向量法求空间角(高二数学-立体几何)

合集下载

用空间向量法求解立体几何问题典例及解析

用空间向量法求解立体几何问题典例及解析

用空间向量法求解立体几何问题典例及解析以多面体为载体,以空间向量为工具,来论证和求解空间角、距离、线线关系以及线面关系相关问题,是近年来高考数学的重点和热点,用空间向量解立体几何问题,极大地降低了求解立几的难度,很大程度上呈现出程序化思想。

更易于学生们所接受,故而执教者应高度重视空间向量的工具性。

首先,梳理一下利用空间向量解决立体几何的知识和基本求解方法 一:利用空间向量求空间角 (1)两条异面直线所成的夹角范围:两条异面直线所成的夹角的取值范围是 。

向量求法:设直线,a b 的方向向量为a,b ,其夹角为θ,则有cos ___________.θ= (2)直线与平面所成的角定义:直线与平面所成的角是指直线与它在这个平面内的射影所成的角。

范围:直线和平面所夹角的取值范围是 。

向量求法:设直线l 的方向向量为a ,平面的法向量为n ,直线与法向量所成角的余弦值为|cos |___________.θ=直线与平面所成的角为ϕ,则有sin ___________.ϕ=或在平面内任取一个向量m ,则|cos |___________.θ=.(3)二面角二面角的取值范围是 . 二面角的向量求法:方法一:在两个半平面内任取两个与棱垂直的向量,则这两个向量所成的 即为所求的二面角的大小;方法二:设1n ,2n 分别是两个面的 ,则向量1n 与2n 的夹角(或其补角)即为所求二面角的平面角的大小。

二:利用空间向量求空间距离 (1)点面距离的向量公式平面α的法向量为n ,点P 是平面α外一点,点M 为平面α内任意一点,则点P 到平面α的距离d 就是 ,即d =||||MP ⋅n n . (2)线面、面面距离的向量公式平面α∥直线l ,平面α的法向量为n ,点M ∈α、P ∈l ,平面α与直线l 间的距离d 就是MP 在向量n 方向射影的绝对值,即d = .平面α∥β,平面α的法向量为n ,点M ∈α、P ∈β,平面α与平面β的距离d 就是MP 在向量n 方向射影的绝对值,即d =||||MP ⋅n n . (3)异面直线的距离的向量公式设向量n 与两异面直线a 、b 都垂直,M ∈a 、P ∈b ,则两异面直线a 、b 间的距离d 就是MP 在向量n 方向射影的绝对值,即d =||||MP ⋅n n .三:利用空间向量解证平行、垂直关系1:①所谓直线的方向向量,就是指 的向量,一条直线的方向向量有 个。

立体几何中的向量方法求空间角 ppt课件

立体几何中的向量方法求空间角 ppt课件

a, b
rr
结论:cos |cosa,b|

(2011·陕西卷)如图,在△ABC中,∠ABC
=60°,∠BAC=90°,AD是BC上的高,沿AD 把△ABD折起,使∠BDC=90°.
• 设E为BC的中点,求AE与DB夹角的余弦值.
z
y
x
易得D(0,0,0),B(1,0,0),C(0,3,0),
r uuur n, BA
2
r uuur n, BA
B
2
B
r
ruuu r n
结论:sin |cosn,AB|
• 1.若直线l的方向向量与平面α的法向量的夹 角等于120°,则直线l与平面α所成的角等于(
)

A.120°
B.60°

C.30°
D.60°或30°
• 解析: 由题意得直线l与平面α的法向量所在 直线的夹角为60°,∴直线l与平面α所成的角
b Br
An
sin | cosn,AB|
3.二面角:
B
O
①方向向量法:
r n
B
A
C
l
D
②法向量法:
【注意】法向量的方向:一
coscosu A uB ur,C uuD ur uu A uuu B rurC uuuu D uu rr
进一出,二面角等于法向量 夹角;同进同出,二面角等
ABCD 于法向量夹角的补角。
• (2)分别在二面角的两个平面内找到与棱垂直 且以垂足出发的两个向量,则这两个向量的夹 角的大小就是二面角的大小.
• 以上两种方法各有利弊,要善于结合题目的特 点选择适当的方法解题.
rC
rD
1.异面直线所成r r角: a

