在R λ∈使AB AC λ= ;B :与AB同向的单位向量是||ABAB 即可判断;C :由投影向量的定义可解;D :应用平面法向量的求法求平面ABC 的一个法向量,即可判断.【详解】A :若AB与AC 共线,存在R λ∈使AB AC λ= ,则2120λλλ=-⎧⎪=⎨⎪=⎩无解,故不共线,错误;B :与AB同向的单位向量是||AB AB ==,正确;C:由cos ,11||||AB BCAB BC AB BC ⋅==-,则BC 在AB方向上的投影向量是()cos ,2,1,0AB BC AB BC AB ⎛=⨯-- ⎝⎭,正确;D :若(,,)m x y z = 是面ABC 的一个法向量,则2020m AB x y m AC x y z ⎧⋅=+=⎪⎨⋅=-++=⎪⎩ ,令=2y -,则(1,2,5)m =- ,正确.故选:BCD变式7.(2023春·四川成都·高二成都市锦江区嘉祥外国语高级中学校考期中)已知()2,0,2a =,()3,0,0= b 分别是平面α,β的法向量,则平面α,β交线的方向向量可以是()A .()1,0,0B .()0,1,0C .()0,0,1D .()1,1,1【答案】B【分析】根据平面的交线都与两个平面的法向量垂直求解.【详解】因为四个选项中,只有()()()0,1,02,0,20,1,00⋅=⋅=a ,()()()0,1,03,0,00,1,00⋅=⋅=b ,所以平面α,β交线的方向向量可以是()0,1,0故选:B变式8.(2023秋·福建南平·高二统考期末)已知四面体ABCD 的顶点坐标分别为()0,0,2A ,()2,2,0B ,()1,2,1C ,()2,2,2D .(1)若M 是BD 的中点,求直线CM 与平面ACD 所成的角的正弦值;(2)若P ,A ,C ,D 四点共面,且BP ⊥平面ACD ,求点P 的坐标.【答案】3(2)482,,333⎛⎫ ⎪⎝⎭【分析】(1)由题意分别求出向量()1,0,0CM = 和平面ACD 的一个法向量()1,1,1n =--,再用直线与平面所成的角的正弦值公式代入计算即可;(2)由题意,(),,BP n λλλλ==--,于是点P 的坐标为()2,2,λλλ+--,由P ,A ,C ,D 四点共面,可设AP xAD y AC =+ ,将,AP AD AC ,坐标分别代入即可解得23λ=-,从而求得点P 的坐标.【详解】(1)由题意,()1,2,1AC =- ,()2,2,0AD = ,()2,2,1M ,()1,0,0CM =,可设平面ACD 的法向量(),,n x y z =,则00n AC n AD ⎧⋅=⎪⎨⋅=⎪⎩,即20220x y z x y +-=⎧⎨+=⎩,化简得z xy x=-⎧⎨=-⎩.令1x =,则1y =-,1z =-,可得平面ACD 的一个法向量()1,1,1n =--,设直线CM 与平面ACD ,则sin 3CM n CM n θ⋅===⋅ ,即直线CM 与平面ACD(2)由题意,(),,BP n λλλλ==-- ,于是点P 的坐标为()2,2,λλλ+--,又P ,A ,C ,D 四点共面,可设AP xAD y AC =+,即()()()2,2,22,2,01,2,1x y λλλ+---=+-,即222222x y x y y λλλ+=+⎧⎪-=+⎨⎪--=-⎩,解得23λ=-,所以所求点P 的坐标为482,,333⎛⎫⎪⎝⎭.变式9.(2023春·湖北·高二校联考阶段练习)已知点()2,6,2A -在平面α内,()3,1,2=n 是平面α的一个法向量,则下列点P 中,在平面α内的是()A .()1,1,1P -B .31,3,2P ⎛⎫ ⎪⎝⎭C .31,3,2P ⎛⎫- ⎪⎝⎭D .31,3,4P ⎛⎫--- ⎪⎝⎭【答案】A【分析】根据每个选项中P 点的坐标,求出AP的坐标,计算AP n ⋅ ,根据结果是否等于0,结合线面垂直的性质,即可判断点P 是否在平面α内.【详解】对于选项A ,()1,5,1AP =-- ,所以1351120AP n ⋅=-⨯+⨯-⨯= ,根据线面垂直的性质可知AP α⊂,故()1,1,1P -在平面α内;对于选项B ,11,9,2AP ⎛⎫=-- ⎪⎝⎭ ,则11391202AP n ⋅=-⨯+⨯+⨯≠ ,()2,6,2A -在平面α内,根据线面垂直的性质可知AP α⊄,故31,3,2P ⎛⎫ ⎪⎝⎭不在平面α内;对于选项C ,11,3,2AP ⎛⎫=-- ⎪⎝⎭ ,则11331202AP n ⋅=-⨯+⨯-⨯≠ ,()2,6,2A -在平面α内,根据线面垂直的性质可知AP α⊄,故31,3,2P ⎛⎫- ⎪⎝⎭不在平面α内;对于选项D ,113,3,4AP ⎛⎫=-- ⎪⎝⎭ ,则113331204AP n ⋅=-⨯+⨯-⨯≠ ,()2,6,2A -在平面α内,根据线面垂直的性质可知AP α⊄,故31,3,4P ⎛⎫--- ⎪⎝⎭不在平面α内;故选:A变式10.(2023春·河南·高二临颍县第一高级中学校联考开学考试)已知点()01,2,3P -在平面α内,平面{}00P n P P α=⋅= ∣,其中()1,1,1n =-是平面α的一个法向量,则下列各点在平面α内的是()A .()2,4,8-B .()3,8,5C .()2,3,4-D .()3,4,1-【答案】B【分析】由法向量的定义结合数量积运算确定y =x+z ,再判断选项.【详解】设(),,P x y z 是平面α内的一点,则()01,2,3P P x y z =+--,所以()()()1230x y z +--+-=,即y =x+z ,选项B 满足.故选:B考点三:用空间向量证明平行问题(一)判断直线、平面的位置关系例3.(2023秋·湖北黄石·高二校考阶段练习)若直线l 的一个方向向量为()257,,a = ,平面α的一个法向量为()111,,u →=-,则()A .l ∥α或l ⊂αB .l ⊥αC .l ⊂αD .l 与α斜交【答案】A【分析】直线的一个方向向量()257,,a = ,平面α的一个法向量为()111,,u →=-,计算数量积,即可判断出结论.【详解】 直线的一个方向向量为()257,,a = ,平面α的一个法向量为()111,,u →=-,2570a u →→∴⋅=+-=,∴a u →→⊥,l α∴∥或l ⊂α,故选:A变式1.(2023春·高二单元测试)若平面α与β的法向量分别是()1,0,2a =-,()1,0,2b =-r,则平面α与β的位置关系是()A .平行B .垂直C .相交不垂直D .无法判断【答案】A【分析】利用平面法向量的位置关系,即可判断两平面的位置关系.【详解】因为()1,0,2a =- ,()1,0,2b =-r是平面α与β的法向量,则a b =-,所以两法向量平行,则平面α与β平行.故选:A变式2.(2023春·山东菏泽·高二统考期末)已知平面α与平面ABC 是不重合的两个平面,若平面α的法向量为(2,1,4)m =-,且(2,0,1)AB =- ,(1,6,1)AC = ,则平面α与平面ABC 的位置关系是________.【答案】平行【分析】分别计算AB m ⋅ ,AC m ⋅ ,可得0m AB ⋅= ,0m AC =⋅ ,从而可知m AB ⊥ ,m AC ⊥ ,m ⊥平面ABC ,所以可得平面α与平面ABC 平行.【详解】平面α的法向量为(2,1,4)m =-,且(2,0,1)AB =- ,(1,6,1)AC = ,()220410AB m =⨯⨯=⋅++- ,()2116410AC m =⨯+-⨯+⨯=⋅,所以m AB ⊥ ,m AC ⊥ ,m ⊥平面ABC ,平面ABC 的一个法向量为(2,1,4)m =-,又因为平面α与平面ABC 是不重合的两个平面所以平面α与平面ABC 平行.故答案为:平行.变式3.(2023秋·陕西宝鸡·高二统考期末)在长方体ABCD A B C D -''''中,222AA AB AD '===,以点D 为坐标原点,以,,DA DC DD '分别为x 轴,y 轴,z 轴建立空间直角坐标系,设对角面ACD '所在法向量为(,,)x y z ,则::x y z =__________.【答案】2:2:1【分析】利用法向量的求法进行求解即可【详解】由题意得()1,0,0A ,()0,1,0C ,()0,0,2D ',()1,1,0AC =- ,()1,0,2AD '=-,因为平面ACD '的法向量为(),,n x y z = ,则00AC n AD n '⎧⋅=⎪⎨⋅=⎪⎩,即020x y x z -+=⎧⎨-+=⎩,取()20x k k =≠,则2,y k z k ==,故::2:2:1x y z =故答案为:2:2:1变式4.【多选】(2023春·甘肃张掖·高二高台县第一中学校考期中)下列利用方向向量、法向量判断线、面位置关系的结论中正确的是()A .若两条不重合直线1l ,2l 的方向向量分别是()2,3,1a =- ,()2,3,1b =--,则12//l l B .若直线l 的方向向量()0,3,0a = ,平面α的法向量是()0,5,0μ=-,则l //αC .若两个不同平面α,β的法向量分别为()12,1,0n =- ,()24,2,0n =-,则//αβD .若平面α经过三点()1,0,1A -,()0,1,0B ,()1,2,0C -,向量()11,,n u t =是平面α的法向量,则1u t +=【答案】ACD【分析】利用空间向量共线定理判断A 即可;由,a μ的关系式即可判断B ;由12,n n 的关系即可判断选项C,利用平面内法向量的性质即可判断D.【详解】因为两条不重合直线1l ,2l 的方向向量分别是()2,3,1a =- ,()2,3,1b =--,所以a b =-,所以,a b 共线,又直线1l ,2l 不重合,所以12//l l ,故A 正确;因为直线l 的方向向量()0,3,0a = ,平面α的法向量是()0,5,0μ=-且53a μ=-,所以l α⊥,故B 不正确;两个不同平面α,β的法向量分别为()12,1,0n =- ,()24,2,0n =-,则有212n n =-,所以//αβ,故C 正确;平面α经过三点()1,0,1A -,()0,1,0B ,()1,2,0C -,所以()(),,1,1,11,1,0B B A C --==又向量()11,,n u t = 是平面α的法向量,所以1111010100AB n AB n u t u BC n BC n ⎧⎧⊥⋅=-++=⎧⎪⎪⇒⇒⎨⎨⎨-+=⊥⊥=⎩⎪⎪⎩⎩则1u t +=,故D 正确,故选:ACD.(二)已知直线、平面的平行关系求参数例4.(2022秋·广东广州·高二广州市第九十七中学校考阶段练习)直线l 的方向向量是()1,1,1s =- ,平面α的法向量()222,,n x x x =+-,若直线//l 平面α,则x =______.【答案】2【分析】线面平行时,直线的方向向量垂直于平面的法向量,即它们的数量积为零,根据数量积的坐标表示列出方程求解即可.【详解】解:若直线//l 平面α,则0s n ⋅=,22220x x x x ∴-++-=-=,解得2x =,故答案为:2.变式1.(2023秋·上海浦东新·高二上海南汇中学校考期末)已知直线l 的一个方向向量为(1,2,1)d =-,平面α的一个法向量(,4,2)n x =-,若//l α,则实数x =_______.【答案】10【分析】根据直线与平面平行,得到直线的方向向量与平面的法向量垂直,进而利用空间向量数量积为0列出方程,求出x 的值.【详解】因为//l α,所以直线l 的方向向量与平面α的法向量垂直,即(,4,2)(1,2,1)820n d x x ⋅=-⋅-=--=,解得:10x =.故答案为:10变式2.(2022秋·天津蓟州·高二校考期中)直线l 的方向向量是()1,1,1s →=,平面α的法向量()21,,n x x x →=--,若直线l α∥,则x =___________.【答案】1【分析】结合已知条件可得s n →→⊥,然后利用垂直向量的数量积为0即可求解.【详解】由题意可知,s n →→⊥,因为()1,1,1s →=,()21,,n x x x →=--,从而210s n x x x →→⋅=+--=,解得1x =.故答案为:1.变式3.(2023春·上海·高二校联考阶段练习)已知平面α的一个法向量为()11,2,3n =-,平面β的一个法向量为()22,4,n k =--,若//αβ,则k 的值为______【答案】6【分析】因为法向量定义,把//αβ转化为12//n n,可得k 的值.【详解】因为平面α的一个法向量为()11,2,3n =- ,平面β的一个法向量为()22,4,n k =--,又因为//αβ,所以12//n n,可得()()342k -⨯-=,即得6k =.故答案为:6.(三)证明直线、平面的平行问题例5.(2022春·江苏镇江·高二江苏省镇江第一中学校联考期末)如图,三棱柱11ABC AB C -中侧棱与底面垂直,且AB =AC =2,AA 1=4,AB ⊥AC ,M ,N ,P ,D 分别为CC 1,BC ,AB ,11B C 的中点.求证:PN ∥面ACC 1A 1;【解析】以点A 为坐标原点,AB 、AC 、1AA 所在直线分别为x 、y 、z 轴建立空间直角坐标系,则()10,0,4A ,()2,0,0B ,()0,2,2M ,()1,1,0N ,()1,0,4P .取向量()2,0,0AB = 为平面11ACC A 的一个法向量,()0,1,4PN =-,∴()0210400PN AB ⋅=⨯++-=⨯⨯,∴PN AB ⊥ .又∵PN ⊄平面11ACC A ,∴PN ∥平面11ACC A .变式1.(2023·天津和平·耀华中学校考二模)如图,四棱锥P ABCD -中,侧面PAD 为等边三角形,线段AD 的中点为O 且PO ⊥底面ABCD ,112AB BC AD ===,π2BAD ABC ∠==∠,E 是PD 的中点.证明:CE ∥平面PAB ;【解析】连接OC ,因为//,AO BC AO BC =,所以四边形OABC 为平行四边形,所以//AB OC ,所以OC AD ⊥,以OC ,OD ,OP 分别为x ,y ,z轴建立空间直角坐标系,则(P ,()0,1,0A -,()1,1,0B -,()1,0,0C.11,22CE ⎛⎫=- ⎪ ⎪⎝⎭,(0,1,PA =-,(1,1,PB =- ,设平面PAB 的一个法向量为()1,,n x y z =,则1100PA n y PB n x y ⎧⋅=--=⎪⎨⋅=--=⎪⎩ ,则0x =,令1z =-,y =平面PAB的一个法向量()11n =-,1022CE n ⋅== ,则1CE n ⊥ ,又CE ⊄平面PAB ,所以//CE 平面PAB .变式2.(2023·湖北黄冈·浠水县第一中学校考模拟预测)如图,在三棱柱111ABC A B C -中,1BB ⊥平面ABC ,D ,E 分别为棱AB ,11B C 的中点,2BC =,AB =114AC =.证明://DE 平面11ACC A ;【解析】证明:在三棱柱111ABC A B C -中,1BB ⊥平面ABC ,2BC =,AB =114AC =.