立体几何中的向量方法1:求空间角、距离

立体几何中的向量方法1:求空间角、距离

立体几何中的向量方法——求空间角、距离1.空间向量与空间角的关系(1)设异面直线l 1,l 2的方向向量分别为m 1,m 2,则l 1与l 2所成的角θ满足cos θ=|cos 〈m 1,m 2〉|.(2)设直线l 的方向向量和平面α的法向量分别为m ,n ,则直线l 与平面α所成角θ满足sin θ=|cos 〈m ,n 〉|. (3)求平面间夹角的大小如图所示,平面π1与π2相交于直线l ,点R 为直线l 上任意一点,过点R ,在平面π1上作直线l 1⊥l ,在平面π2上作直线l 2⊥l ,则l 1∩l 2=R .我们把直线l 1和l 2的夹角叫作平面π1与π2的夹角.已知平面π1和π2的法向量分别为n 1和n 2.当0≤〈n 1,n 2〉≤π2时,平面π1与π2的夹角等于〈n 1,n 2〉;当π2<〈n 1,n 2〉≤π时,平面π1与π2的夹角等于π-〈n 1,n 2〉. 2.点面距的求法如图,设AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离d =|AB →·n ||n |.[难点正本 疑点清源]1.向量法通过空间坐标系把空间图形的性质代数化,避免了寻找平面角和垂线段等诸多麻烦,使空间点线面的位置关系的判定和计算程序化、简单化.主要是建系、设点、计算向量的坐标、利用数量积的夹角公式计算.2.利用平面的法向量求二面角的大小时,当求出两半平面α、β的向量n 1,n 2时,要根据向量坐标在图形中观察法向量的方向,从而确定二面角与向量n 1,n 2的夹角是相等,还是互补.3.求点到平面距离的方法:①垂面法:借助面面垂直的性质来作垂线,其中过已知点确定已知面的垂面是关键;②等体积法,转化为求三棱锥的高;③等价转移法;④法向量法.1.若平面α的一个法向量为n =(4,1,1),直线l 的一个方向向量为a =(-2,-3,3),则l 与α所成角的正弦值为_______.答案 41133解析 ∵n·a =-8-3+3=-8,|n |=16+1+1=32, |a |=4+9+9=22,∴cos 〈n ,a 〉=n·a|n|·|a |=-832×22=-41133.又l 与α所成角记为θ,即sin θ=|cos 〈n ,a 〉|=41133. 2.若直线l 的方向向量与平面α的法向量的夹角等于120°,则直线l 与平面α所成的角等于________. 答案 30°解析 由题意得直线l 与平面α的法向量所在直线的夹角为60°,∴直线l 与平面α所成的角为90°-60°=30°.3.从空间一点P 向二面角α—l —β的两个面α,β分别作垂线PE ,PF ,垂足分别为E ,F ,若二面角α—l —β的大小为60°,则∠EPF 的大小为__________. 答案 60°或120°4. 如图所示,在空间直角坐标系中,有一棱长为a 的正方体ABCO —A ′B ′C ′D ′,A ′C 的中点E 与AB 的中点F 的距离为________.答案22a 解析 由图易知A (a,0,0),B (a ,a,0),C (0,a,0),A ′(a,0,a ).∴F ⎝⎛⎭⎫a ,a 2,0,E ⎝⎛⎭⎫a 2,a 2,a 2. ∴EF =⎝⎛⎭⎫a -a 22+⎝⎛⎭⎫a 2-a 22+⎝⎛⎭⎫0-a 22 =a 24+a 24=22a .5.在棱长为2的正方体ABCD —A 1B 1C 1D 1中,O 是底面ABCD 的中点,E ,F 分别是CC 1,AD 的中点,那么异面直线OE 和FD 1所成的角的余弦值等于________.答案 155解析 以D 为原点,分别以DA 、DC 、DD1为x 轴、y 轴、z 轴建立空间直角坐标系,∴F (1,0,0),D 1(0,0,2),O (1,1,0),E (0,2,1),∴FD 1→=(-1,0,2), OE →=(-1,1,1),∴cos 〈FD 1→,OE →〉=1+25·3=155.题型一 求异面直线所成的角例1 如图,已知正方体ABCD —A 1B 1C 1D 1的棱长为2,点E 是正方形BCC 1B 1的中心,点F 、G 分别是棱C 1D 1、AA 1的中点,设点E 1、G 1分别是点E 、G 在平面DCC 1D 1内的正投影.(1)证明:直线FG 1⊥平面FEE 1;(2)求异面直线E 1G 1与EA 所成角的正弦值.思维启迪:本题可方便地建立空间直角坐标系,通过点的坐标得到向量坐标,然后求解. (1)证明 以D 为原点,DD 1→、DC →、DA →分别为z 轴、y 轴、x 轴的正向,12|DD 1→|为1个单位长度建立空间直角坐标系.由题设知点E 、F 、G 1、E 1的坐标分别为(1,2,1),(0,1,2),(0,0,1),(0,2,1), ∴FE 1→=(0,1,-1),FG 1→=(0,-1,-1),EE 1→=(-1,0,0), ∴FG 1→·EE 1→=0,FG 1→·FE 1→=0⇒FG 1→⊥EE 1→,FG 1→⊥FE 1→, 又∵EE 1∩FE 1=E 1.∴FG 1⊥平面FEE 1.(2)解 由题意知点A 的坐标为(2,0,0),又由(1)可知EA →=(1,-2,-1),E 1G 1→=(0,-2,0),∴cos 〈EA →,E 1G 1→〉=EA →·E 1G 1→|EA →|·|E 1G 1→|=63,∴sin 〈EA →,E 1G 1→〉=1-cos 2〈EA →,E 1G 1→〉=33.探究提高 用向量方法求两条异面直线所成的角,是通过两条直线的方向向量的夹角来求解,而两异面直线所成角的范围是θ∈⎝⎛⎦⎤0,π2,两向量的夹角α的范围是[0,π],所以要注意二者的区别与联系,应有cos θ=|cos α|.如图所示,在长方体ABCD —A 1B 1C 1D 1中,已知AB =4,AD =3,AA 1=2.E 、F 分别是线段AB 、BC 上的点,且EB =BF =1.求直线EC 1与FD 1所成的角的余弦值.解 以A 为原点,AB →、AD →、AA 1→分别为x 轴、y 轴、z 轴的正向建立空间直角坐标系,则有D 1(0,3,2),E (3,0,0),F (4,1,0),C 1(4,3,2),于是EC 1→=(1,3,2),FD 1→=(-4,2,2),设EC 1与FD 1所成的角为β,则:cos β=|EC 1→·FD 1→||EC 1→|·|FD 1→|=1×(-4)+3×2+2×212+32+22×(-4)2+22+22=2114,∴直线EC 1与FD 1所成的角的余弦值为2114.题型二 求直线与平面的夹角例2 如图,已知四棱锥P —ABCD 的底面为等腰梯形,AB ∥CD ,AC ⊥BD ,垂足为H ,PH是四棱锥的高,E 为AD 的中点.(1)证明:PE ⊥BC ;(2)若∠APB =∠ADB =60°,求直线P A 与平面PEH 夹角的正弦值.思维启迪:平面的法向量是利用向量方法解决位置关系或夹角的关键,本题可通过建立坐标系,利用待定系数法求出平面PEH 的法向量.(1)证明 以H 为原点,HA ,HB ,HP 所在直线分别为x ,y ,z 轴,线段HA 的长为单位长度,建立空间直角坐标系(如图),则A (1,0,0),B (0,1,0).设C (m,0,0),P (0,0,n ) (m <0,n >0),则D (0,m,0),E ⎝⎛⎭⎫12,m 2,0.可得PE →=⎝⎛⎭⎫12,m 2,-n ,BC →=(m ,-1,0). 因为PE →·BC →=m 2-m2+0=0,所以PE ⊥BC .(2)解 由已知条件可得m =-33,n =1,故C ⎝⎛⎭⎫-33,0,0,D ⎝⎛⎭⎫0,-33,0,E ⎝⎛⎭⎫12,-36,0,P (0,0,1).设n =(x ,y ,z )为平面PEH 的法向量,则⎩⎪⎨⎪⎧ n ·HE →=0,n ·HP →=0,即⎩⎪⎨⎪⎧12x -36y =0,z =0.因此可以取n =(1,3,0).又P A →=(1,0,-1),所以|cos 〈P A →,n 〉|=24.所以直线P A 与平面PEH 夹角的正弦值为24.探究提高 利用向量法求线面角的方法:(1)分别求出斜线和它在平面内的投影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面的夹角.已知三棱锥P -ABC 中,P A ⊥平面ABC ,AB ⊥AC ,P A =AC =12AB ,N 为AB 上一点,且AB =4AN ,M ,S 分别为PB ,BC 的中点.(1)证明:CM ⊥SN ;(2)求SN 与平面CMN 夹角的大小.