所以114AC AC ==,则222AC AB BC =+,则AB BC ⊥,则如下图,以B 为原点,1BC BA BB ,,为x y z ,,轴建立空间直角坐标系,设1BB h =,则()()()00000200A B C ,,,,,,,,()()()()()111000200010A h B h C h D E h ,,,,,,,,,,,,所以()1DE h =,()()12000AC AA h =-=,,,,,设平面11ACC A 的一个法向量为()n x y z =,,,所以1200AC n x AA n hz ⎧⋅=-=⎪⎨⋅==⎪⎩ ,令1y =,则0x z ==,即)0n =,,所以())1000DE n h ⋅=⋅==,,得DE n ⊥,又DE ⊄平面11ACC A ,所以//DE 平面11ACC A ;变式3.(2023春·江苏盐城·高二盐城市大丰区南阳中学校考阶段练习)如图,在三棱锥-P ABC 中,PA ⊥底面ABC ,90BAC ∠=︒.点D ,E ,N 分别为棱PA ,PC ,BC 的中点,M 是线段AD 的中点,2PA AC ==,1AB =.求证://MN 平面BDE ;【解析】因为PA ⊥底面ABC ,90BAC ∠=︒,建立空间直角坐标系如图所示,则11(0,0,0),(1,0,0),(0,2,0),(0,0,1),(0,1,1),(0,0,),(,1,0),(0,0,2)22A B C D E M N P ,所以(0,1,0),(1,0,1)DE DB ==-,设(,,)n x y z =为平面BDE 的法向量,则0n DE n DB ⎧⋅=⎪⎨⋅=⎪⎩ ,即00y x z =⎧⎨-=⎩,不妨设1z =,可得(1,0,1)n = ,又11,1,22MN ⎛⎫=- ⎪⎝⎭ ,可得0MN n ⋅=,因为MN ⊄平面BDE ,所以//MN 平面BDE ,变式4.(2023·天津南开·南开中学校考模拟预测)在四棱锥P ABCD -中,PA ⊥底面ABCD ,且2PA =,四边形ABCD 是直角梯形,且AB AD ⊥,//BC AD ,2AD AB ==,4BC =,M 为PC 中点,E 在线段BC 上,且1BE =.求证://DM 平面PAB ;【解析】证明:以A 为坐标原点,AB 为x 轴,AD 为y 轴,AP 为z 轴建立空间直角坐标系,则()0,0,0A ,()2,0,0B ,()0,2,0D ,()002P ,,,()2,4,0C ,()1,2,1M ,()2,1,0E ,()1,0,1DM =,易知平面PAB 的一个法向量为()0,2,0AD = ,故0DM AD ⋅=,则DM AD ⊥ ,又DM ⊂/平面PAB ,故//DM 平面PAB .变式5.(2023·四川成都·校考一模)如图,在四棱锥P ABCD -中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,AD MN ⊥,2AB =,4AD AP ==,M ,N 分别是BC ,PD 的中点.求证:MN ∥平面PAB ;【解析】(1)由题意,在矩形ABCD 中,2AB =,4AD AP ==,AB AD ⊥,M ,N 分别是BC ,PD 的中点,∴11222BM CM BC AD ====,2AB CD ==,在四棱锥P ABCD -中,面PAD ⊥平面ABCD ,面PAD ⋂面ABCD AD =,AB AD ⊥,∴AB ⊥面PAD ,PA ⊂面PAD ,∴PA AB ⊥,取AP 中点E ,连接BE ,由几何知识得BE MN ∥,∵AD MN ⊥,∴AD BE ⊥,AD AB⊥∵BE ⊂面PAB ,AB ⊂面PAB ,AB BE B = ∴AD ⊥面PAB ,∴PA AD⊥以AB 、AD 、AP 为x 、y 、z 轴建立空间直角坐标系如下图所示,∴()()()()()()()0,0,0,2,0,0,2,4,0,0,4,0,0,0,4,2,2,0,0,2,2A B C D P M N ,∴()2,0,2MN =- ,面PAB 的一个法向量为()0,4,0AD =,∵2004200MN AD ⋅=-⨯+⨯+⨯=,∴MN ∥平面PAB .变式6.(2021·高二课时练习)如图,在长方体1111ABCD A B C D -中,点E ,F ,G 分别在棱1A A ,11A B ,11A D 上,1111A E A F AG ===;点P ,Q ,R 分别在棱1CC ,CD ,CB 上,1CP CQ CR ===.求证:平面//EFG 平面PQR .【答案】证明见解析【分析】构建以D 为原点,1,,DA DC DD为x 、y 、z 轴正方向的空间直角坐标系,令1,,AB a BC b BB c ===写出EF 、EG uu ur 、PQ 、PR ,进而求面EFG 、面PQR 的法向量m 、n ,根据所得法向量的关系即可证结论.【详解】构建以D 为原点,1,,DA DC DD为x 、y 、z轴正方向的空间直角坐标系,如下图示,设1,,AB a BC b BB c ===(,,1)a b c >,又1111A E A F AG ===,1CP CQ CR ===,∴(,0,1)E b c -,(,1,)F b c ,(1,0,)G b c -,(0,,1)P a ,(0,1,0)Q a -,(1,,0)R a ,∴(0,1,1)EF = ,(1,0,1)EG =- ,(0,1,1)PQ =--,(1,0,1)PR =- ,设(,,)m x y z = 是面EFG 的一个法向量,则00EF m y z EG m z x ⎧⋅=+=⎪⎨⋅=-=⎪⎩ ,令1x =,(1,1,1)m =- ,设(,,)n i j k = 是面PQR 的一个法向量,则00PQ n j k PR n i k ⎧⋅=--=⎪⎨⋅=-=⎪⎩ ,令1i =,(1,1,1)n =- ,∴面EFG 、面PQR 的法向量共线,故平面//EFG 平面PQR ,得证.变式7.(2023·上海普陀·ABCD ﹣A 1B 1C 1D 1的底面边长1,侧棱长4,AA 1中点为E ,CC 1中点为F.求证:平面BDE ∥平面B 1D 1F ;【解析】(1)以A 为原点,AB ,AD ,AA 1所在直线为坐标轴,建立空间直角坐标系,如图则B (1,0,0),D (0,1,0),E (0,0,2),B 1(1,0,4),D 1(0,1,4),F (1,1,2),∵()10,1,2DE FB ==-,∴DE ∥FB 1,1//,DE FB DE ⊄ 平面11B D F ,1FB ⊂平面11B D F ,//DE ∴平面11B D F ,同理//BD 平面11B D F ,∵BD ⊂平面BDE ,DE ⊂平面BDE ,BD DE D ⋂=平面BDE ,∴平面//BDE 平面11B D F .考点四:利用空间向量证明垂直问题(一)判断直线、平面的位置关系例6.(2021秋·北京·高二校考期中)直线12,l l 的方向向量分别为(1,3,1),(8,2,2)a b =--=,则()A .12l l ⊥B .1l ∥2l C .1l 与2l 相交不平行D .1l 与2l 重合【答案】A【分析】由题意可得0a b ⋅= ,即得a b ⊥,从而得12l l ⊥,即得答案.【详解】解:因为直线12,l l 的方向向量分别为(1,3,1),(8,2,2)a b =--=,(1,3,1)(8,2,2)8620a b ⋅=--⋅=--=所以a b ⊥ ,即12l l ⊥.故选:A.变式1.(2022秋·北京·高二校考阶段练习)若直线l 的方向向量为e (2,3,1)=-,平面α的法向量为311,,22n ⎛⎫=-- ⎪⎝⎭ ,则直线l 和平面α位置关系是()A .l α⊥B .//l αC .l α⊂D .不确定【答案】A【分析】根据题意判断直线l 的方向向量和平面α的法向量的关系,即可判断直线l 和平面α位置关系.【详解】由题意直线l 的方向向量为e (2,3,1)=- ,平面α的法向量为311,,22n ⎛⎫=-- ⎪⎝⎭ ,可知e 2n =-,故l α⊥,故选:A变式2.【多选】(2022秋·广东珠海·高二珠海市斗门区第一中学校考期末)已知v为直线l 的方向向量,12,n n 分别为平面α,β的法向量(α,β不重合),那么下列说法中正确的有().A .12n n αβ⇔∥∥B .12n n αβ⊥⇔⊥C .1v n l ⇔ α∥∥D .1v n l ⊥⇔⊥ α【答案】AB【分析】根据法线面垂直平行的性质及法向量、方向向量的概念即可选出选项.【详解】解:若12n n∥,因为α,β不重合,所以αβ∥,若αβ∥,则12,n n 共线,即12n n∥,故选项A 正确;若12n n ⊥,则平面α与平面β所成角为直角,故αβ⊥,若αβ⊥,则有12n n ⊥,故选项B 正确;若1v n ∥,则l α⊥,故选项C 错误;若1v n ⊥,则l α∥或l ⊂α,故选项D 错误.故选:AB变式3.(2023春·江苏·高二南师大二附中校联考阶段练习)下列利用方向向量、法向量判断线、面位置关系的结论中,正确的是()A .两条不重合直线12,l l 的方向向量分别是()()2,3,1,2,3,1a b =-=--,则12l l ∥B .直线l 的方向向量()112a ,,=- ,平面α的法向量是()6,4,1u =-,则l α⊥C .两个不同的平面,αβ的法向量分别是()()2,2,1,3,4,2u v =-=-,则αβ⊥D .直线l 的方向向量()0,3,0a = ,平面α的法向量是()0,5,0u =-,则l α∥【答案】AC【分析】根据条件,利用方向向量、法向量的定义与性质,结合空间向量的平行和垂直,对各选项逐项判断即可.【详解】解:对于A ,两条不重合直线1l ,2l 的方向向量分别是(2,3,1),(2,3,1)a b =-=--,则b a =-,所以//a b ,即12l l //,故A 正确;对于C ,两个不同的平面α,β的法向量分别是(2,2,1),(3,4,2)u v =-=-,则0u v =⋅,所以αβ⊥,故C 正确;对于B ,直线l 的方向向量(1,1,2)a =- ,平面α的法向量是(6,4,1)u =-,则16142(1)0a u ⋅=⨯-⨯+⨯-= ,所以a u ⊥,即//l α或l ⊂α,故B 错误;对于D ,直线l 的方向向量(0,3,0)a = ,平面a 的法向量是(0,5,0)u =-,则53u a =-,所以//μα ,即l α⊥,故D 错误.故选:AC .变式4.【多选】(2022·高二课时练习)下列命题是真命题的有()A .A ,B ,M ,N 是空间四点,若,,BA BM BN不能构成空间的一个基底,那么A ,B ,M ,N 共面B .直线l 的方向向量为()1,1,2a =- ,直线m 的方向向量12,1,2b ⎛⎫=- ⎪⎝⎭r 为,则l 与m 垂直C .直线l 的方向向量为()1,1,2a =- ,平面α的法向量为10,1,2n ⎛⎫= ⎪⎝⎭ ,则l ⊥αD .平面α经过三点()()()1,0,1,0,1,0,1,2,0A B C --,()1,,=rn u t 是平面α的法向量,则u +t =1【答案】ABD【分析】由基底的概念以及空间位置关系的向量证明依次判断4个选项即可.【详解】解:对于A ,A ,B ,M ,N 是空间四点,若,,BA BM BN不能构成空间的一个基底,则,,BA BM BN共面,可得A ,B ,M ,N 共面,故A 正确;对于B ,2110a b ⋅=--=,故a ⊥ ,可得l 与m 垂直,故B 正确;对于C ,0110a n ⋅=-+= ,故a n ⊥,可得在α内或l ∥α,故C 错误;对于D ,()1,1,1AB =- ,易知AB n ⊥,故﹣1+u +t =0,故u +t =1,故D 正确.故选:ABD .(二)已知直线、平面的垂直关系求参数例7.(2023春·北京海淀·高二中央民族大学附属中学校考开学考试)已知平面α的法向量为()1,2,0n = ,直线l 的方向向量为v,则下列选项中使得l α⊥的是()A .()2,1,0v =-B .()2,1,0v =C .()2,4,0v =D .()1,2,0v =-【答案】C【分析】根据法向量与方向向量的定义,即可求得本题答案.【详解】若l α⊥,则直线l 的方向向量v垂直于平面α,所以v与平面α的法向量()1,2,0n = 平行,显然只有选项C 中2v n = 满足.故选:C变式1.(江苏省扬州市2022-2023学年高二下学期6月期末数学试题)已知直线l 的方向向量为()2,1,2e =-,平面α的法向量为()()2,,,n a b a b a b =--+∈R.若l α⊥,则3a b +的值为()A .5-B .2-C .1D .4【答案】A【分析】根据题意得到//e n ,进而得到方程组12a b a b -=⎧⎨+=-⎩,求得,a b 的值,即可求解.【详解】由直线l 的方向向量为()2,1,2e =-,平面α的法向量为()2,,n a b a b =--+ ,因为l α⊥,可得//e n ,所以2212a b a b--+==-,即12a b a b -=⎧⎨+=-⎩,解得13,22a b =-=-,所以193522a b +=--=-.故选:A.变式2.(2023春·高二课时练习)已知()()3,,,R u a b a b a b =-+∈ 是直线l 的方向向量,()1,2,4n =r是平面α的法向量.若l α⊥,则ab =______.【答案】27【分析】根据线面垂直的概念,结合法向量的性质可得u n ∥,进而求得,a b ,即得.【详解】∵l α⊥,∴//u n ,∴3124a b a b-+==,故612a b a b -=⎧⎨+=⎩,解得93a b =⎧⎨=⎩,∴27ab =.故答案为:27.变式3.(2022秋·广东珠海·高二珠海市实验中学校考阶段练习)若直线l 方向向量为()2,1,m ,平面α的法向量为11,,22⎛⎫⎪⎝⎭,且l α⊥,则m 为()A .1B .2C .4D .54-【答案】C【分析】由l α⊥可知l 的方向向量为与平面α的法向量平行,再利用向量共线定理即可得出.【详解】l α⊥ ,l ∴的方向向量为()2,1,m 与平面α的法向量11,,22⎛⎫⎪⎝⎭平行,∴1(2,1,)(1,,2)2m λ=.∴21122m λλλ=⎧⎪⎪=⎨⎪=⎪⎩,解得4m =.故选:C .变式4.(2023春·江苏盐城·高二江苏省响水中学校考阶段练习)如图,在正三棱锥D -ABC中,AB =,2DA =,O 为底面ABC 的中心,点P 在线段DO 上,且PO DO λ=uu u r uuu r,若PA ⊥平面PBC ,则实数λ=()A .12B .13-C.4D.6【答案】D【分析】由正棱锥的结构特征构建空间直角坐标系,根据已知条件确定相关点坐标并求出面PBC 的法向量,结合线面平行及向量共线定理求参数λ即可.【详解】由题设,△ABC2DA DB DC ===,等边△ABC32=,在正棱锥中,以O 为原点,平行CB 为x 轴,垂直CB 为y 轴,OD 为z 轴,如上图示,则11(0,1,0),(,,0),(,,0),2222A B C D --,且)P ,所以)AP =,1,)2PB =,CB = ,若(,,)m x y z = 为面PBC的法向量,则1020PB m y z CB m ⎧⋅=+=⎪⎨⎪⋅==⎩ ,令1z =,则(0,,1)m = ,又PA ⊥平面PBC ,则AP km = 且k为实数,101k k λ⎧=⎪⎪=⎨⎪≤≤⎪⎩,故λ=.故选:D(三)证明直线、平面的垂直问题例8.(2023春·高二课时练习)如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上.已知BC =8,PO =4,AO =3,OD =2.(1)证明:AP ⊥BC ;(2)若点M 是线段AP 上一点,且AM =3,试证明AM ⊥平面BMC .。