(1)证明 设P A =1,以A 为原点,AB ,AC ,AP 所在直线分别为x ,y ,z 轴的正方向建立空间直角坐标系如图所示,则P (0,0,1),C (0,1,0),B (2,0,0),M (1,0,12),N (12,0,0),S (1,12,0).所以CM →=(1,-1,12),SN →=(-12,-12,0).因为CM →·SN →=-12+12+0=0,所以CM ⊥SN .(2)解 设平面CMN 的法向量为n =(x ,y ,z ),则⎩⎨⎧n ·CM →=x -y +12z =0n ·CN →=(x ,y ,z )·⎝⎛⎭⎫12,-1,0=12x -y =0.∴y =12x ,z =-x ,取x =2,则n =(2,1,-2)为平面CMN 的一个法向量.∴cos 〈n ·SN →〉=n ·SN →|n |·|SN →|=(2,1,-2)·⎝⎛⎭⎫-12,-12,022+1+(-2)2·⎝⎛⎭⎫-122+⎝⎛⎭⎫-122+02=-22.∴〈n ·SN →〉=135°, 故SN 与平面CMN 夹角的大小为45°. 题型三 求平面间的夹角例3 (2012·广东)如图所示,在四棱锥P -ABCD 中,底面ABCD 为矩形,P A ⊥平面ABCD ,点E 在线段PC 上,PC ⊥平面BDE .(1)证明:BD ⊥平面P AC ;(2)若P A =1,AD =2,求平面BPC 与平面PCA 夹角的正切值.思维启迪:利用图中的P A ⊥平面ABCD 、ABCD 为矩形的条件建立空间直角坐标系,转化为向量问题.(1)证明 ∵P A ⊥平面ABCD ,BD 平面ABCD , ∴P A ⊥BD .同理由PC ⊥平面BDE 可证得PC ⊥BD . 又P A ∩PC =P ,∴BD ⊥平面P AC . (2)解 如图,分别以射线AB ,AD ,AP 为x 轴,y 轴,z 轴的正半轴建立空间直角坐标系. 由(1)知BD ⊥平面P AC , 又AC 平面P AC , ∴BD ⊥AC .故矩形ABCD 为正方形,∴AB =BC =CD =AD =2. ∴A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,1). ∴PB →=(2,0,-1),BC →=(0,2,0),BD →=(-2,2,0). 设平面PBC 的一个法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·PB →=0,n ·BC →=0, 即⎩⎪⎨⎪⎧2·x +0·y -z =0,0·x +2·y +0·z =0, ∴⎩⎪⎨⎪⎧z =2x ,y =0,取x =1得n =(1,0,2). ∵BD ⊥平面P AC ,∴BD →=(-2,2,0)为平面P AC 的一个法向量.cos 〈n ,BD →〉=n ·BD →|n |·|BD →|=-1010.设平面BPC 与平面PCA 夹角为α, ∴cos α=1010,sin α=1-cos 2α=31010.∴tan α=sin αcos α=3,即平面BPC 与平面PCA 夹角的正切值为3.探究提高 求平面间的夹角最常用的方法就是分别求出两个平面的法向量,然后通过两个平面的法向量的夹角得到所求角的大小,但要注意平面间的夹角的范围为⎣⎡⎦⎤0,π2.(2011·辽宁)如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .(1)证明:平面PQC ⊥平面DCQ ;(2)求平面QBP 与平面BPC 的夹角的余弦值.(1)证明 如图,以D 为坐标原点,线段DA 的长为单位长,以DA 、DP 、DC 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系.依题意有Q (1,1,0),C (0,0,1),P (0,2,0),则DQ →=(1,1,0),DC →=(0,0,1), PQ →=(1,-1,0).所以PQ →·DQ →=0,PQ →·DC →=0, 即PQ ⊥DQ ,PQ ⊥DC .又DQ ∩DC =D ,所以PQ ⊥平面DCQ .又PQ 平面PQC ,所以平面PQC ⊥平面DCQ .(2)解 依题意有B (1,0,1),CB →=(1,0,0),BP →=(-1,2,-1). 设n =(x ,y ,z )是平面PBC 的法向量,则⎩⎪⎨⎪⎧n ·CB →=0,n ·BP →=0, 即⎩⎪⎨⎪⎧x =0,-x +2y -z =0.因此可取n =(0,-1,-2).同理,设m 是平面PBQ 的法向量,则⎩⎪⎨⎪⎧m ·BP →=0,m ·PQ →=0,可取m =(1,1,1).所以cos 〈m ,n 〉=-155. 故平面QBP 与平面BCP 的夹角的余弦值为-155. 题型四 求空间距离例4 在三棱锥S —ABC 中,△ABC 是边长为4的正三角形,平面SAC ⊥平面ABC ,SA =SC =23,M 、N 分别为AB 、SB 的中点,如图所示. 求点B 到平面CMN 的距离.思维启迪:由平面SAC ⊥平面ABC ,SA =SC ,BA =BC ,可知本题可以取AC 中点O 为坐标原点,分别以OA ,OB ,OS 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,用向量法求解.解 取AC 的中点O ,连接OS 、OB .∵SA =SC ,AB =BC , ∴AC ⊥SO ,AC ⊥BO .∵平面SAC ⊥平面ABC , 平面SAC ∩平面ABC =AC , ∴SO ⊥平面ABC ,又∵BO 平面ABC ,∴SO ⊥BO .如图所示,分别以OA ,OB ,OS 所在直线为x 轴,y 轴,z 轴,建立空间直角坐标系Oxyz ,则B (0,23,0),C (-2,0,0),S (0,0,22),M (1,3,0),N (0,3,2). ∴CM →=(3,3,0),MN →=(-1,0,2),MB →=(-1,3,0). 设n =(x ,y ,z )为平面CMN 的一个法向量,则⎩⎪⎨⎪⎧CM →·n =3x +3y =0MN →·n =-x +2z =0,取z =1,则x =2,y =-6,∴n =(2,-6,1).∴点B 到平面CMN 的距离d =|n ·MB →||n |=423.探究提高 点到平面的距离,利用向量法求解比较简单,它的理论基础仍出于几何法.如本题,事实上,作BH ⊥平面CMN 于H .由BH →=BM →+MH →及BH →·n =n ·BM →, ∴|BH →·n |=|n ·BM →|=|BH →|·|n |,∴|BH →|=|n ·BM →||n |,即d =|n ·BM →||n |.(2012·大纲全国)已知正四棱柱ABCD -A 1B 1C 1D 1中,AB =2,CC 1=22,E为CC 1的中点,则直线AC 1与平面BED 的距离为( )A .2B. 3C. 2D .1答案 D解析 以D 为原点,DA 、DC 、DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系(如图),则D (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0),C 1(0,2,22),E (0,2,2),易知AC 1∥平面BDE .设n =(x ,y ,z )是平面BDE 的法向量.则⎩⎪⎨⎪⎧n ·BD →=2x +2y =0n ·DE →=2y +2z =0.取y =1,则n =(-1,1,-2)为平面BDE 的一个法向量. 又DA →=(2,0,0),∴点A 到平面BDE 的距离是d =|n ·DA →||n |=|-1×2+0+0|(-1)2+12+(-2)2=1. 故直线AC 1到平面BED 的距离为1.典例:(12分)如图,已知在长方体ABCD —A 1B 1C 1D 1中,AB =2,AA 1=1,直线BD 与平面AA 1B 1B 所成的角为30°,AE 垂直BD 于点E ,F 为A 1B 1的中点.(1)求异面直线AE 与BF 所成角的余弦值; (2)求平面BDF 与平面AA 1B 夹角的余弦值.审题视角 (1)研究的几何体为长方体,AB =2,AA 1=1. (2)所求的是异面直线所成的角和平面间的夹角. (3)可考虑用空间向量法求解. 规范解答解 (1)以A 为坐标原点,以AB ,AD ,AA 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系(如图所示).[2分]由于AB =2,BD 与平面AA 1B 1B 的夹角为30°,即∠ABD =30°,∴AD =233,[3分]∴A (0,0,0),B (2,0,0),D ⎝⎛⎭⎫0,233,0,F (1,0,1).