高考数学一轮复习第7讲 立体几何中的向量方法

高考数学一轮复习第7讲 立体几何中的向量方法

第7讲立体几何中的向量方法1.直线的方向向量和平面的法向量(1)直线的方向向量直线l上的向量e或与01共线的向量叫做直线l的方向向量,显然一条直02无数个.(2)平面的法向量如果表示向量n03垂直于平面α,则称这个向量垂直于平面α,记作n⊥α,此时向量n叫做平面α的法向量.04无数个,且它们是05共线向量.(3)设直线l,m的方向向量分别为a,b,平面α,β的法向量分别为u,v,则l∥m06a∥b⇔07a=k b,k∈R;l⊥m08a⊥b⇔09a·b=0;l∥α10a⊥u⇔11a·u=0;l⊥α12a∥u⇔13a=k u,k∈R;α∥β14u∥v⇔15u=k v,k∈R;α⊥β16u⊥v⇔17u·v=0.2.空间向量与空间角的关系(1)两条异面直线所成角的求法设两条异面直线a,b的方向向量分别为a,b,其夹角为θ,则cosφ=|cosθ| 18|a·b||a||b|(其中φ为异面直线a,b所成的角,范围是(0°,90°]).(2)直线与平面所成角的求法如图所示,设直线l 的方向向量为e ,平面α的法向量为n ,直线l 与平面α所成的角为φ,两向量e 与n 的夹角为θ,则有sin φ=|cos θ|=19|e ·n ||e ||n |,φ的取值范围是[0°,90°].(3)求二面角的大小如图①,AB ,CD 是二面角α-l -β的两个半平面内与棱l 垂直的直线,则二面角的大小θ=20〈AB→,CD →〉.如图②③,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足cos θ=cos 〈n 1,n 2〉或-cos 〈n 1,n 2〉,取值范围是[0°,180°].确定平面法向量的方法(1)直接法:观察是否有垂直于平面的向量,若有,则此向量就是法向量. (2)待定系数法:取平面内的两个相交向量a ,b ,设平面的法向量为n =(x ,y ,z ),由⎩⎨⎧n ·a =0,n ·b =0,解方程组求得.1.平面α的一个法向量为(1,2,0),平面β的一个法向量为(2,-1,0),则平面α和平面β的位置关系是( )A .平行B .相交但不垂直C .垂直D .重合答案 C解析 由(1,2,0)·(2,-1,0)=1×2+2×(-1)+0×0=0,知两平面的法向量互相垂直,所以两平面互相垂直.2.已知A (1,0,0),B (0,1,0),C (0,0,1),则平面ABC 的一个单位法向量是( )A .⎝ ⎛⎭⎪⎫33,33,-33B .⎝ ⎛⎭⎪⎫33,-33,33C .⎝ ⎛⎭⎪⎫-33,33,33D .⎝ ⎛⎭⎪⎫-33,-33,-33答案 D解析 AB→=(-1,1,0),AC →=(-1,0,1),设平面ABC 的法向量n =(x ,y ,z ),∴⎩⎨⎧-x +y =0,-x +z =0.令x =1,则y =1,z =1,∴n =(1,1,1).单位法向量为±n |n |=±⎝ ⎛⎭⎪⎫33,33,33. 3. 如图所示,在正方体ABCD -A 1B 1C 1D 1中,棱长为a ,M ,N 分别为A 1B 和AC 上的点,A 1M =AN =2a3,则MN 与平面BB 1C 1C 的位置关系是( )A .相交B .平行C .垂直D .MN 在平面BB 1C 1C 内答案 B解析 MN →=MA 1→+A 1A →+AN →=13BA 1→+A 1A →+13AC →=13(B 1A 1→-B 1B →)+B 1B →+13(AB →+AD →)=23B 1B →+13B 1C 1→,∴MN →,B 1B →,B 1C 1→共面.又MN ⊄平面BB 1C 1C ,∴MN ∥平面BB 1C 1C .4. 如图所示,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,O 是底面ABCD 的中心,E ,F 分别是CC 1,AD 的中点,那么异面直线OE 与FD 1所成角的余弦值等于( )A .105B .155C .45D .23答案 B解析 建立如图所示的空间直角坐标系,则O (1,1,0),E (0,2,1),F (1,0,0),D 1(0,0,2),∴FD 1→=(-1,0,2),OE →=(-1,1,1).∴cos 〈FD 1→,OE →〉=FD 1→·OE→|FD1→||OE →|=1+0+25×3=155.故选B .5.如图,已知P 为矩形ABCD 所在平面外一点,P A ⊥平面ABCD ,E ,F 分别是AB ,PC 的中点.若∠PDA =45°,则EF 与平面ABCD 所成的角的大小是( )A .90°B .60°C .45°D .30°答案 C解析 设AD =a ,AB =b ,因为∠PDA =45°,P A ⊥平面ABCD ,所以P A ⊥AD ,P A =AD =a .以点A 为坐标原点,AB ,AD ,AP 所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系,则A (0,0,0),P (0,0,a ),E ⎝ ⎛⎭⎪⎫b 2,0,0,F ⎝ ⎛⎭⎪⎫b 2,a 2,a 2,所以EF→=⎝ ⎛⎭⎪⎫0,a 2,a 2.易知AP →=(0,0,a )是平面ABCD 的一个法向量.设EF 与平面ABCD 所成的角为θ,则sin θ=|cos 〈AP →,EF →〉|=|AP →·EF →||AP →||EF →|=22.所以θ=45°.6. (2020·广东华侨中学高三模拟)如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE ,则点M 的坐标为( )A .(1,1,1)B .⎝ ⎛⎭⎪⎫23,23,1C .⎝ ⎛⎭⎪⎫22,22,1D .⎝ ⎛⎭⎪⎫24,24,1答案 C解析 设AC 与BD 相交于点O ,连接OE ,∵AM ∥平面BDE ,且AM ⊂平面ACEF ,平面ACEF ∩平面BDE =OE ,∴AM ∥EO ,又O 是正方形ABCD 对角线的交点,∴M 为线段EF 的中点.在空间直角坐标系中,E (0,0,1),F (2,2,1).由中点坐标公式,知点M 的坐标为⎝ ⎛⎭⎪⎫22,22,1.考向一 利用空间向量证明平行、垂直例1 如图,在四棱锥P -ABCD 中,PC ⊥平面ABCD ,PC =2,在四边形ABCD 中,∠ABC =∠BCD =90°,AB =4,CD =1,点M 在PB 上,PB =4PM ,PB 与平面ABCD 所成的角为30°.求证:(1)CM ∥平面P AD ; (2)平面P AB ⊥平面P AD .证明 以点C 为坐标原点,分别以CB ,CD ,CP 所在的直线为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系Cxyz .∵PC ⊥平面ABCD ,∴∠PBC 为PB 与平面ABCD 所成的角. ∴∠PBC =30°.∵PC =2,∴BC =23,PB =4.∴D (0,1,0),B (23,0,0),A (23,4,0),P (0,0,2),M ⎝ ⎛⎭⎪⎫32,0,32,∴DP→=(0,-1,2),DA→=(23,3,0),CM →=⎝ ⎛⎭⎪⎫32,0,32. (1)设n =(x ,y ,z )为平面P AD 的一个法向量,由⎩⎪⎨⎪⎧DP →·n =0,DA →·n =0,得⎩⎨⎧-y +2z =0,23x +3y =0. 令y =2,得n =(-3,2,1).∵n ·CM→=-3×32+2×0+1×32=0,∴n ⊥CM →.又CM ⊄平面P AD ,∴CM ∥平面P AD . (2)如图,取AP 的中点E ,连接BE ,则E (3,2,1),BE →=(-3,2,1).∵PB =AB ,∴BE ⊥P A .又BE →·DA →=(-3,2,1)·(23,3,0)=0, ∴BE→⊥DA →,∴BE ⊥DA . 又P A ∩DA =A ,∴BE ⊥平面P AD . 又BE ⊂平面P AB ,∴平面P AB ⊥平面P AD . 1.用向量法证平行问题的类型及常用方法线线平行证明两直线的方向向量共线线面平行 ①证明该直线的方向向量与平面的某一法向量垂直;②证明该直线的方向向量与平面内某直线的方向向量平行;③证明该直线的方向向量可以用平面内的两个不共线的向量表示面面平行①证明两平面的法向量平行(即为共线向量); ②转化为线面平行、线线平行问题线线垂直 问题证明两直线所在的方向向量互相垂直,即证它们的数量积为零线面垂直 问题 直线的方向向量与平面的法向量共线,或利用线面垂直的判定定理转化为证明线线垂直面面垂直 问题两个平面的法向量垂直,或利用面面垂直的判定定理转化为证明线面垂直1. 如图所示,在直三棱柱ABC -A 1B 1C 1中,侧面AA 1C 1C 和侧面AA 1B 1B 都是正方形且互相垂直,M 为AA 1的中点,N 为BC 1的中点.求证:(1)MN ∥平面A 1B 1C 1; (2)平面MBC 1⊥平面BB 1C 1C .证明 由题意知AA 1,AB ,AC 两两垂直,以A 为坐标原点建立如图所示的空间直角坐标系.不妨设正方形AA 1C 1C 的边长为2,则A (0,0,0),A 1(2,0,0),B (0,2,0),B 1(2,2,0),C (0,0,2),C 1(2,0,2),M (1,0,0),N (1,1,1).(1)因为几何体是直三棱柱, 所以侧棱AA 1⊥底面A 1B 1C 1.因为AA 1→=(2,0,0),MN →=(0,1,1),所以MN →·AA 1→=0,即MN →⊥AA 1→.因为MN ⊄平面A 1B 1C 1,故MN ∥平面A 1B 1C 1.(2)设平面MBC 1与平面BB 1C 1C 的法向量分别为 n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2). 因为MB →=(-1,2,0),MC 1→=(1,0,2),所以⎩⎪⎨⎪⎧n 1·MB →=0,n 1·MC 1→=0,即⎩⎨⎧-x 1+2y 1=0,x 1+2z 1=0, 令x 1=2,则平面MBC 1的一个法向量为n 1=(2,1,-1).同理可得平面BB 1C 1C 的一个法向量为n 2=(0,1,1).因为n 1·n 2=2×0+1×1+(-1)×1=0,所以n 1⊥n 2,所以平面MBC 1⊥平面BB 1C 1C . 多角度探究突破考向二 利用空间向量求空间角 角度1 求异面直线所成的角例2 (1) (2020·汕头模拟)如图,正四棱锥P -ABCD 的侧面P AB 为正三角形,E 为PC 的中点,则异面直线BE 和P A 所成角的余弦值为( )A .33B .32C .22D .12答案 A解析 连接AC ,BD ,交于点O ,连接PO ,以O 为原点,OA 所在直线为x 轴,OB 所在直线为y 轴,OP 所在直线为z 轴,建立空间直角坐标系,设AB =2,则OA =OB =OP =1,A (1,0,0),B (0,1,0),C (-1,0,0),P (0,0,1),E ⎝ ⎛⎭⎪⎫-12,0,12,BE →=⎝ ⎛⎭⎪⎫-12,-1,12,P A →=(1,0,-1),设异面直线BE 和P A 所成角为θ,则cos θ=|BE →·P A →||BE →||P A →|=132×2=33. ∴异面直线BE 和P A 所成角的余弦值为33.故选A .(2) 如图所示,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是CC 1,AD 的中点,那么异面直线D 1E 和A 1F 所成角的余弦值等于________.答案 25解析 如图,以D 为原点建立空间直角坐标系.则A 1(2,0,2),F (1,0,0),D 1(0,0,2),E (0,2,1), 则A 1F →=(-1,0,-2),D 1E →=(0,2,-1), cos 〈D 1E →,A 1F →〉=D 1E →·A 1F →|D 1E →||A 1F →|=25×5=25, ∴异面直线D 1E 和A 1F 所成角的余弦值等于25.(1)求异面直线所成角的思路①选好基底或建立空间直角坐标系; ②求出两直线的方向向量v 1,v 2;③代入公式cos θ=|cos 〈v 1,v 2〉|=|v 1·v 2||v 1||v 2|求解(θ为两异面直线所成角).(2)两异面直线所成角的关注点两异面直线所成角θ的范围是(0°,90°],两向量的夹角α的范围是[0°,180°],当异面直线的方向向量的夹角为锐角或直角时,该角就是异面直线的夹角;当异面直线的方向向量的夹角为钝角时,其补角才是异面直线的夹角.2.(多选)(2020·山东潍坊5月模拟)已知在棱长为1的正方体ABCD -A 1B 1C 1D 1中,点E ,F ,H 分别是AB ,DD 1,BC 1的中点,下列结论中正确的是( )A .D 1C 1∥平面CHDB .AC 1⊥平面BDA 1C .三棱锥D -BA 1C 1的体积为56 D .直线EF 与BC 1所成的角为30° 答案 ABD解析 如图1所示,因为D 1C 1∥DC ,D 1C 1⊄平面CHD ,DC ⊂平面CHD ,所以D 1C 1∥平面CHD ,A 正确;建立空间直角坐标系,如图2所示.由于正方体ABCD -A 1B 1C 1D 1的棱长为1,则AC 1→=(-1,1,1),BD →=(-1,-1,0),DA 1→=(1,0,1),所以AC 1→·BD →=1-1+0=0,AC 1→·DA 1→=-1+0+1=0,所以AC 1→⊥BD →,AC 1→⊥DA 1→,所以AC 1⊥平面BDA 1,B 正确;三棱锥D -BA 1C 1的体积为V 三棱锥D -BA 1C 1=V 正方体ABCD -A 1B 1C 1D 1-4V 三棱锥A 1-ABD =1-4×13×12×1×1×1=13,所以C 错误;E ⎝ ⎛⎭⎪⎫1,12,0,F ⎝ ⎛⎭⎪⎫0,0,12,所以EF →=⎝ ⎛⎭⎪⎫-1,-12,12,BC →1=(-1,0,1),所以cos 〈EF →,BC 1→〉=EF →·BC 1→|EF →||BC 1→|=1+0+1232×2=32,所以直线EF 与BC 1所成的角是30°,D 正确.故选ABD.角度2 求直线与平面所成的角例3 (2020·山东高考) 如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面ABCD .设平面P AD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值.解 (1)证明:在正方形ABCD 中,AD ∥BC , 因为AD ⊄平面PBC ,BC ⊂平面PBC , 所以AD ∥平面PBC ,又因为AD ⊂平面P AD ,平面P AD ∩平面PBC =l , 所以AD ∥l .因为在四棱锥P -ABCD 中,底面ABCD 是正方形, 所以AD ⊥DC ,所以l ⊥DC ,又PD ⊥平面ABCD ,所以AD ⊥PD ,所以l ⊥PD . 因为DC ∩PD =D ,所以l ⊥平面PDC . (2)如图,建立空间直角坐标系Dxyz .因为PD =AD =1,所以D (0,0,0),C (0,1,0),A (1,0,0),P (0,0,1),B (1,1,0), 设Q (m,0,1),则有DC→=(0,1,0),DQ →=(m,0,1),PB →=(1,1,-1).设平面QCD 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧DC →·n =0,DQ →·n =0,即⎩⎨⎧y =0,mx +z =0,令x =1,则z =-m ,所以平面QCD 的一个法向量为n =(1,0,-m ), 则cos 〈n ,PB →〉=n ·PB →|n ||PB →|=1+0+m 3·m 2+1. 根据直线的方向向量与平面法向量所成角的余弦值的绝对值即为直线与平面所成角的正弦值,知直线PB 与平面QCD 所成角的正弦值等于|cos 〈n ,PB→〉|= |1+m |3·m 2+1=33·1+2m +m 2m 2+1=33·1+2m m 2+1≤33·1+2|m |m 2+1≤33·1+1=63, 当且仅当m =1时取等号,所以直线PB 与平面QCD 所成角的正弦值的最大值为63.利用向量法求线面角的方法 (1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角).(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线与平面所成的角.提醒:在求平面的法向量时,若能找出平面的垂线,则在垂线上取两个点可构成一个法向量.3.(2019·浙江高考)如图,已知三棱柱ABC -A 1B 1C 1,平面A 1ACC 1⊥平面ABC ,∠ABC =90°,∠BAC =30°,A 1A =A 1C =AC ,E ,F 分别是AC ,A 1B 1的中点.(1)证明:EF⊥BC;(2)求直线EF与平面A1BC所成角的余弦值.解解法一:(1)证明:如图1,连接A1E.因为A1A=A1C,E是AC的中点,所以A1E⊥AC.又因为平面A1ACC1⊥平面ABC,A1E⊂平面A1ACC1,平面A1ACC1∩平面ABC=AC,所以A1E⊥平面ABC,则A1E⊥BC.又因为A1F∥AB,∠ABC=90°,故BC⊥A1F.又因为A1E∩A1F=A1,所以BC⊥平面A1EF.因为EF⊂平面A1EF,所以EF⊥BC.(2)如图1,取BC的中点G,连接EG,GF,连接A1G交EF于点O,则四边形EGF A1是平行四边形.由于A1E⊥平面ABC,故A1E⊥EG,所以平行四边形EGF A1为矩形.由(1),得BC⊥平面EGF A1,所以平面A1BC⊥平面EGF A1,所以EF在平面A1BC上的射影在直线A1G上.则∠EOG是直线EF与平面A1BC所成的角(或其补角).不妨设AC =4,则在Rt △A 1EG 中,A 1E =23,EG = 3. 由于O 为A 1G 的中点,故EO =OG =A 1G 2=152, 所以cos ∠EOG =EO 2+OG 2-EG 22EO ·OG=35.因此,直线EF 与平面A 1BC 所成角的余弦值是35. 解法二:(1)证明:如图2,连接A 1E .因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC .又因为平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1,平面A 1ACC 1∩平面ABC =AC ,所以A 1E ⊥平面ABC .以点E 为坐标原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立如图所示的空间直角坐标系Exyz .不妨设AC =4,则E (0,0,0),A 1(0,0,23),B (3,1,0),B 1(3,3,23),F ⎝ ⎛⎭⎪⎫32,32,23,C (0,2,0). 因此,EF →=⎝ ⎛⎭⎪⎫32,32,23,BC →=(-3,1,0).由EF →·BC→=0,得EF ⊥BC .(2)由(1)可得BC →=(-3,1,0),A 1C →=(0,2,-23). 设平面A 1BC 的法向量为n =(x ,y ,z ).由⎩⎪⎨⎪⎧BC →·n =0,A 1C →·n =0,得⎩⎪⎨⎪⎧-3x +y =0,y -3z =0. 取n =(1, 3,1),设直线EF 与平面A 1BC 所成的角为θ,故sin θ=|cos 〈EF →,n 〉|=|EF →·n ||EF →||n |=45,所以cos θ=35.因此,直线EF 与平面A 1BC 所成角的余弦值是35. 角度3 求二面角例4 (2020·济南一模)如图1,平面四边形ABCD 中,AB =AC =2,AB ⊥AC ,AC ⊥CD ,E 为BC 的中点,将△ACD 沿对角线AC 折起,使CD ⊥BC ,连接BD ,DE ,AE ,得到如图2所示的三棱锥D -ABC .(1)证明:平面ADE ⊥平面BCD ;(2)已知直线DE 与平面ABC 所成的角为π4,求二面角A -BD -C 的余弦值. 解 (1)证明:在三棱锥D -ABC 中,因为CD ⊥BC ,CD ⊥AC ,AC ∩BC =C ,所以CD ⊥平面ABC . 又AE ⊂平面ABC ,所以AE ⊥CD .因为AB =AC ,E 为BC 的中点,所以AE ⊥BC . 又BC ∩CD =C ,所以AE ⊥平面BCD . 又AE ⊂平面ADE ,所以平面ADE ⊥平面BCD .(2)由(1)可知∠DEC 即为直线DE 与平面ABC 所成的角,所以∠DEC =π4. 在Rt △ABC 中,由勾股定理得BC =2,故CD =CE =1.作EF ∥CD 交BD 于点F ,由(1)知EA ,EB ,EF 两两垂直,以E 为原点,EA ,EB ,EF 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,则E (0,0,0),A (1,0,0),B (0,1,0),D (0,-1,1), 易知平面BCD 的一个法向量为n 1=(1,0,0), 又AB→=(-1,1,0),AD →=(-1,-1,1), 设平面ABD 的一个法向量为n 2=(x ,y ,z ), 则⎩⎪⎨⎪⎧n 2·AB →=-x +y =0,n 2·AD →=-x -y +z =0,令x =1,解得n 2=(1,1,2), cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=66.由图可知,该二面角为锐角, 所以二面角A -BD -C 的余弦值为66.利用向量法确定二面角大小的常用方法(1)找法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小.(2)找与棱垂直的方向向量法:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量夹角的大小就是二面角的大小.4. (2020·青岛模拟)《九章算术》是我国古代数学名著,它在几何学中的研究比西方早1000多年,在《九章算术》中,将底面为直角三角形,且侧棱垂直于底面的三棱柱称为堑堵(qiàn dǔ);阳马指底面为矩形,一侧棱垂直于底面的四棱锥,鳖臑(biē nào)指四个面均为直角三角形的四面体.如图在堑堵ABC -A 1B 1C 1中,AB ⊥AC .(1)求证:四棱锥B -A 1ACC 1为阳马;(2)若C 1C =BC =2,当鳖臑C 1-ABC 体积最大时,求锐二面角C -A 1B -C 1的余弦值.解 (1)证明:∵A 1A ⊥底面ABC ,AB ⊂面ABC , ∴A 1A ⊥AB .又AB ⊥AC ,A 1A ∩AC =A , ∴AB ⊥面ACC 1A 1. 又四边形ACC 1A 1为矩形, ∴四棱锥B -A 1ACC 1为阳马.(2)∵AB ⊥AC ,BC =2,∴AB 2+AC 2=4. 又C 1C ⊥底面ABC ,∴VC 1-ABC =13·C 1C ·12AB ·AC =13·AB ·AC ≤13·AB 2+AC 22=23,当且仅当AB =AC =2时,=13·AB ·AC 取最大值.∵AB ⊥AC ,A 1A ⊥底面ABC ,∴以A 为原点,建立如图所示的空间直角坐标系,则B (2,0,0),C (0,2,0),A 1(0,0,2),C 1(0,2,2),A 1B →=(2,0,-2),BC →=(-2,2,0),A 1C 1→=(0,2,0).设面A 1BC 的一个法向量为n 1=(x 1,y 1,z 1), 由⎩⎪⎨⎪⎧n 1·A 1B →=0,n 1·BC →=0,得⎩⎪⎨⎪⎧2x 1-2z 1=0,-2x 1+2y 1=0,令z 1=1,得n 1=(2,2,1). 同理得面A 1BC 1的一个法向量为n 2=(2,0,1),cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=155,∴二面角C -A 1B -C 1的余弦值为155.用向量法探究点的位置如图所示,在四棱锥P -ABCD 中,平面P AD ⊥平面ABCD ,P A ⊥PD ,P A =PD ,AB ⊥AD ,AB =1,AD =2,AC =CD = 5.(1)求证:PD ⊥平面P AB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱P A 上是否存在点M ,使得BM ∥平面PCD ?若存在,求AMAP 的值;若不存在,说明理由.解 (1)证明:因为平面P AD ⊥平面ABCD ,AB ⊥AD ,所以AB ⊥平面P AD ,所以AB ⊥PD .又因为P A ⊥PD ,P A ∩AB =A ,所以PD ⊥平面P AB . (2)如图,取AD 的中点O ,连接PO ,CO .因为P A =PD ,所以PO ⊥AD . 又因为PO ⊂平面P AD , 平面P AD ⊥平面ABCD , 所以PO ⊥平面ABCD . 因为CO ⊂平面ABCD , 所以PO ⊥CO .因为AC =CD ,所以CO ⊥AD . 建立空间直角坐标系Oxyz .由题意得,A (0,1,0),B (1,1,0),C (2,0,0),D (0,-1,0),P (0,0,1),PB →=(1,1,-1),PC→=(2,0,-1),PD →=(0,-1,-1).设平面PCD 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·PD →=0,n ·PC →=0,即⎩⎨⎧-y -z =0,2x -z =0. 令z =2,则x =1,y =-2,所以n =(1,-2,2). 又PB→=(1,1,-1),所以cos 〈n ,PB →〉=n ·PB →|n ||PB→|=-33,所以直线PB 与平面PCD 所成角的正弦值为33.(3)假设在棱P A 上存在点M ,使得BM ∥平面PCD ,则存在λ∈[0,1]使得AM →=λAP→.因此点M (0,1-λ,λ),BM →=(-1,-λ,λ). 因为BM ⊄平面PCD ,所以当且仅当BM →·n =0时,BM ∥平面PCD ,即(-1,-λ,λ)·(1,-2,2)=0,解得λ=14. 所以在棱P A 上存在点M 使得BM ∥平面PCD ,此时AM AP =14. 答题启示对于点的探究型问题,要善于根据点的位置结合向量的有关定理灵活设出未知量,尽量使未知量个数最少.对点训练(2020·滨州二模) 如图所示,在等腰梯形ABCD 中,AD ∥BC ,∠ADC =60°,直角梯形ADFE 所在的平面垂直于平面ABCD ,且∠EAD =90°,EA =AD =2DF =2CD =2.(1)证明:平面ECD ⊥平面ACE ;(2)点M 在线段EF 上,试确定点M 的位置,使平面MCD 与平面EAB 所成的二面角的余弦值为34.解 (1)证明:因为平面ABCD ⊥平面ADFE ,平面ABCD ∩平面ADFE =AD ,EA ⊥AD ,EA ⊂平面ADFE ,所以EA ⊥平面ABCD ,又CD ⊂平面ABCD ,所以EA ⊥CD , 在△ADC 中,CD =1,AD =2,∠ADC =60°, 由余弦定理得,AC = 1+4-2×1×2cos60°=3, 所以AC 2+CD 2=AD 2,所以CD ⊥AC .又EA ⊥CD ,EA ∩AC =A ,所以CD ⊥平面ACE , 又CD ⊂平面ECD ,所以平面ECD ⊥平面ACE . (2)以C 为坐标原点,以CA ,CD 所在直线分别为x 轴、 y 轴,过点C 且平行于AE 的直线为z 轴,建立如图所示的空间直角坐标系,则C (0,0,0),A (3,0,0),B ⎝ ⎛⎭⎪⎫32,-12,0,D (0,1,0),E (3,0,2),F (0,1,1),AB →=⎝ ⎛⎭⎪⎫-32,-12,0,AE →=(0,0,2),CD→=(0,1,0),FE →=(3,-1,1),CF →=(0,1,1),设FM →=λFE →=(3λ,-λ,λ)(0≤λ≤1),则CM→=CF →+FM →=(3λ,1-λ,1+λ).设平面EAB 的一个法向量为m =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧m ·AB →=0,m ·AE →=0,即⎩⎨⎧-32x 1-12y 1=0,2z 1=0,取x 1=1,得m =(1,-3,0).设平面MCD 的一个法向量为n =(x 2,y 2,z 2), 由⎩⎪⎨⎪⎧n ·CD →=0,n ·CM →=0,得⎩⎨⎧y 2=0,3λx 2+(1-λ)y 2+(1+λ)z 2=0,令x 2=1+λ,得n =(1+λ,0,-3λ),因为平面MCD 与平面EAB 所成的二面角的余弦值为34,所以|cos 〈m ,n 〉|=|m ·n ||m ||n |=|1+λ|24λ2+2λ+1=34, 整理得8λ2-2λ-1=0,解得λ=12或λ=-14(舍去),所以点M 为线段EF 的中点时,平面MCD 与平面EAB 所成的二面角的余弦值为34.一、单项选择题1.直线l 的方向向量a =(1,-3,5),平面α的法向量n =(-1,3,-5),则有( )A .l ∥αB .l ⊥αC .l 与α斜交D .l ⊂α或l ∥α答案 B解析 因为a =(1,-3,5),n =(-1,3,-5),所以a =-n ,a ∥n .所以l ⊥平面α.选B .2.已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角为( )A .45°B .135°C .45°或135°D .90° 答案 C解析 ∵cos 〈m ,n 〉=m ·n |m ||n |=12=22,∴〈m ,n 〉=45°.∴二面角为45°或135°.故选C .3. 如图所示,已知正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是上底面A 1B 1C 1D 1和侧面ADD 1A 1的中心,则EF 和CD 所成的角是( )A .60°B .45°C .30°D .135°答案 B解析 以D 为原点,分别以射线DA ,DC ,DD 1为x 轴、y 轴、z 轴的非负半轴建立如图所示的空间直角坐标系Dxyz ,设正方体的棱长为1,则D (0,0,0),C (0,1,0),E ⎝ ⎛⎭⎪⎫12,12,1,F ⎝ ⎛⎭⎪⎫12,0,12,EF →=⎝ ⎛⎭⎪⎫0,-12,-12,DC →=(0,1,0),∴cos 〈EF →,DC →〉=EF →·DC →|EF →||DC →|=-22,∴〈EF →,DC →〉=135°,∴异面直线EF 和CD 所成的角是45°.故选B .4.如图,在正四棱柱ABCD -A 1B 1C 1D 1中,AB =2,BB 1=4,则直线BB 1与平面ACD 1所成角的正弦值为( )A .13B .33C .63D .223答案 A解析 如图所示,建立空间直角坐标系Dxyz .则A (2,0,0),C (0,2,0),D 1(0,0,4),B (2,2,0),B 1(2,2,4),AC →=(-2,2,0),AD 1→=(-2,0,4),BB 1→=(0,0,4). 设平面ACD 1的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AC →=0,n ·AD 1→=0,即⎩⎨⎧-2x +2y =0,-2x +4z =0, 取x =2,则y =2,z =1,故n =(2,2,1)是平面ACD 1的一个法向量,设直线BB 1与平面ACD 1所成的角是θ,则sin θ=|cos 〈n ,BB 1→〉|=|n ·BB 1→||n ||BB 1→|=49×4=13.故选A .5.△ABC 的顶点分别为A (1,-1,2),B (5,-6,2),C (1,3,-1),则AC 边上的高BD 等于( )A .5B .41C .4D .2 5答案 A解析 ∵A (1,-1,2),B (5,-6,2),C (1,3,-1),∴AB→=(4,-5,0),AC →=(0,4,-3).∵点D 在直线AC 上,∴设AD →=λAC →=(0,4λ,-3λ),由此可得BD→=AD →-AB →=(0,4λ,-3λ)-(4,-5,0)=(-4,4λ+5,-3λ).又BD →⊥AC →,∴BD →·AC →=-4×0+(4λ+5)×4+(-3λ)×(-3)=0,解得λ=-45.因此BD →=(-4,4λ+5,-3λ)=⎝ ⎛⎭⎪⎫-4,95,125.可得|BD→|= (-4)2+⎝ ⎛⎭⎪⎫952+⎝ ⎛⎭⎪⎫1252=5.6. (2020·安徽六安一中质检)如图,在直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,2AC =AA 1=BC =2.若二面角B 1-DC -C 1的大小为60°,则AD 的长为( )A . 2B . 3C .2D .22答案 A解析 分别以CA ,CB ,CC 1所在的直线为x ,y ,z 轴建立空间直角坐标系,则C (0,0,0),A (1,0,0),B 1(0,2,2),C 1(0,0,2),设AD =a ,则点D 坐标为(1,0,a ),CD →=(1,0,a ),CB 1→=(0,2,2),设平面B 1CD 的一个法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·CB 1→=0,n ·CD →=0,得⎩⎨⎧2y +2z =0,x +az =0,令z =-1,得n =(a,1,-1),又平面C 1DC 的一个法向量为m =(0,1,0).所以cos60°=m ·n |m ||n |,得1a 2+2=12,解得a =2,故选A .7. (2021·湖南湘潭高三月考)在三棱锥P -ABC 中,CP ,CA ,CB 两两垂直,AC =CB =1,PC =2,如图,建立空间直角坐标系,则下列向量中是平面P AB 的法向量的是( )A .⎝ ⎛⎭⎪⎫1,1,12 B .(1,2,1)C .(1,1,1)D .(2,-2,1)答案 A解析 P A →=(1,0,-2),AB →=(-1,1,0),设平面P AB 的法向量为n =(x ,y,1),则⎩⎨⎧ x -2=0,-x +y =0.解得⎩⎨⎧x =2,y =2.∴n =(2,2,1).又⎝ ⎛⎭⎪⎫1,1,12=12n ,∴A 正确.8.在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( )A .12 B .23 C .33 D .22答案 B解析 以A 为坐标原点建立如图所示的空间直角坐标系Axyz ,设棱长为1,则A 1(0,0,1),E ⎝ ⎛⎭⎪⎫1,0,12,D (0,1,0),∴A 1D →=(0,1,-1),A 1E →=⎝ ⎛⎭⎪⎫1,0,-12,设平面A 1ED 的一个法向量为n 1=(1,y ,z ),则⎩⎪⎨⎪⎧n 1·A 1D →=0,n 1·A 1E →=0,即⎩⎪⎨⎪⎧y -z =0,1-12z =0,∴⎩⎨⎧y =2,z =2.∴n 1=(1,2,2).又平面ABCD 的一个法向量为n 2=(0,0,1),∴cos 〈n 1,n 2〉=23×1=23.即平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为23.故选B .二、多项选择题9.(2020·海口高考调研) 如图,在直三棱柱ABC -A 1B 1C 1中,AA 1=AC =23AB =2,AB ⊥AC ,点D ,E 分别是线段BC ,B 1C 上的动点(不含端点),且EC B 1C =DCBC .则下列说法正确的是( )A .ED ∥平面ACC 1B .该三棱柱的外接球的表面积为68πC .异面直线B 1C 与AA 1所成角的正切值为32 D .