又AE ⊥BD ,故由平面几何知识得AE =1,从而E ⎝⎛⎭⎫12,32,0,[4分]因为AE →=⎝⎛⎭⎫12,32,0,BF →=(-1,0,1),∴AE →·BF →=⎝⎛⎭⎫12,32,0·(-1,0,1)=-12,|AE →|=1,|BF →|=2,[6分]设AE 与BF 所成角为θ1,则cos θ1=|AE →·BF →||AE →||BF →|=⎪⎪⎪⎪-121×2=24.[8分]故异面直线AE 与BF 所成角的余弦值为24. (2)设平面BDF 的法向量为n =(x ,y ,z ),由⎩⎪⎨⎪⎧ n ·BF →=0n ·BD →=0,得⎩⎪⎨⎪⎧-x +z =0-2x +233y =0,∴z =x ,y =3x ,取x =1,得n =(1,3,1).[10分] 求得平面AA 1B 的一个法向量为m =AD →=⎝⎛⎭⎫0,233,0.设平面BDF 与平面AA 1B 的夹角的大小为θ2.则cos θ2=|cos 〈m ,n 〉|=|m·n||m||n |=|0+2+0|233×5=155.[12分]利用向量求空间角的步骤: 第一步:建立空间直角坐标系. 第二步:确定点的坐标.第三步:求向量(直线的方向向量、平面的法 向量)坐标.第四步:计算向量的夹角(或函数值). 第五步:将向量夹角转化为所求的空间角. 第六步:反思回顾.查看关键点、易错点和 答题规范.温馨提醒 (1)利用向量求角是高考的热点,几乎每年必考,主要是突出向量的工具性 作用.(2)本题易错点是在建立坐标系时不能明确指出坐标原点和坐标轴,导致建系不规范. (3)将向量的夹角转化成空间角时,要注意根据角的概念和图形特征进行转化,否则易错.方法与技巧1.若利用向量求角,各类角都可以转化为向量的夹角来运算.(1)求两异面直线a 、b 的夹角θ,须求出它们的方向向量a ,b 的夹角,则cos θ= |cos 〈a ,b 〉|.(2)求直线l 与平面α的夹角θ可先求出平面α的法向量n 与直线l 的方向向量a 的夹角.则sin θ=|cos 〈n ,a 〉|. (3)求平面间夹角θ,可先求出两个平面的法向量n 1,n 2所成的角,则θ=〈n 1,n 2〉或π-〈n 1,n 2〉.2.求点到平面的距离,若用向量知识,则离不开以该点为端点的平面的斜线段. 失误与防范1.利用向量求角,一定要注意将向量夹角转化为各空间角.因为向量夹角与各空间角的定义、范围不同.2.求点到平面的距离,有时利用等积法求解可能更方便.A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1 . 已知正方体ABCD —A 1B 1C 1D 1如图所示,则直线B 1D 和CD 1所成的角为( )A .60°B .45°C .30°D .90°答案 D解析 以A 为原点,AB 、AD 、AA 1所在直线分别为x ,y ,z 轴建立空间直角坐标系,设正方体边长为1,则射线CD 1、B 1D 的方向向量分别是CD 1→=(-1,0,1),B 1D →=(-1,1,-1),cos 〈CD 1→,B 1D →〉=1+0-12×3=0,∴两直线所成的角为90°.2.在空间直角坐标系Oxyz 中,平面OAB 的一个法向量为n =(2,-2,1),已知点P (-1,3,2),则点P 到平面OAB 的距离d 等于( )A .4B .2C .3D .1答案 B解析 P 点到平面OAB 的距离为d =|OP →·n||n |=|-2-6+2|9=2,故选B.3 . 如图所示,已知正方体ABCD —A 1B 1C 1D 1,E 、F 分别是正方形A 1B 1C 1D 1和ADD 1A 1的中心,则EF 和CD 所成的角是( )A .60°B .45°C .30°D .90°答案 B解析 以D 为原点,分别以射线DA 、DC 、DD 1为x 轴、y 轴、z 轴的非负半轴建立空间直角坐标系,设正方体的棱长为1,则D (0,0,0),C (0,1,0),E ⎝⎛⎭⎫12,12,1, F ⎝⎛⎭⎫12,0,12, EF →=⎝⎛⎭⎫0,-12,-12,DC →=(0,1,0), ∴cos 〈EF →,DC →〉=EF →·DC →|EF →||DC →|=-22,∴〈EF →,DC →〉=135°,∴异面直线EF 和CD 所成的角是45°.提醒 两异面直线的方向向量的夹角与异面直线所成的角相等或互补.4.在正方体ABCD —A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 的夹角的余弦值为( )A.12 B.23C.33D.22答案 B解析 以A 为原点建立如图所示的空间直角坐标系,设棱长为1,则A 1(0,0,1),E ⎝⎛⎭⎫1,0,12,D (0,1,0), ∴A 1D →=(0,1,-1),A 1E →=⎝⎛⎭⎫1,0,-12, 设平面A 1ED 的一个法向量为n 1=(1,y ,z ),则⎩⎪⎨⎪⎧y -z =0,1-12z =0,∴⎩⎪⎨⎪⎧y =2,z =2. ∴n 1=(1,2,2).∵平面ABCD 的一个法向量为n 2=(0,0,1),∴cos 〈n 1,n 2〉=23×1=23. 即所求的角的余弦值为23.二、填空题(每小题5分,共15分)5 . 如图所示,在三棱柱ABC —A 1B 1C 1中,AA 1⊥底面ABC ,AB =BC =AA 1,∠ABC =90°,点E 、F 分别是棱AB 、BB 1的中点,则直线EF 和BC 1所成的角是________.答案 60°解析 以BC 为x 轴,BA 为y 轴,BB 1为z 轴,建立空间直角坐标系.设AB =BC =AA 1=2,则C 1(2,0,2),E (0,1,0),F (0,0,1), 则EF →=(0,-1,1),BC 1→=(2,0,2), ∴EF →·BC 1→=2,∴cos 〈EF →,BC 1→〉=22×22=12,∴EF 和BC 1所成的角为60°.6.长方体ABCD —A 1B 1C 1D 1中,AB =AA 1=2,AD =1,E 为CC 1的中点,则异面直线BC 1与AE 所成角的余弦值为________.答案 3010解析 建立坐标系如图,则A (1,0,0),E (0,2,1),B (1,2,0),C 1(0,2,2), ∴BC 1→=(-1,0,2),AE →=(-1,2,1),∴cos 〈BC 1→,AE →〉=BC 1→·AE →|BC 1→||AE →|=3010. 7.设正方体ABCD —A 1B 1C 1D 1的棱长为2,则点D 1到平面A 1BD 的距离是________.答案 233解析 如图建立空间直角坐标系,则D 1(0,0,2),A 1(2,0,2), D (0,0,0),B (2,2,0), ∴D 1A 1→=(2,0,0), DA 1→=(2,0,2),DB →=(2,2,0),设平面A 1BD 的一个法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·DA 1→=2x +2z =0n ·DB →=2x +2y =0.令x =1,则n =(1,-1,-1),∴点D 1到平面A 1BD 的距离d =|D 1A 1→·n ||n |=23=233.三、解答题(共22分)8.(10分)如图,四棱锥P —ABCD 中,PD ⊥平面ABCD ,P A 与平面ABD 所成的角为60°,在四边形ABCD 中,∠ADC =∠DAB =90°,AB =4,CD =1,AD =2.(1)建立适当的坐标系,并写出点B ,P 的坐标; (2)求异面直线P A 与BC 所成的角的余弦值. 解 (1)建立如图空间直角坐标系,∵∠ADC =∠DAB =90°,AB =4,CD =1,AD =2, ∴A (2,0,0),C (0,1,0),B (2,4,0).由PD ⊥平面ABCD ,得∠P AD 为P A 与平面ABCD 所成的角, ∴∠P AD =60°.在Rt △P AD 中,由AD =2,得PD =23,∴P (0,0,23).(2)∵P A →=(2,0,-23),BC →=(-2,-3,0),∴cos 〈P A →,BC →〉=2×(-2)+0×(-3)+(-23)×0413=-1313,∴P A 与BC 所成的角的余弦值为1313. 9.(12分)如图,在底面为直角梯形的四棱锥P —ABCD 中,AD ∥BC ,∠ABC =90°,P A ⊥平面ABCD ,P A =3,AD =2,AB =23,BC =6.(1)求证:BD ⊥平面P AC ;(2)求平面PBD 与平面ABD 的夹角的大小. (1)证明 如图,建立空间直角坐标系,则A (0,0,0),B (23,0,0),C (23,6,0),D (0,2,0),P (0,0,3), ∴AP →=(0,0,3),AC →=(23,6,0),BD →=(-23,2,0). ∴BD →·AP →=0,BD →·AC →=0.∴BD ⊥AP ,BD ⊥AC . 又∵P A ∩AC =A ,∴BD ⊥面P AC .(2)解 设平面ABD 的法向量为m =(0,0,1), 设平面PBD 的法向量为n =(x ,y ,z ),则n ·BD →=0,n ·BP →=0.∵BP →=(-23,0,3), ∴⎩⎨⎧-23x +2y =0,-23x +3z =0解得⎩⎪⎨⎪⎧y =3x ,z =233x . 令x =3,则n =(3,3,2),∴cos 〈m ,n 〉=m·n |m||n |=12.∴平面PBD 与平面BDA 夹角的大小为60°.B 组 专项能力提升 (时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1.在正方体ABCD —A 1B 1C 1D 1中,M ,N 分别为棱AA 1和BB 1的中点,则sin 〈CM →,D 1N →〉的值为( )A.19 B.495 C.295 D.23答案 B解析 设正方体的棱长为2,以D 为坐标原点,DA 为x 轴,DC 为y轴,DD 1为z 轴建立空间直角坐标系,可知CM →=(2,-2,1),D 1N →=(2,2,-1),cos 〈CM →,D 1N →〉=-19,sin 〈CM →,D 1N →〉=459.2.在正三棱柱ABC —A 1B 1C 1中,AB =AA 1,则AC 1与平面BB 1C 1C 的夹角的正弦值为( )A.22B.155C.64D.63答案 C解析 建立如图所示的空间直角坐标系,设AB =2,则C 1(3,1,0)、A (0,0,2),AC 1→=(3,1,-2),平面BB 1C 1C 的一个法向量为n =(1,0,0),所以AC 1与平面BB 1C 1C 所成角的正弦值为|AC 1→·n ||AC 1→||n |=38=64.故选C.3.如图,设动点P 在棱长为1的正方体ABCD —A 1B 1C 1D 1的对角线BD 1上,记D 1PD 1B=λ.当∠APC为钝角时,则λ的取值范围是 ( )A.⎝⎛⎭⎫0,13B.⎝⎛⎭⎫0,12C.⎝⎛⎭⎫12,1D.⎝⎛⎭⎫13,1 答案 D解析 由题设可知,以DA →、DC →、DD 1→为单位正交基底,建立如图所示的空间直角坐标系,则有A (1,0,0),B (1,1,0),C (0,1,0),D 1(0,0,1). 由D 1B →=(1,1,-1)得D 1P →=λD 1B →=(λ,λ,-λ),所以P A →=PD 1→+D 1A →=(-λ,-λ,λ)+(1,0,-1)=(1-λ,-λ,λ-1), PC →=PD 1→+D 1C →=(-λ,-λ,λ)+(0,1,-1) =(-λ,1-λ,λ-1).显然∠APC 不是平角,所以∠APC 为钝角等价于cos ∠APC =cos 〈P A →,PC →〉=P A →·PC →|P A →||PC →|<0,这等价于P A →·PC →<0, 即(1-λ)(-λ)+(-λ)(1-λ)+(λ-1)2=(λ-1)(3λ-1)<0,得13<λ<1.因此,λ的取值范围为⎝⎛⎭⎫13,1. 二、填空题(每小题5分,共15分)4.(2012·陕西)如图所示,在空间直角坐标系中有直三棱柱ABC -A 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1所成的角的余弦值为________.答案55解析 不妨令CB =1,则CA =CC 1=2.可得O (0,0,0),B (0,0,1),C 1(0,2,0),A (2,0,0),B 1(0,2,1), ∴BC →1=(0,2,-1),AB →1=(-2,2,1),∴cos 〈BC →1,AB →1〉=BC →1·AB →1|BC →1||AB →1|=4-15×9=15=55>0.∴BC →1与AB →1的夹角即为直线BC 1与直线AB 1的夹角,∴直线BC 1与直线AB 1夹角的余弦值为55.5.(2012·大纲全国)三棱柱ABC -A 1B 1C 1中,底面边长和侧棱长都相等,∠BAA 1=∠CAA 1=60°,则异面直线AB 1与BC 1所成角的余弦值为________.答案 66解析 连接A 1B 交AB 1于点O ,取A 1C 1的中点D ,连接B 1D 、DO .∵O 、D 分别为A 1B 、A 1C 1的中点,∴OD ∥BC 1,∴∠DOB 1或其补角即为异面直线AB 1与BC 1所成的角.设各棱长为a ,则DB 1=32a .∵∠A 1AB =60°,∴OB 1=AO =32a .又∵BC 1→=BB 1→+BC →=AA 1→+AC →-AB →, ∴BC 1→2=(AA 1→+AC →-AB →)2 =AA 1→2+2AA 1→·AC →+AC →2-2AA 1→·AB →-2AC →·AB →+AB →2 =a 2+2a 2cos 60°+a 2-2a 2cos 60°-2a 2cos 60°+a 2 =2a 2,∴|BC 1→|=2a .∴OD =12BC 1=22a .在△DOB 1中,由余弦定理得cos ∠DOB 1=⎝⎛⎭⎫32a 2+⎝⎛⎭⎫22a 2-⎝⎛⎭⎫32a 22·32a ·22a =66,∴AB 1与BC 1所成角的余弦值为66.6.在四面体P -ABC 中,P A ,PB ,PC 两两垂直,设P A =PB =PC =a ,则点P 到平面ABC 的距离为________.答案 33a解析 根据题意,可建立如图所示的空间直角坐标系Pxyz ,则P (0,0,0),A (a,0,0),B (0,a,0),C (0,0,a ).过点P 作PH ⊥平面ABC ,交平面ABC 于点H ,则PH 的长即为点P 到平面ABC 的 距离.∵P A =PB =PC ,∴H 为△ABC 的外心. 又∵△ABC 为正三角形,∴H 为△ABC 的重心,可得H 点的坐标为⎝⎛⎭⎫a 3,a 3,a 3. ∴PH =⎝⎛⎭⎫a 3-02+⎝⎛⎭⎫a 3-02+⎝⎛⎭⎫a 3-02=33a .∴点P 到平面ABC 的距离为33a . 三、解答题7.(13分)(2012·北京)如图(1),在Rt △ABC 中,∠C =90°,BC =3,AC =6.D ,E 分别是AC ,AB 上的点,且DE ∥BC ,DE =2,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1C ⊥CD ,如图(2).(1)求证:A 1C ⊥平面BCDE ;(2)若M 是A 1D 的中点,求CM 与平面A 1BE 所成角的大小;(3)线段BC 上是否存在点P ,使平面A 1DP 与平面A 1BE 垂直?说明理由. (1)证明 ∵AC ⊥BC ,DE ∥BC ,∴DE ⊥AC . ∴DE ⊥A 1D ,DE ⊥CD ,∴DE ⊥平面A 1DC , 又A 1C 平面A 1DC ,∴DE ⊥A 1C . 又∵A 1C ⊥CD ,∴A 1C ⊥平面BCDE .(2)解 如图所示,以C 为坐标原点,建立空间直角坐标系C -xyz则A 1(0,0,23),D (0,2,0),M (0,1,3),B (3,0,0),E (2,2,0).设平面A 1BE 的法向量为n =(x ,y ,z ),则n ·A 1B →=0, n ·BE →=0. 又A 1B →=(3,0,-23),BE →=(-1,2,0),∴⎩⎨⎧3x -23z =0,-x +2y =0.令y =1,则x =2,z =3,∴n =(2,1,3). 设CM 与平面A 1BE 所成的角为θ. ∵CM →=(0,1,3),∴sin θ=|cos 〈n ,CM →〉|=⎪⎪⎪⎪⎪⎪n ·CM →|n |·|CM →|=48×4=22. ∴CM 与平面A 1BE 所成角的大小为π4.(3)解 线段BC 上不存在点P ,使平面A 1DP 与平面A 1BE 垂直.理由如下: 假设这样的点P 存在,设其坐标为(p,0,0),其中p ∈[0,3]. 设平面A 1DP 的法向量为m =(x ′,y ′,z ′),则m ·A 1D →=0,m ·DP →=0. 又A 1D →=(0,2,-23),DP →=(p ,-2,0),∴⎩⎨⎧2y ′-23z ′=0,px ′-2y ′=0.令x ′=2,则y ′=p ,z ′=p 3,∴m =⎝⎛⎭⎫2,p ,p 3. 平面A 1DP ⊥平面A 1BE ,当且仅当m ·n =0, 即4+p +p =0.解得p =-2,与p ∈[0,3]矛盾.∴线段BC 上不存在点P ,使平面A 1DP 与平面A 1BE 垂直.。