二面角A -EC -D 的余弦值为413 答案 AD解析 在直三棱柱ABC -A 1B 1C 1中,四边形BCC 1B 1是矩形,因为ECB 1C =DC BC ,所以ED ∥BB 1∥CC 1,所以ED ∥平面ACC 1,A 正确;因为AA 1=AC =23AB =2,所以AB =3,因为AB ⊥AC ,所以BC =22+32=13,所以B 1C =13+4=17,易知B 1C 是三棱柱外接球的直径,所以三棱柱外接球的表面积为4π×⎝⎛⎭⎪⎫1722=17π,B 错误;因为AA 1∥BB 1,所以异面直线B 1C 与AA 1所成的角为∠BB 1C .在Rt △B 1BC 中,BB 1=2,BC =13,所以tan ∠BB 1C =BC BB 1=132,C 错误;二面角A -EC -D 即二面角A -B 1C -B ,以A 为坐标原点,以AB →,AC →,AA 1→的方向分别为x ,y ,z 轴的正方向建立空间直角坐标系,可得平面AB 1C 的一个法向量为(2,0,-3),平面BB 1C 的一个法向量为(2,3,0),故二面角A -EC -D 的余弦值为2×213×13=413,D 正确.10. (2020·山东模拟)已知正方体ABCD -A 1B 1C 1D 1的棱长为1,如图,E ,F ,G 分别为BC ,CC 1,BB 1的中点,则下列说法正确的是( )A .直线A 1G 与平面AEF 平行B .直线D 1D 与直线AF 垂直C .平面AEF 截正方体ABCD -A 1B 1C 1D 1所得截面的面积为98 D .点C 与点G 到平面AEF 的距离相等 答案 AC解析 如图,连接AD 1,D 1F ,因为A 1G ∥D 1F ,且A ,E ,F ,D 1在同一平面内,所以A 1G ∥平面AEF ,故A 正确;因为AF 与C 1C 相交且不垂直,D 1D 与C 1C 平行,所以直线D 1D 与直线AF 不垂直,故B 错误;平面AEF 截正方体ABCD -A 1B 1C 1D 1所得截面为等腰梯形AEFD 1,作EH ⊥AD 1,交AD 1于点H ,连接D 1E ,DE ,可得AE =52,AD 1=2,D 1E =1+54=32,所以在△AD 1E中,cos ∠D 1AE =1010,所以sin ∠D 1AE =31010,所以EH =52×31010=324,所以等腰梯形AD 1FE 的面积S =12×⎝ ⎛⎭⎪⎫2+22×324=98,故C 正确;以DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,连接AG ,AC ,则可得平面AEF 的一个法向量为n =(2,1,2),AG →=⎝ ⎛⎭⎪⎫0,1,12,AC →=(-1,1,0),所以点G 到平面AEF 的距离d 1=|AG →·n ||n |=23,点C 到平面AEF 的距离d 2=|AC →·n ||n |=13,故D 错误.故选AC .三、填空题11. 如图所示,二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内,且都垂直于AB.已知AB=4,AC=6,BD=8,CD=217,则该二面角的大小为________.答案60°解析∵CD→=CA→+AB→+BD→,∴|CD→|=(CA→+AB→+BD→)2= 36+16+64+2CA→·BD→= 116+2CA→·BD→=217.∴CA→·BD→=|CA→||BD→|cos〈CA→,BD→〉=-24.∴cos〈CA→,BD→〉=-12.又所求二面角与〈CA→,BD→〉互补,∴所求的二面角为60°.12. 正三棱柱(底面是正三角形的直棱柱)ABC-A1B1C1的底面边长为2,侧棱长为22,则AC1与侧面ABB1A1所成的角为________.答案 π6解析 以C 为原点建立如图所示的空间直角坐标系,得下列坐标:A (2,0,0),C 1(0,0,22).点C 1在侧面ABB 1A 1内的射影为点C 2⎝ ⎛⎭⎪⎫32,32,22.所以AC 1→=(-2,0,22),AC 2→=⎝ ⎛⎭⎪⎫-12,32,22,设直线AC 1与平面ABB 1A 1所成的角为θ,则cos θ=AC 1→·AC 2→|AC1→||AC 2→|=1+0+823×3=32.又θ∈⎣⎢⎡⎦⎥⎤0,π2,所以θ=π6.13.(2020·山西大同高三模拟)在正方体ABCD -A 1B 1C 1D 1中,棱长为a ,M ,N 分别为A 1B 和AC 上的点,且A 1M =AN =23a ,则MN 与平面BB 1C 1C 的位置关系是________.答案 平行解析 MN →=MA 1→+A 1A →+AN →=13BA 1→+A 1A →+13AC →=13(BA →+AA 1→)+A 1A →+13(AB →+BC →)=23A 1A →+13BC →=23B 1B →+13BC →.∴MN →与B 1B →,BC →共面.又MN ⊄平面BB 1C 1C ,∴MN ∥平面BB 1C 1C .14.已知点E ,F 分别在正方体ABCD -A 1B 1C 1D 1的棱BB 1,CC 1上,且B 1E =2EB ,CF =2FC 1,则平面AEF 与平面ABC 所成的锐二面角的正切值为________.答案23解析 如图,建立空间直角坐标系Dxyz ,设DA =1,由已知条件得A (1,0,0),E ⎝ ⎛⎭⎪⎫1,1,13,F ⎝ ⎛⎭⎪⎫0,1,23,AE →=⎝ ⎛⎭⎪⎫0,1,13,AF →=⎝ ⎛⎭⎪⎫-1,1,23, 设平面AEF 的法向量为n =(x ,y ,z ),平面AEF 与平面ABC 所成的锐二面角为θ,由图知θ为锐角,由⎩⎪⎨⎪⎧n ·AE →=0,n ·AF →=0,得⎩⎪⎨⎪⎧y +13z =0,-x +y +23z =0.令y =1,则z =-3,x =-1,则n =(-1,1,-3),平面ABC 的一个法向量为m =(0,0,-1),cos θ=|cos 〈n ,m 〉|=31111,tan θ=23.四、解答题15.(2020·山东省模拟考) 如图,四棱锥S -ABCD 中,底面ABCD 为矩形.SA ⊥平面ABCD ,E ,F 分别为AD ,SC 的中点,EF 与平面ABCD 所成的角为45°.(1)证明:EF 为异面直线AD 与SC 的公垂线;(2)若EF =12BC ,求二面角B -SC -D 的余弦值.解 (1)证明:以A 为坐标原点,AB →的方向为x 轴正方向,|AB →|为单位长,建立如图所示的空间直角坐标系Axyz .设D (0,b,0),S (0,0,c ),则C (1,b,0),E ⎝ ⎛⎭⎪⎫0,b 2,0,F ⎝ ⎛⎭⎪⎫12,b 2,c 2,EF →=⎝ ⎛⎭⎪⎫12,0,c 2,AS →=(0,0,c ),AD→=(0,b,0). 因为EF 与平面ABCD 所成的角为45°,所以EF →与平面ABCD 的法向量AS →的夹角为45°.所以AS →·EF →=|AS →||EF →|cos45°, 即c 22=22×c ×14+c 24,解得c =1,故EF →=⎝ ⎛⎭⎪⎫12,0,12,SC →=(1,b ,-1), 从而EF →·SC →=0,EF →·AD →=0,所以EF ⊥SC ,EF ⊥AD .因此EF 为异面直线AD 与SC 的公垂线. (2)由B (1,0,0),BC →=(0,b,0), |EF→|=12|BC →|得b = 2. 于是F ⎝ ⎛⎭⎪⎫12,22,12,C (1,2,0),连接FB ,故FB →=⎝ ⎛⎭⎪⎫12,-22,-12,SC →=(1,2,-1),从而FB →·SC→=0,即FB ⊥SC .取CF 的中点G ,连接GD ,则G ⎝ ⎛⎭⎪⎫34,324,14,GD →=⎝ ⎛⎭⎪⎫-34,24,-14,从而GD →·SC→=0,即GD ⊥SC .因此〈FB→,GD →〉等于二面角B -SC -D 的平面角.cos 〈FB →,GD →〉=FB →·GD →|FB →||GD →|=-33.所以二面角B -SC -D 的余弦值为-33.16. (2020·全国卷Ⅱ)如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.解 (1)证明:∵M ,N 分别为BC ,B 1C 1的中点, ∴MN ∥BB 1.又AA 1∥BB 1,∴AA 1∥MN .∵△A 1B 1C 1为等边三角形,N 为B 1C 1的中点, ∴A 1N ⊥B 1C 1.又侧面BB 1C 1C 为矩形,∴B 1C 1⊥BB 1. ∵MN ∥BB 1,∴MN ⊥B 1C 1.又MN ∩A 1N =N ,MN ,A 1N ⊂平面A 1AMN , ∴B 1C 1⊥平面A 1AMN .又B 1C 1⊂平面EB 1C 1F , ∴平面A 1AMN ⊥平面EB 1C 1F .(2)解法一:连接NP ,∵AO ∥平面EB 1C 1F ,平面AONP ∩平面EB 1C 1F =NP , ∴AO ∥NP .∵三棱柱上下底面平行,平面A 1AMN ∩平面ABC =AM ,平面A 1AMN ∩平面A 1B 1C 1=A 1N ,∴ON ∥AP .∴四边形ONP A 是平行四边形. ∴ON =AP ,AO =NP . 设△ABC 边长是6m (m >0), 则NP =AO =AB =6m .∵O 为△A 1B 1C 1的中心,且△A 1B 1C 1的边长为6m , ∴ON =13×6m ×sin60°=3m .∴ON =AP =3m . ∵BC ∥B 1C 1,B 1C 1⊂平面EFC 1B 1, ∴BC ∥平面EFC 1B 1.又BC ⊂平面ABC ,平面ABC ∩平面EFC 1B 1=EF , ∴EF ∥BC ,∴AP AM =EP BM ,∴3m 33m =EP 3m ,解得EP =m .在B 1C 1截取B 1Q =EP =m ,连接PQ ,故QN =2m . ∵B 1Q =EP 且B 1Q ∥EP ,∴四边形B 1QPE 是平行四边形,∴B 1E ∥PQ . 由(1)可知B 1C 1⊥平面A 1AMN ,故∠QPN 为B 1E 与平面A 1AMN 所成角. 在Rt △QPN 中,根据勾股定理可得PQ =QN 2+NP 2=(2m )2+(6m )2=210m , ∴sin ∠QPN =QN PQ =2m 210m=1010.∴直线B 1E 与平面A 1AMN 所成角的正弦值为1010. 解法二:由(1)知平面A 1AMN ⊥平面ABC ,作NQ ⊥AM ,垂足为Q ,则NQ ⊥平面ABC .由已知得AM ⊥BC ,以Q 为坐标原点,QA→的方向为x 轴正方向,QN →的方向为z 轴正方向,|MB →|为单位长,建立如图所示的空间直角坐标系Qxyz ,设QM =a ,则AB =2,AM = 3.连接NP ,则四边形AONP 为平行四边形, ∴NP =AO =AB =2,∴PQ =233-a ,NQ = NP 2-PQ 2= 4-⎝ ⎛⎭⎪⎫233-a2, ∴B 10,1,4-⎝ ⎛⎭⎪⎫233-a 2 ,E ⎝ ⎛⎭⎪⎫233-a ,13,0,故B 1E →=233-a ,-23,-4-⎝ ⎛⎭⎪⎫233-a2,|B 1E →|=2103.又n =(0,-1,0)是平面A 1AMN 的一个法向量, 故sin ⎝ ⎛⎭⎪⎫π2-〈n ,B 1E →〉=cos 〈n ,B 1E →〉=n ·B 1E →|n ||B 1E →|=1010.∴直线B 1E 与平面A 1AMN 所成角的正弦值为1010.17.(2020·泰安三模)在四棱锥P -ABCD 中,△P AB 为等边三角形,四边形ABCD 为矩形,E 为PB 的中点,DE ⊥PB .(1)证明:平面ABCD ⊥平面P AB ;(2)设二面角A -PC -B 的大小为α,求α的取值范围.解 (1)证明:连接AE ,因为△P AB 为等边三角形,所以AE ⊥PB . 又DE ⊥PB ,AE ∩DE =E ,所以PB ⊥平面ADE ,所以PB ⊥AD . 因为四边形ABCD 为矩形,所以AD ⊥AB ,且AB ∩PB =B , 所以AD ⊥平面P AB .因为AD ⊂平面ABCD ,所以平面ABCD ⊥平面P AB .(2)以A 为坐标原点建立如图所示的空间直角坐标系Axyz ,不妨设PB =AB =P A =1,C (0,1,n ),则A (0,0,0),P ⎝ ⎛⎭⎪⎫32,12,0,B (0,1,0),由空间向量的坐标运算可得PC →=⎝ ⎛⎭⎪⎫-32,12,n ,AP →=⎝ ⎛⎭⎪⎫32,12,0,BP →=⎝ ⎛⎭⎪⎫32,-12,0.设平面BPC 的法向量为m =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧m ·PC →=0,m ·BP →=0,即⎩⎪⎨⎪⎧-32x 1+12y 1+nz 1=0,32x 1-12y 1=0,令x 1=1,则y 1=3,z 1=0,所以m =(1,3,0). 设平面P AC 的法向量为n =(x 2,y 2,z 2), 则⎩⎪⎨⎪⎧n ·PC →=0,n ·AP →=0,即⎩⎪⎨⎪⎧-32x 2+12y 2+nz 2=0,32x 2+12y 2=0,令x 2=1,则y 2=-3,z 2=3n ,所以n =⎝ ⎛⎭⎪⎫1,-3,3n .二面角A -PC -B 的大小为α,由图可知,二面角α为锐二面角, 所以cos α=|m ·n ||m ||n |=|1-3|1+3×1+3+3n 2=14+3n 2∈⎝⎛⎭⎪⎫0,12,所以α∈⎝ ⎛⎭⎪⎫π3,π2. 18.(2020·山东平邑一中模拟)请从下面三个条件中任选一个,补充在下面的横线上,并作答.①AB ⊥BC ;②FC 与平面ABCD 所成的角为π6;③∠ABC =π3.如图,在四棱锥P -ABCD 中,底面ABCD 是菱形,P A ⊥平面ABCD ,且P A =AB =2,PD 的中点为F .(1)在线段AB上是否存在一点G,使得AF∥平面PCG?若存在,指出G在AB上的位置并给以证明;若不存在,请说明理由;(2)若________,求二面角F-AC-D的余弦值.解(1)在线段AB上存在中点G,使得AF∥平面PCG.证明如下:如图所示.设PC的中点为H,连接FH,GH,∵FH∥CD,FH=12CD,AG∥CD,AG=12CD,∴FH∥AG,FH=AG,∴四边形AGHF为平行四边形,则AF∥GH,又GH⊂平面PCG,AF⊄平面PCG,∴AF∥平面PCG.(2)选择①AB⊥BC:∵P A⊥平面ABCD,∴P A⊥BC,由题意,知AB,AD,AP两两垂直,以AB,AD,AP所在直线分别为x,y,z轴,建立空间直角坐标系,∵P A=AB=2,则A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),F(0,1,1),P(0,0,2),∴AF→=(0,1,1),CF→=(-2,-1,1),设平面F AC 的一个法向量为μ=(x ,y ,z ), ∴⎩⎪⎨⎪⎧μ·AF →=y +z =0,μ·CF →=-2x -y +z =0,取y =1,得μ=(-1,1,-1), 平面ACD 的一个法向量为v =(0,0,1), 设二面角F -AC -D 的平面角为θ, 由图可知,二面角θ为锐二面角, 则cos θ=|μ·v ||μ||v |=33,∴二面角F -AC -D 的余弦值为33. 选择②FC 与平面ABCD 所成的角为π6:∵P A ⊥平面ABCD ,取BC 中点E ,连接AE ,取AD 的中点M ,连接FM ,CM ,则FM ∥P A ,且FM =1,∴FM ⊥平面ABCD , FC 与平面ABCD 所成角为∠FCM , ∴∠FCM =π6,在Rt △FCM 中,CM =3,又CM =AE ,∴AE 2+BE 2=AB 2,∴BC ⊥AE , ∴AE ,AD ,AP 两两垂直,以AE ,AD ,AP 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,∵P A =AB =2,∴A (0,0,0),B (3,-1,0),C (3,1,0),D (0,2,0),E (3,0,0),F (0,1,1),P (0,0,2),∴AF→=(0,1,1),CF →=(-3,0,1), 设平面F AC 的一个法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧ m ·AF →=y +z =0,m ·CF →=-3x +z =0,取x =3,得m =(3,-3,3),平面ACD 的一个法向量为n =(0,0,1),设二面角F -AC -D 的平面角为θ,由图可知,二面角θ为锐二面角,则cos θ=|m ·n ||m ||n |=217.∴二面角F -AC -D 的余弦值为217.选择③∠ABC =π3:∵P A ⊥平面ABCD ,∴P A ⊥BC ,取BC 中点E ,连接AE ,∵底面ABCD 是菱形,∠ABC =60°,∴△ABC 是正三角形,∵E 是BC 的中点,∴BC ⊥AE ,∴AE ,AD ,AP 两两垂直,以AE ,AD ,AP 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,∵P A =AB =2,∴A (0,0,0),B (3,-1,0),C (3,1,0),D (0,2,0),E (3,0,0),F (0,1,1),P (0,0,2),∴AF→=(0,1,1),CF →=(-3,0,1), 设平面F AC 的一个法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧ m ·AF →=y +z =0,m ·CF →=-3x +z =0,取x =3,得m =(3,-3,3),平面ACD 的一个法向量为n =(0,0,1), 设二面角F -AC -D 的平面角为θ,由图可知,二面角θ为锐二面角,则cos θ=|m ·n ||m ||n |=217.∴二面角F -AC -D 的余弦值为217.。