向量法求空间距离和角

向量法求空间距离和角

—的平而角“a®牆用向量方法求空间角和距离在高考的立体几何试题中,求角与距离是常考查的问题,其传统的“三步曲”解 法:“作图、证明、解三角形”,作辅助线多、技巧性强,是教学和学习的难点.向 量进入高中教材,为立体几何增添了活力,新思想、新方法与时俱进,木专题将运用 向量方法简捷地解决这些问题.1求空间角问题空间的角主要有:异面直线所成的角;直线和平面所成的角;二面角.(1)求异而直线所成的角.=arcsinli I/II H I法一、在Q 内N 丄/,在0内b 丄/,其方向如图,则二面角设方、乙分别为异而直线a 、b 的方向向量, a 则两异而直线所成的角 a — arccos 1 而Q 所成的角方向向量,;;是平而&的法 (3)求二而法二、设入云是二而角a-/-0的两个半平而的法向量,其方向一个指向内侧,另一个指向外侧,则二面角a-1-p的平而角a =arccos彳"22求空间距离问题构成空间的点、线、面之间有七种距离,这里着重介绍点面距离的求法,象异而直线间的距离、线而距离;而而距离都可化为点而距离来求.(1)求点而距离法一、设;;是平面Q的法向量,在a内取一点B,则A■ ■■I“・•到&的距离d =1 AB II cos 0\=空叫\n\法二、设AO丄a于O,利用AO丄a和点0在&内的向量表示,可确定点O的位置,从而求出I走1・(2)求异而直线的距离二 ___ ?—法一、找平而0使比0且砂0,则异而直线a、b的距离就转化为直线a到平面0的距离,又转化为点A到平面0的距离.法二、在a上取一点A,在b上取一点B,设方、b分别为异面直线a、b的方向向量,求;;(万丄方,齐丄乙),则・・D于点而距异而直线a、b的距离心而llcos弘空叫(此方法移植丨川(I )求异而直线DE 与FG 所成的角;rh 向量法求空间距离和角例1.如图,在棱长为2的正方体ABCD-gCQ 中,分别是棱4久心的中点•(II )求g 和ffiEFBD 所成的角;(III)求Q 到面EFBD 的距离解:(I )记异而直线DE 与g 所成的角为—则&等于向量码运的夹角或其补角,■ D E.FC 、|cos a =1—:_ I \DE\.\FC {\(II)缈初万冷万石)•(两霸頁艸坐标系D-小, —I 一 ・• II DE bl FC [丨呢= (1,0,2),面= (220)设面E 単翌進|=二・・・a 回風X^s£=("l ) A /5V5 5— _v 、 DE ・H = 0<DB • /z = 0得 7 = (-221)又 BC ; = (-2,0,2)记g 和而EFBD 所成的角为&则 sin 0 =1 cos 〈BC], n) 1=1 ."9 ? 1=I BC { II7? I 2 ・•・Bq 和面EFBD 所成的角为冬.4(III)点目到ffiEFBD 的距离d 等于向量丽;在而EFBD 的法向量上的投影的绝对值,BiTl 33.完成这3道小题后, 总结:例2・己知A BCD 是边长为1的正方形,四边形DA ・ q=0DC ・ q = 0向量法求空间距离和角设计说明:1・作为本专题的例1,首先选择以一个容易建立空间直角坐标系 的多而体 正方体为载体,来说明空间角和距离的向量求法易于学生理解.2.解决(1)后,可让学生进一步求这两条异而直线的距离,并让学生体会一下:如果用传统方法恐怕很难(不必多讲,高考对公垂线的作法不作要求).角、距离还是证明平行、垂直(是前者的特殊情况),都可用向量方法来解决, 向量方法可以人人学会,它程序化,不需技巧.AA'B'B 是矩形,平丄平面A3CD 。

向量法求空间的距离和角

向量法求空间的距离和角

所以异面直线BD与D1A间的距离为
3 。 3
(2) A1 B1 = (0,1, 0), 设n = ( x, y, z )是平面A1DB的一 个法向量,因为DA1 = (1, 0,1), DB = (1,1, 0), ì ì x +z = 0 nDA1 = 0 镲 由眄 即 取x = - 1, 镲 î x+y =0 î nDB = 0 | nA1 B1 | 1 2 于是n = (-1,1,1, ),且 = = 。 2 |n| 2 2 所以点B1到平面A1 BD的距离为 。 2
例1:如图1所示: 三棱柱ABC - A1 B1C1中,CA=CB, AB = AA1, ? BAA1 60o, ( 1)求证:AB^ A1C (2)若平面ABC ^ 平面AA1 B1 B, AB =CB,求直线A1C与平面BB1C1C 所成角的正弦值。
C C1
B A A1
B1
图1
C
C1
O
B A1
Z
解:由(1)知OC ^ AB,OA1 ^ AB, 又平面ABC ^ 平面AA1 B1 B,交线 为AB,所以OC ^ 平面AA1 B1 B, 故OA、OA1、OC两两相互垂直。 建立如图所示的空间直角坐标系 A
O
C
C1
B A1
B1 图1-2
X o - xyz 设AB = 2,由题设知A(1, 0, 0)、B(- 1, 0, 0)、C (0, 0, 3)、A1 (0, 3, 0), 则BC = (1, 0, 3)、 BB1 = AA1 = (- 1, 3, 0)、 A1C = (0, - 3, 3). 设n = ( x, y, z )是平面BBCC的法向量,则 ì x + 3z = 0 ì nBC = 0 镲 即 可取n = ( 3,1, -1), 眄 镲 î nBB1 = 0 î - x + 3y = 0 nA1C 10 故 cos < n, A1C >= =. 5 | n | ×| A1C |

立体几何中的向量方法求空间角和距离

立体几何中的向量方法求空间角和距离

基础知识・自主学习I要点梳理知识冋顾理消救材1.空间向量与空间角的关系(1)已知异面直线11, 12的方向向量分别为S i, S2,当0<< Si, S2>< ,直线11与12的夹角等于〈S i, S2〉当n< < Si, S z>< n时,直线l1与l2的夹角等于n—< S1, S2 >.⑵已知平面n和n的法向量分别为n1和敗,当0<< n1, n2>< ,平面n与n的夹角等于〈n i, n2〉n当2< < n 1,敗〉^ n时,平面n与n的夹角等于兀―〈n i,n2>.⑶已知直线I的方向向量为S,平面n的法向量为n, 则直线l与平面n的夹角sin 0= |cos〈 s, n > |.2.距离公式点到直线的距离公式:d= . |PA|2—|P A S of.点到平面的距离公式:d= |PA n o|.I夯基释疑夯实基础突破疑砒1.判断下面结论是否正确(请在括号中打“V”或“X”(1)两直线的方向向量所成的角就是两条直线所成的角.(2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.(3)两个平面的法向量所成的角是这两个平面的夹角.n(4)两异面直线夹角的范围是(0,刁,直线与平面所成角的范围是⑸直线I的方向向量与平面a的法向量夹角为120 °则I和a所成角为30°2.已知二面角a—I —B的大小是n, m, n是异面直线,且m丄a, n丄伏则m,3n所成的角n B.nnC.2nD.6|OP n| |n ||— 2— 6 + 2| =2,故选 B.• cos 〈 n , a >又I 与a 所成角记为 0,即 sin = |cos 〈 n , a >4 5133答案 B解析 ■/ m 丄a, n 丄B,•••异面直线m , n 所成的角的补角与二面角 a-1- B 互补.又•••异面直线所成角的范围为(0,彳, • m , n 所成的角为33.在空间直角坐标系 Oxyz 中,平面OAB 的一个法向量为n = (2, — 2,1),已知点P( — 1,3,2), 则点P 到平面OAB 的距离d 等于 ()A . 4B . 2C . 3D . 1答案 B解析 P 点到平面OAB 的距离为4.若平面a 的一个法向量为n = (4,1,1),直线l 的一个方向向量为 a = (— 2, — 3,3),则I 与 a 所成角的正弦值为 _______________________ . 答案解析 •/ na =— 8— 3 + 3 = — 8, |n |=“ 16+ 1 + 1 = 3 2, |a |= ” ‘4+ 9 + 9 = .22,n a ―84^/11|n| |a |= 3 2X 22=—335 . P 是二面角a — AB — B 棱上的一点,分别在平面a B 上引射线PM 、PN ,如果/ BPM =/ BPN = 45° / MPN = 60° 那么平面 a 与B 的夹角为 _________ . 答案 90° 解析不妨设PM = a , PN = b ,如图,A作ME 丄AB 于E , NF 丄AB 于F ,•••/ EPM = / FPN = 45° •PE =, PF = -22b ,E为CC i的中点,则异面直线B.嚅C並C. 103 10D.^思维启迪本题可以通过建立空间直角坐标系,利用向量BC I、AE所成的角来求. 答案B解析建立坐标系如图,则A(1,0,0),E(0,2,1),B(1,2,0),C i(0,2,2). BC i= (—1,0,2),Al= (—i,2,i),cos〈BC i, AE >BC i A E 30D,G/Hi/I11111/E C y|BC I||AE|10 -求解,而两异面直线所成角的范围是,两向量的夹角a的范围是[0, n,所以要注意二者的区别与联系,应有cos 0= |cos a|.已知直四棱柱ABCD —A1B1C1D1中,底面ABCD 为正方形,AA1= 2AB, E 为AA i的中点,则异面直线BE与CD i所成角的余弦值为10 D.;—> —> —> —> —> —>EM FN = (PM —PE) (PN—PF)=PM PN —PM PF —PE PN+PE PF=abcos 60 —ax^bcos 45 —乎abcos 45 +^axab ab—辿 + ab= 0O 1 O 5••• EM丄FN , •••平面a与B的夹角为90°题型分类・深度剖析题型一求异面直线所成的角【例 1 长方体ABCD —A I B I C I D I中,AB= AA i= 2, AD = 1,BC i与AE所成角的余弦值为所以异面直线BC i与AE所成角的余弦值为誉.思维升华用向量方法求两条异面直线所成的角,是通过两条直线的方向向量的夹角来1B.5答案C解析如图,以D为坐标原点建立如图所示空间直角坐标系.设AA i = 2AB = 2,则B(1,1,0), E(1,0,1), C(0,1,0), D i(0,0,2),•-BE = (0,- 1,1),••• cos 〈 BE , C D 1 >1 +2 = 3后2 • 5= 10题型二求直线与平面所成的角[例 2】如图,已知四棱锥 P — ABCD 的底面为等腰梯形, AB // CD ,AC 丄BD ,垂足为H , PH 是四棱锥的高,E 为AD 的中点. (1) 证明:PE 丄BC ;(2) 若/ APB = /ADB = 60 °求直线PA 与平面PEH 所成角的正弦值.思维启迪:平面的法向量是利用向量方法解决位置关系或夹角的关键,本题可通过建立 坐标系,利用待定系数法求出平面PEH 的法向量.(1)证明 以H 为原点,HA , HB , HP 所在直线分别为x , y , z 轴, 线段HA 的长为单位长度,建立空间直角坐标系(如图),则 A(1,0,0) , B(0,1,0).设 C(m,0,0), P(0,0, n) (m<0, n>0),则 D(0, m,0), E ;,罗,0 . 可得 PE = 2,罗,-n , BC = (m ,- 1,0).因为 PE BC = m — m + 0 = 0,所以 PE 丄 BC.⑵解由已知条件可得 m = —_3故 C -于,0 0 , D 0,—于,0 , E J ,*, 0,P(0,0,1). 设n = (x , y , n H E = 0, 则Sgx -吕=0,』HP = 0, Z= 0.C D i = (0,- 1,2),yAC 丄BD,BC= 1 ,AD = AA1= 3.因此可以取n = (1, - 3, 0).又PA= (1,0, - 1), 所以|cos < F A, n〉1=乎.一迈所以直线PA与平面PEH所成角的正弦值为丁.思维升华利用向量法求线面角的方法:(1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.虽21,1 汙― (2013 湖南)如图,在直棱柱ABCD —A1B1C1D1中,AD // BC,/ BAD = 90°(1) 证明:AC 丄B1D;(2) 求直线B1C1与平面ACD1所成角的正弦值.方法一(1)证明如图,因为BB1丄平面ABCD , AC 平面ABCD,所以AC丄BB1.又AC丄BD,所以AC丄平面BB1D, 而B1D 平面BB1D,所以AC丄B1D.⑵解因为B1C1 // AD,所以直线B1C1与平面ACD1所成的角等于直线AD与平面ACD1所成的角(记为9).如图,连接A1D,因为棱柱ABCD —A1B1C1D1是直棱柱,且 / B1A1D1= / BAD = 90°从而Rt △ ABC s Rt △ DAB,故AB = DA =BCAB,所以A i B i丄平面ADD I A I,从而A i B i丄AD i.又AD = AA i= 3,所以四边形ADD i A i是正方形.于是A i D丄AD i,故AD i丄平面A i B i D,于是AD i丄B i D. 由⑴知,AC丄B i D,所以B i D丄平面ACD i. 故/ ADB i= 90°—0,在直角梯形ABCD中,因为AC丄BD,所以/ BAC = Z ADB.即AB= , DA BC = 3.连接AB i,易知△ AB i D 是直角三角形,且B I D2= BB2+ BD2= BB?+ AB2+ AD2= 2i,即B i D = 2i.AD 3 vf2i在Rt△ AB i D 中,cos Z ADB i= =21 = ^^,即cos(90 ° 0= 从而sin 0=一即直线B i C i与平面ACD i所成角的正弦值为一尹.方法二⑴证明易知,AB,AD,AA i两两垂直.如图,以 A 为坐标原点,AB,AD,AA i所在直线分别为x轴,y轴,z轴建立空间直角坐标系.设AB= t,则相关各点的坐标为A(0,0,0),B(t,0,0),B i(t,0,3),C(t,i,0),C i(t,i,3),D(0,3,0),D i(0,3,3).从而E h D = (—1,3,—3),AC= (t,i,0),BD = (—t,3,0).因为AC丄BD,所以A C E B D = —t2+ 3 + 0= 0,解得t= .3或t =—,3(舍去).于是B T D = (—.3,3,—3),AC= ( . 