空间线面关系的判定

空间线面关系的判定

D1
O
A B
x
C
D
y
l g l xm yn xl m yl m o




例3、如图,在直三棱柱 ABC - A1B1C1 中,
ACB 90, BAC 30, BC 1, A1 A 6,
M 是棱 CC1 的中点,
求证:A1B AM
B1 C1 A1
6
M
B
30
求证:CD OB
B

D O

C A
B
证明:因为 所以
D
CD OA
O
因为 所以 所以

C A
AB , CD CD AB
CD OA 0
CD AB 0 因为 OB OA AB 所以 CD OB CD OA AB CD OA CD AB
所以: A1B AM A1 A AB AC CM



A1 C1
A1 A AC A1 A CM AB CM 0
所以:A B
AM 1 即, A1 B AM
B1
6
M
B
30
A
1
90
C
思考:还有其它的证明方法吗?
B1 C1
A1
利用相似形与线面垂直
同步练习: 如图,在正方体 ABCD A1B1C1D1 中,CD1和DC1 相交于点 O ,求证:AO A1B
A1
B1 C1
D1
O
A B
C
D
同步练习(用坐标运算的方法) 如图,在正方体 ABCD A1B1C1D1 中,CD1和DC1 相交于点 O ,求证:AO A1B

1.4.1 用空间向量研究直线、平面的位置关系(PPT)

1.4.1 用空间向量研究直线、平面的位置关系(PPT)

平面 α 的法向量的是( )
A.(0,-3,1)
B.(2,0,1)
C.(-2,-3,1)
D.(-2,3,-1)
D 解析:与向量 n 共线的非零向量都可以作为平面 α 的法向
量.故选 D.
3.已知平面 α 内的两个向量 a=(2,3,1),b=(5,6,4),则平
面 α 的一个法向量为( )
A.(1,-1,1)
预习验收 衔接课堂
1.若 A(-1,0,1),B(1,4,7)在直线 l 上,则直线 l 的一个方
向向量为( )
A.(1,2,3)
B.(1,3,2)
C.(2,1,3)
D.(3,2,1)
A 解析:A→B=(2,4,6),而与A→B共线的非零向量都可以作为
直线 l 的方向向量,故选 A.
2.若 n=(2,-3,1)是平面 α 的一个法向量,则下列可以作为
【例 3】 如图,在三棱锥 P ABC 中,PA⊥ 底面 ABC,∠BAC=90°,点 D,E,N 分别为棱 PA,PC,BC 的中点,M 是线段 AD 的中点,PA =AC=4,AB=2.
求证:MN∥平面 BDE.
证明: 如图,以 A 为原点,AB,AC,AP 所在直线为 x 轴、y 轴、z 轴,建立空间直角坐标系,依题意可得 A(0,0,0),B(2,0, 0),C(0,4,0),P(0,0,4),D(0,0,2),E(0,2,2),M(0,0, 1),N(1,2,0).
定位置 定点
点 A 和向量 a 可以确定直线 l 的__位__置____ 可以具体表示出 l 上的任意__一__点____
取定空间中的任意一点 O,可以得到点 P 在直线 l 上的充要条件
是存在实数 t,使O→P=__O_→_A_+__t_O→_B___.

数学选修2-1苏教版:第3章 空间向量与立体几何 3.2.1-3.2.2

数学选修2-1苏教版:第3章 空间向量与立体几何 3.2.1-3.2.2

§3.2 空间向量的应用3.2.1 直线的方向向量与平面的法向量 3.2.2 空间线面关系的判定(一)——平行关系学习目标 1.掌握空间点、线、面的向量表示.2.理解直线的方向向量与平面的法向量的意义;会用待定系数法求平面的法向量.3.能用向量法证明直线与直线、直线与平面、平面与平面的平行问题.知识点一 直线的方向向量与平面的法向量思考 怎样用向量来表示点、直线、平面在空间中的位置?答案 (1)点:在空间中,我们取一定点O 作为基点,那么空间中任意一点P 的位置就可以用向量OP →来表示.我们把向量OP →称为点P 的位置向量.(2)直线:①直线的方向向量:和这条直线平行或共线的非零向量.②对于直线l 上的任一点P ,在直线上取AB →=a ,则存在实数t ,使得AP →=tAB →.(3)平面:①空间中平面α的位置可以由α内两条相交直线来确定.对于平面α上的任一点P ,a ,b 是平面α内两个不共线向量,则存在有序实数对(x ,y ),使得OP →=x a +y b . ②空间中平面α的位置还可以用垂直于平面的直线的方向向量表示. 梳理 (1)用向量表示直线的位置:(2)用向量表示平面的位置:①通过平面α上的一个定点O和两个向量a和b来确定:②通过平面α上的一个定点A和法向量来确定:(3)直线的方向向量和平面的法向量:知识点二利用空间向量处理平行问题思考(1)设v1=(a1,b1,c1),v2=(a2,b2,c2)分别是直线l1,l2的方向向量.若直线l1∥l2,则向量v1,v2应满足什么关系.(2)若已知平面外一直线的方向向量和平面的法向量,则这两向量满足哪些条件可说明直线与平面平行?(3)用向量法处理空间中两平面平行的关键是什么?答案(1)由直线方向向量的定义知若直线l1∥l2,则直线l1,l2的方向向量共线,即l1∥l2⇔v1∥v2⇔v1=λv2(λ∈R).(2)可探究直线的方向向量与平面的法向量是否垂直,进而确定线面是否平行.(3)关键是找到两个平面的法向量,利用法向量平行来说明两平面平行.梳理(1)空间中平行关系的向量表示:的法向量分别为μ,v,则设直线l,m的方向向量分别为a,b,平面α,β(2)利用空间向量解决平行问题时,第一,建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;第二,通过向量的运算,研究平行问题;第三,把向量问题再转化成相应的立体几何问题,从而得出结论.1.若两条直线平行,则它们的方向向量方向相同或相反.(√)2.平面α的法向量是唯一的,即一个平面不可能存在两个不同的法向量.(×) 3.两直线的方向向量平行,则两直线平行.(×)4.直线的方向向量与平面的法向量的方向相同或相反时,直线与平面垂直.(√)类型一 求直线的方向向量、平面的法向量例1 如图,四棱锥P -ABCD 中,底面ABCD 为矩形,P A ⊥平面ABCD ,E 为PD 的中点.AB =AP =1,AD =3,试建立恰当的空间直角坐标系,求平面ACE 的一个法向量.解 因为P A ⊥平面ABCD ,底面ABCD 为矩形, 所以AB ,AD ,AP 两两垂直.如图,以A 为坐标原点,AB →,AD →,AP →的方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系A -xyz ,则D (0,3,0),E ⎝⎛⎭⎫0,32,12,B (1,0,0),C (1,3,0),于是AE →=⎝⎛⎭⎫0,32,12,AC →=(1,3,0).设n =(x ,y ,z )为平面ACE 的法向量,则⎩⎪⎨⎪⎧n ·AC →=0,n ·AE →=0,即⎩⎪⎨⎪⎧x +3y =0,32y +12z =0,所以⎩⎨⎧x =-3y ,z =-3y ,令y =-1,则x =z = 3.所以平面ACE 的一个法向量为n =(3,-1,3). 引申探究若本例条件不变,试求直线PC 的一个方向向量和平面PCD 的一个法向量. 解 由例1解析图可知,P (0,0,1),C (1,3,0), 所以PC →=(1,3,-1), 即为直线PC 的一个方向向量. 设平面PCD 的法向量为 n =(x ,y ,z ).因为D (0,3,0),所以PD →=(0,3,-1). 由⎩⎪⎨⎪⎧n ·PC →=0,n ·PD →=0,即⎩⎨⎧x +3y -z =0,3y -z =0,所以⎩⎨⎧x =0,z =3y ,令y =1,则z = 3.所以平面PCD 的一个法向量为n =(0,1,3). 反思与感悟 利用待定系数法求平面法向量的步骤 (1)设向量:设平面的法向量为n =(x ,y ,z ). (2)选向量:在平面内选取两个不共线向量AB →,AC →. (3)列方程组:由⎩⎪⎨⎪⎧n ·AB →=0,n ·AC →=0,列出方程组.(4)解方程组:⎩⎪⎨⎪⎧n ·AB →=0,n ·AC →=0.(5)赋非零值:取其中一个为非零值(常取±1).(6)得结论:得到平面的一个法向量.跟踪训练1 如图所示,在四棱锥S -ABCD 中,底面是直角梯形,∠ABC =90°,SA ⊥底面ABCD ,且SA =AB =BC =1,AD =12,建立适当的空间直角坐标系,求平面SCD 与平面SBA的一个法向量.解 如图,以A 为坐标原点,以AD →,AB →,AS →分别为x ,y ,z 轴的正方向建立空间直角坐标系A -xyz ,则A (0,0,0),D ⎝⎛⎭⎫12,0,0, C (1,1,0),S (0,0,1), 则DC →=⎝⎛⎭⎫12,1,0, DS →=⎝⎛⎭⎫-12,0,1. 易知向量AD →=⎝⎛⎭⎫12,0,0是平面SAB 的一个法向量. 设n =(x ,y ,z )为平面SDC 的法向量, 则⎩⎨⎧n ·DC →=12x +y =0,n ·DS →=-12x +z =0,即⎩⎨⎧y =-12x ,z =12x .取x =2,则y =-1,z =1,∴平面SDC 的一个法向量为(2,-1,1). 类型二 证明线线平行问题例2 已知直线l 1与l 2的方向向量分别是a =(2,3,-1),b =(-6,-9,3). 证明:l 1∥l 2.证明 ∵a =(2,3,-1),b =(-6,-9,3),∴a =-13b ,∴a ∥b ,即l 1∥l 2.反思与感悟 两直线的方向向量共线时,两直线平行;否则两直线相交或异面.跟踪训练2 已知在四面体ABCD 中,G ,H 分别是△ABC 和△ACD 的重心,则GH 与BD 的位置关系是________. 答案 平行解析 设E ,F 分别为BC 和CD 的中点,则GH →=GA →+AH →=23(EA →+AF →)=23EF →,所以GH ∥EF ,所以GH ∥BD .类型三 利用空间向量证明线面、面面平行问题例3 已知正方体ABCD-A 1B 1C 1D 1的棱长为2,E ,F 分别是BB 1,DD 1的中点,求证: (1)FC 1∥平面ADE ; (2)平面ADE ∥平面B 1C 1F .证明 (1)以D 为坐标原点,以DA →,DC →,DD 1—→的方向为x 轴,y 轴,z 轴正方向,建立如图所示的空间直角坐标系D -xyz ,则有D (0,0,0),A (2,0,0),C (0,2,0),C 1(0,2,2),E (2,2,1),F (0,0,1),B 1(2,2,2),所以FC 1—→=(0,2,1),DA →=(2,0,0),AE →=(0,2,1). 设n 1=(x 1,y 1,z 1)是平面ADE 的法向量, 则n 1⊥DA →,n 1⊥AE →,即⎩⎪⎨⎪⎧n 1·DA →=2x 1=0,n 1·AE →=2y 1+z 1=0,得⎩⎪⎨⎪⎧x 1=0,z 1=-2y 1,令z 1=2,则y 1=-1,所以n 1=(0,-1,2). 因为FC 1—→·n 1=-2+2=0,所以FC 1—→⊥n 1. 又因为FC 1⊄平面ADE ,所以FC 1∥平面ADE .(2)因为C 1B 1—→=(2,0,0),设n 2=(x 2,y 2,z 2)是平面B 1C 1F 的一个法向量.由n 2⊥FC 1—→,n 2⊥C 1B 1—→,得⎩⎪⎨⎪⎧n 2·FC 1—→=2y 2+z 2=0,n 2·C 1B 1—→=2x 2=0,得⎩⎪⎨⎪⎧x 2=0,z 2=-2y 2.令z 2=2,得y 2=-1,所以n 2=(0,-1,2), 因为n 1=n 2,所以平面ADE ∥平面B 1C 1F .反思与感悟 利用向量证明平行问题,可以先建立空间直角坐标系,求出直线的方向向量和平面的法向量,然后根据向量之间的关系证明平行问题.跟踪训练3 如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,PB 与底面所成的角为45°,底面ABCD 为直角梯形,∠ABC =∠BAD =90°,P A =BC =12AD =1,问在棱PD 上是否存在一点E ,使CE ∥平面P AB ?若存在,求出E 点的位置;若不存在,请说明理由.解 以A 为坐标原点.分别以AB ,AD ,AP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系A -xyz ,如图所示.∴P (0,0,1),C (1,1,0),D (0,2,0), 设存在满足题意的点E (0,y ,z ), 则PE →=(0,y ,z -1), PD →=(0,2,-1), ∵PE →∥PD →,∴y ×(-1)-2(z -1)=0,①∵AD →=(0,2,0)是平面P AB 的法向量, 又CE →=(-1,y -1,z ),CE ∥平面P AB , ∴CE →⊥AD →,∴(-1,y -1,z )·(0,2,0)=0.∴y =1,代入①得z =12,∴E 是PD 的中点,∴存在点E ,当点E 为PD 中点时,CE ∥平面P AB .1.若点A (-1,0,1),B (1,4,7)在直线l 上,则直线l 的一个方向向量的坐标可以是________.(填序号)①(-1,0,1);②(1,4,7);③(2,4,6). 答案 ③解析 显然AB →=(2,4,6)可以作为直线l 的一个方向向量.2.已知a =(2,4,5),b =(3,x ,y )分别是直线l 1,l 2的方向向量.若l 1∥l 2,则x =________,y =________. 答案 6152解析 由l 1∥l 2得,23=4x =5y ,解得x =6,y =152.3.已知向量n =(2,-3,1)是平面α的一个法向量,则下列向量中能作为平面α的法向量的是________.(填序号)①n 1=(0,-3,1);②n 2=(-2,0,4); ③n 3=(-2,-3,1);④n 4=(-2,3,-1). 答案 ④解析 由题可知只有④可以作为α的法向量.4.已知向量n =(-1,3,1)为平面α的法向量,点M (0,1,1)为平面内一定点.P (x ,y ,z )为平面内任一点,则x ,y ,z 满足的关系式是________. 答案 x -3y -z +4=0解析 由题可知MP →=(x ,y -1,z -1). 又因为n ·MP →=0,故-x +3(y -1)+(z -1)=0,化简, 得x -3y -z +4=0.5.若直线l ∥α,且l 的方向向量为(2,m,1),平面α的法向量为⎝⎛⎭⎫1,12,2,则m 为________. 答案 -8解析 ∵l ∥α,平面α的法向量为⎝⎛⎭⎫1,12,2, ∴(2,m,1)·⎝⎛⎭⎫1,12,2=0, ∴2+12m +2=0,∴m =-8.1.应用向量法证明线面平行问题的方法: (1)证明直线的方向向量与平面的法向量垂直.(2)证明直线的方向向量与平面内的某一直线的方向向量共线.(3)证明直线的方向向量可用平面内的任意两个不共线的向量表示.即用平面向量基本定理证明线面平行.2.证明面面平行的方法:设平面α的法向量为n 1=(a 1,b 1,c 1),平面β的法向量为n 2=(a 2,b 2,c 2),则α∥β⇔n 1∥n 2⇔(a 1,b 1,c 1)=k (a 2,b 2,c 2)(k ∈R ).一、填空题1.已知l 1的方向向量为v 1=(1,2,3),l 2的方向向量为v 2=(λ,4,6),若l 1∥l 2,则λ=________. 答案 2解析 ∵l 1∥l 2,∴v 1∥v 2,则1λ=24,∴λ=2.2.已知a =(λ+1,0,2),b =(6,2μ-1,2λ),若a ∥b ,则μ的值为________. 答案 12解析 因为a ∥b ,故2μ-1=0,即μ=12.3.直线l 的方向向量s =(-1,1,1),平面α的一个法向量为n =(2,x 2+x ,-x ),若直线l ∥α,则x 的值为________. 答案 ±2解析 易知-1×2+1×(x 2+x )+1×(-x )=0, 解得x =±2.4.设平面α的法向量为(1,2,-2),平面β的法向量为(-2,-4,k ),若α∥β,则k 的值为________. 答案 4解析 因为α∥β,所以平面α与平面β的法向量共线, 所以(-2,-4,k )=λ(1,2,-2), 所以⎩⎪⎨⎪⎧-2=λ,-4=2λ,k =-2λ,解得⎩⎪⎨⎪⎧λ=-2,k =4.所以k 的值是4.5.已知平面α内两向量a =(1,1,1),b =(0,2,-1)且c =m a +n b +(4,-4,1).若c 为平面α的法向量,则m ,n 的值分别为________. 答案 -1,2解析 c =m a +n b +(4,-4,1)=(m ,m ,m )+(0,2n ,-n )+(4,-4,1)=(m +4,m +2n -4,m -n +1),由c 为平面α的法向量,得⎩⎪⎨⎪⎧ c ·a =0,c ·b =0,得⎩⎪⎨⎪⎧m =-1,n =2.6.已知A (4,1,3),B (2,3,1),C (3,7,-5),点P (x ,-1,3)在平面ABC 内,则x 的值为________. 答案 11解析 ∵点P 在平面ABC 内, ∴存在实数k 1,k 2, 使AP →=k 1AB →+k 2AC →,即(x -4,-2,0)=k 1(-2,2,-2)+k 2(-1,6,-8),∴⎩⎪⎨⎪⎧ 2k 1+6k 2=-2,k 1+4k 2=0,解得⎩⎪⎨⎪⎧k 1=-4,k 2=1.∴x -4=-2k 1-k 2=8-1=7, 即x =11.7.已知l ∥α,且l 的方向向量为m =(2,-8,1),平面α的法向量为n =(1,y,2),则y =________.答案 12解析 ∵l ∥α,∴l 的方向向量m =(2,-8,1)与平面α的法向量n =(1,y,2)垂直,∴2×1-8×y +2=0,∴y =12. 8.若平面α的一个法向量为u 1=(-3,y,2),平面β的一个法向量为u 2=(6,-2,z ),且α∥β,则y +z =________.答案 -3解析 ∵α∥β,∴u 1∥u 2,∴-36=y -2=2z. ∴y =1,z =-4.∴y +z =-3.9.已知平面α与平面β平行,若平面α与平面β的法向量分别为μ=(5,25,5),v =(t,5,1),则t 的值为________.答案 1解析 ∵平面α与平面β平行,∴平面α的法向量μ与平面β的法向量v 平行,∴5t =255=51,解得t =1. 10.已知平面α内的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量为n =(-1,-1,-1),且β与α不重合,则β与α的位置关系是________.答案 α∥β解析 AB →=(0,1,-1),AC →=(1,0,-1),n ·AB →=(-1,-1,-1)·(0,1,-1)=-1×0+(-1)×1+(-1)×(-1)=0,n ·AC →=(-1,-1,-1)·(1,0,-1)=-1×1+0+(-1)·(-1)=0,∴n ⊥AB →,n ⊥AC →.∴n 也为α的一个法向量.又α与β不重合,∴α∥β.11.若平面α的一个法向量为u 1=(m,2,-4),平面β的一个法向量为u 2=(6,-4,n ),且α∥β,则m +n =________.答案 5解析 ∵α∥β,∴u 1∥u 2.∴m 6=2-4=-4n∴m =-3,n =8.∴m +n =5.二、解答题12.如图,在正方体ABCD -A 1B 1C 1D 1中,求证:AC 1—→是平面B 1D 1C 的法向量.证明 如图,以D 为坐标原点,DA ,DC ,DD 1分别为x ,y ,z 轴,建立空间直角坐标系.设正方体的棱长为1,则D 1(0,0,1),A (1,0,0),C (0,1,0),B 1(1,1,1),C 1(0,1,1).所以AC 1—→=(-1,1,1),D 1B 1—→=(1,1,0),CB 1—→=(1,0,1),所以AC 1—→·D 1B 1—→=(-1,1,1)·(1,1,0)=0,AC 1—→·CB 1—→=(-1,1,1)·(1,0,1)=0,所以AC 1—→⊥D 1B 1—→,AC 1—→⊥CB 1→,又B 1D 1∩CB 1=B 1,且B 1D 1,CB 1⊂平面B 1D 1C ,所以AC 1⊥平面B 1D 1C ,AC 1—→是平面B 1D 1C 的法向量.13.已知A ⎝⎛⎭⎫0,2,198,B ⎝⎛⎭⎫1,-1,58,C ⎝⎛⎭⎫-2,1,58是平面α内的三点,设平面α的法向量a =(x ,y ,z ),求x ∶y ∶z 的值.解 AB →=⎝⎛⎭⎫1,-3,-74,AC →=⎝⎛⎭⎫-2,-1,-74, 由⎩⎪⎨⎪⎧ a ·AB →=0,a ·AC →=0,得⎩⎨⎧ x -3y -74z =0,-2x -y -74z =0, 解得⎩⎨⎧x =23y ,z =-43y , 则x ∶y ∶z =23y ∶y ∶⎝⎛⎭⎫-43y =2∶3∶(-4). 三、探究与拓展14.已知O ,A ,B ,C ,D ,E ,F ,G ,H 为空间的9个点(如图所示),并且OE →=kOA →,OF →=kOB →,OH →=kOD →,AC →=AD →+mAB →,EG →=EH →+mEF →.求证:(1)A ,B ,C ,D 四点共面,E ,F ,G ,H 四点共面;(2)AC →∥EG →.证明 (1)由AC →=AD →+mAB →,EG →=EH →+mEF →,知A ,B ,C ,D 四点共面,E ,F ,G ,H 四点共面.(2)∵EG →=EH →+mEF →=OH →-OE →+m (OF →-OE →)=k (OD →-OA →)+km (OB →-OA →)=kAD →+kmAB →=k (AD →+mAB →)=kAC →,∴AC →∥EG →.15.如图所示,在正方体ABCD -A 1B 1C 1D 1中,O 为底面ABCD 的中心,P 是DD 1的中点,设Q 是CC 1上的点,问:当点Q 在什么位置时,平面D 1BQ ∥平面P AO?解 如图所示,以点D 为坐标原点,分别以DA ,DC ,DD 1所在直线为x ,y ,z 轴,建立空间直角坐标系,在CC 1上任取一点Q ,连结BQ ,D 1Q .设正方体的棱长为1,则O ⎝⎛⎭⎫12,12,0,P ⎝⎛⎭⎫0,0,12, A (1,0,0),B (1,1,0),D 1(0,0,1),则Q (0,1,z ),则OP →=⎝⎛⎭⎫-12,-12,12, BD 1→=(-1,-1,1),∴OP →∥BD 1—→,∴OP ∥BD 1.AP →=⎝⎛⎭⎫-1,0,12,BQ →=(-1,0,z ), 当z =12时,AP →=BQ →, 即当AP ∥BQ 时,有平面P AO ∥平面D 1BQ , ∴当Q 为CC 1的中点时,平面D 1BQ ∥平面P AO .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

,则 ur
ur
线线垂直 l1
l2
eu1r
euur2
eur1 e2
0;
uur
线面垂直 l1 1 eu1ur// n1uur e1uur uurn1 ;
面面垂直1 2 n1 n2 n1 n2 0.
巩固性训练1
1.设 a,b 分别是直线l1,l2的方向向量,根据下
列条件,判断l1,l2的位置关系.
.
例1 如图,已知矩形 ABCD和矩形 ADEF所在平面互相垂直,点
M , N 分别在对角线 BD, AE上,且 BM 1 BD, AN 1 AE,
求证:MN // 平面CDE
3
3
Fz
E
N A
B
M
x
D
y
C
例2.在正方体 ABCD A1B1C1D1 中,E、F分别是BB1,,
CD中点,求证:D1F u平uur面AuuDurE uuuur 证明:设正方体棱长为1,以DA,DC,DD1为单位正交
11
F1( 2 , 0,1), D1( 2 , 2 ,1)
A1
C
所以:uAuFur1
(
1 2
,
0,1),
uuuur BD1
(
1 2
,
1 2
,1)
A
By
uuur uuuur cos AF1, BD1
uuur uuuur x uAuuFr1gBuuDu1ur
1 1 4
30
| AF1 || BD1 |
uur uur uur uur
面面平行 1 // 2 n1 // n2 n1 n2 .
注意:这里的线线平行包括线线重合,线面平行 包括线在面内,面面平行包括面面重合.
四、垂直关系:
ur ur
设直线
ቤተ መጻሕፍቲ ባይዱ
l1 , l2
的方向向量分别为
uur uur
e1 , e2
,平面
1
,
2
的法向量分别为 ur
n1u,rn2
(1)求证:PA//平面EDB (2)求证:PB⊥平面EFD
P
FE
D
C
A
B
例6:如图,在四棱锥S-ABCD中,底面ABCD为平行四
边形,侧面SBC 底面ABCD。已知
BC=2 ,SA2=SB= . 3
ABC
45A0B=S2,
求证: SA BC.
OB
D
A
例7: RtVABC中,BCA 900,现将VABC沿着平面ABC的法向量
巩固性训练3
1、设平面 的法向量为(1,2,-2),平面 的法向量为
(-2,-4,k),若 // ,则k=
;若
则 k=

2、已知 l // ,且 l 的方向向量为(2,m,1),平面
的法向量为(1,1/2,2),则m=
.
3、若 l 的方向向量为(2,1,m),平面 的法向量为
(1,1/2,2),且 l ,则m=
基底,建立如图所示坐标系D-xyz,则可得:
uuur DA
(1,
0,
uuur 0),DE
(1,1,
,
1)
z
D1
C1
2 设平面ADE的一个法向量
A1
B1
为nr=r(x,uuuyr,z) r uuur 则由n DA 0,n DE 0得
D Ax
E
C
F
y
B
x 0 0 0 则x=0,不妨取y 1,得z 2
三、平行关系:
ur ur
设直线
l1 , l2
的方向向量分别为
uur uur
e1 , e2
,平面
1
,
2
的法向量分别为
ur
nur1 ,
n2
,则
ur
ur
线线平行 l1 // l2 e1 // e2 e1 e2 ;
ur uur ur uur
线面平行 l1 // 1 e1 n1 e1 n1 0 ;
5 3 10
42
30
所以 BD与1 A所F1成角的余弦值为 10
例8: 在长方体 ABCD A1B1C1D1 中,AB= 5,AD 8,
AA1 4, M为B1C1上的一点,且B1M 2,点N在线段A1D上,
A1D AN. (1)求证:A1D AM .
简解:
z
A(0, 0, 0), A1(0, 0, 4),
一、直线的方向向量
空间中任意一条直线 l 的位置可以由 l 上一 个定点 A 以及一个定方向确定.
l
r e
r eB
A
二、平面的法向量
以向量给定nr 为一法点向A和量一的个平向面量是nr完,那全么确过定点的A. ,
l
r n
A
问题:如何求平面的法向量?
(1)设出平面的法向量为n (x, y, z)
A1
D1
N
D(0,8,0), M (5, 2, 4)
uuuur
B1 M
C1
uAuuMur (5, 2, 4),
又 x因 为y uD12u1uFzur0(0所, 12以, nr1)=(0,1,所- 2以) uDu1uFur//nr
所以 D1F 平面ADE
例:如图,在直三棱柱ABC -A1 B1C1中,ACB=900, BAC=300,BC=1,A1 A= 6,M是棱CC1的中点。 求证:A1B AM。
z
(1)a (2,1,2),b (6,3,6) 平行
(2)a (1,2,2),b (2,3,2)
垂直
(3)a (0,0,1),b (0,0,3)
平行
巩固性训练2
1.设 u, v 分别是平面α,β的法向量,根据
下列条件,判断α,β的位置关系.
(1)u (2,2,5),v (6,4,4) 垂直 (2)u (1,2,2),v (2,4,4) 平行 (3)u (2,3,5),v (3,1,4) 相交
B1 C1
y
M
B
C
z
C1
A1
A1
M
x
C
A
xA
B1
y
B
例4.如图,正方体ABCD ABCD 中,D
E为 DD的中点, 证明:BD //平面AEC
A
E
C
B
D
C
A
B
例5: 如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱 PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F.
(2)找出(求出)平面内的两个不共线的
向量的坐标a (a1,b1,c1),b (a2,b2, c2 )平面的法向
(3)根据法向量的定义建立关于x,
y,
z的量不惟一, 合理取值即
方程组
r nnr
• •
r ar b
0 0
aa12
x x
b1 y b2 y
c1z c2z
0 0
可。
(4)解方程组,取其中的一 个解,即得法向量。
平移到A1B1C1位置,已知 BC CA CC1,取A1B1、A1C1的中 取A1B1、A1C1的中点D1、F1,求BD1与AF1所成的角的余弦值.
解:以点C为坐标原点建立空间直角坐标 z
系 C,如xy图z 所示,设 则C:C1 1
C1
F1
D1
B1
A(1, 0, 0), B(0,1, 0),
1
相关文档
最新文档