3,i,0),因为AC B i D = —3+ 3 + 0= 0,(2)解 由 AC = CB =-^AB 得, 以C 为坐标原点,CA 的方向为 方向,CC 1的方向为z 轴正方向,AC 丄 BC.x 轴正方向,CB 的方向为y 轴正建立如图所示的空间直角坐标系sin 0= |cos 〈 n , B 1C 1 > |=n B 1C 1|n | |E h C 1| _ .3_ .21=7= 7即直线B 1C 1与平面ACD 1所成角的正弦值为21 7题型三求两个平面的夹角【例3】(2013课标全国II )如图,直三棱柱 ABC - A 1B 1C 1 中,J 2AB , BB 1 的中点,AA 1 = AC = CB =-^AB. (1) 证明:BC 1 〃 平面 A 1CD ;(2) 求平面A 1CD 与平面A 1CE 夹角的正弦值.思维启迪 根据题意知/ ACB = 90°故CA 、CB 、C®两两垂直,可以 C 为原点建立空 间直角坐标系,利用向量求两个平面的夹角.(1)证明 连接AC 1交A 1C 于点F ,则F 为AC 1的中点. 又D 是AB 的中点,连接DF ,则BC 1 // DF . 因为DF 平面A 1CD , BC 「平面A 1CD , 所以BC 1 //平面A 1CD.所以AC 丄B i D ,即AC 丄B i D.⑵解 由⑴知,AD i = (0,3,3), AC= ( 3, 1,0), B i C i = (0,1,0).设n = (x , y , z)是平面ACD i 的一个法向量, n A C = 0, 3x + y = 0,则$,即丫n AD i = 03y+3z= 0,令 x = 1,则 n = (1, -3, 3).设直线B 1C 1与平面ACD 1所成角为0,则D ,C|C可取m = (2,i,—2).从而cos〈n, m> ~~,故sin〈 n, m>6 3 .Cxyz.设CA= 2,贝U D(1,1,0), E(0,2,1), A i(2,0,2),CD = (1,1,0), CE = (0,2,1), CA i= (2,0,2).设n= (x i, y i, z i)是平面A i CD的法向量,n CD = 0, x i + y i = 0,则即可取n= (i, - i,—i).n CA i= 0, 2xi+ 2zi =0.同理,设m是平面A i CE的法向量,m CE = 0, 则Tm CA i= 0.所以平面A i CD与平面A i CE夹角的正弦值为思维升华求平面间的夹角最常用的方法就是分别求出两个平面的法向量,然后通过两n 个平面的法向量的夹角得到所求角的大小,但要注意平面间的夹角的范围为[0,刁.吕I」H如图,在圆锥PO中,已知PO= 2, O O的直径AB= 2,C是;的中点,D为AC的中点.(1)证明:平面POD丄平面FAC;(2)求平面ABF与平面ACF夹角的余弦值.(1)证明如图,以O为坐标原点,OB, OC, OF所在直线分别为x轴,y轴,z轴建立空间直角坐标系,则O(0,0,0), A( —1,0,0),B(1,0,0), C(0,1,0), P(0,0, 2), D(—2, 2 0).设n i = (x i, y i, z i)是平面POD的一个法向量,则由n i OD = 0, n i OP = 0,lie —2xi + 2y i=,得2 2 (■:;'2 z i= 0.所以平面ABP与平面ACP夹角的余弦值为10 5所以z i = 0, x i = y i,取y i = 1,得n i = (1,1,0).设n2=(X2, y2, Z2)是平面PAC的一个法向量,则由n2 PA= 0, n2 PC= 0,| —X2—■.”'2Z2= 0,得y2 —:;.;2z2= 0.所以X2=—2z2, y2= ,2z2.取z> = 1,得n2= (—2, 2, 1).因为n 1 n2= (1,1,0) (—2, 2, 1)= 0,所以m丄n2•从而平面POD丄平面PAC.⑵解因为y轴丄平面FAB,所以平面PAB的一个法向量为n3= (0,1,0).由(1)知,平面PAC的一个法向量为n2= ( —2, 2, 1). 设向量n2和n3的夹角为0,则C0S 9=|器3|=€=甲.题型四求空间距离【例4 已知正方形ABCD的边长为4, CG丄平面ABCD , CG = 2, E, F分别是AB, AD的中点,则点C到平面GEF的距离为___________ .思维启迪所求距离可以看作CG在平面GEF的法向量的投影.答案*解析建立如图所示的空间直角坐标系Cxyz,n=(1,1,3)所以点C到平面GEF的距离为d=嘗6 11 11则CG = (0,0,2),由题意易得平面GEF的一个法向量为思维升华求点面距一般有以下三种方法:②等体积法;③向量法.其1.①作点到面的垂线,点到垂足的距离即为点到平面的距离; 中向量法在易建立空间直角坐标系的规则图形中较简便.亍心讥IY4 (2012大纲全国改编)已知直四棱柱 ABCD — A I B I C I D I 中,底面 ABCD 为正 方形,AB = 2, CC 1 = 2 2, E 为C®的中点,则点 A 到平面BED 的距离为 ()A . 2 B. 3C. ,2D . 1答案 D解析 以D 为原点,DA 、DC 、DD i 所在直线分别为 x 轴、y 轴、z 轴建立空间直角坐标系 (如图),贝U D(0,0,0), A(2,0,0), B(2,2,0), C(0,2,0), C i (0,2,2 .2), E(0,2 ,,2).设n = (x , y , z)是平面BED 的法向量.n BD = 2x + 2y = 0 则S T.DE = 2y+V2z = 0取y = 1,贝U n = (— 1,1, — .2)为平面BED 的一个法向量. 又 D A = (2,0,0),•••点A 到平面BED 的距离是|n D A|l— 1x 2+ 0+ 0||n |'.;—12+ 12+ — ,22=答题按板系列8利用空间向量求角典例:(12分)(2013江西)如图,四棱锥 P — ABCD 中,PA 丄平面 ABCD , E 为BD 的中点,G 为PD 的中点,△ DABDCB , EA = EB = AB = 1 , PA = 3,连接 CE 并延长交 AD 于F.6G⑴求证:AD丄平面CFG ;(2)求平面BCP与平面DCP夹角的余弦值.思维启迪(1)可利用判定定理证明线面垂直;(2)利用AD、AP、AB两两垂直建立空间直角坐标系,求两个平面的法向量,利用向量夹角求两个平面BCP、DCP夹角的余弦值.规范解答(1)证明在厶ABD中,因为E为BD的中点,所以EA= EB = ED = AB= 1 ,n故/ BAD = 2,n3'/ ABE = / AEB =-因为△ DAB也厶DCB,所以△ EABECB ,n从而有 / FED = Z BEC = Z AEB =-,3所以Z FED = Z FEA. [2分] 故EF 丄AD , AF = FD ,又因为PG = GD,所以FG // FA.又FA丄平面ABCD ,[4分] 所以GF丄AD,故AD丄平面CFG. [6分]⑵解以A为坐标原点建立如图所示的坐标系,[9分] [10 分][12 分]则 A(0,0,0) , B(1,0,0), C 号,于,0 ,D(0, ,3, 0), P 0, 0, 2 , 故BC =扌冷,0, Cp = -2,设平面BCP 的法向量为 n i = (X i , y i , Z i ),n i CP = 0 则 -n i BC = 0令 y i = — ,3,贝V X i = 3, Z i = 2, n i = (3,— 3, 2). 同理求得面DCP 的法向量为n 2= (i ,,3, 2),从而平面BCP 与平面DCP 夹角0的余弦值为 ,I n i n 2|4 卫cos Fsg n 2〉= |n i ||n 2= 4X 2=〒利用向量求空间角的步骤 第一步:建立空间直角坐标系. 第二步:确定点的坐标.第三步:求向量(直线的方向向量、平面的法向量)坐标. 第四步:计算向量的夹角(或函数值). 第五步:将向量夹角转化为所求的空间角.第六步:反思回顾•查看关键点、易错点和答题规范.温馨提醒 (1)利用向量求角是高考的热点,几乎每年必考,主要是突出向量的工具性作用.GD—3电I 2, 2,0. [8分](2) 本题易错点是在建立坐标系时不能明确指出坐标原点和坐标轴,导致建系不规范.(3) 将向量的夹角转化成空间角时,要注意根据角的概念和图形特征进行转化,否则易错.思想方法・感悟提高方法与技巧1 .用向量来求空间角,各类角都可以转化为向量的夹角来计算.2 .求点到平面的距离,若用向量知识,则离不开以该点为端点的平面的斜线段.失误与防范1 .利用向量求角,一定要注意将向量夹角转化为各空间角.因为向量夹角与各空间角的定义、范围不同.2 .求点到平面的距离,有时利用等体积法求解可能更方便.B i D 和CD i 所成的角( )、选择题1.已知正方体ABCD — A i B i C i D i 如图所示,则直线为 A . 60 ° B . 45 ° C . 30 ° D . 90 °答案 D解析 以A 为原点,AB 、AD 、AA i 所在直线分别为x , y , z 轴建立空间直角坐标系,设正方体边长为i ,则射线CD i 、B i D 的方向向量分别是 CD i = (-i,O,i),•••直线B i D 和CD i 所成的角为90°2 .如图,四棱锥 S — ABCD 的底面为正方形,SD 丄底面ABCD ,则下列 结论中不正确的是 ()A . AC 丄 SB B . AB //平面 SCDC . SA 与平面SBD 所成的角等于 SC 与平面SBD 所成的角 D . AB 与SC 所成的角等于DC 与SA 所成的角 答案 D解析 •••四边形ABCD 是正方形,• AC 丄BD. 又••• SD 丄底面 ABCD , • SD 丄AC.其中SD A BD = D , • AC 丄平面SDB ,从而 AC 丄SB. 故A 正确;易知 B 正确;设 AC 与DB 交于O 点,连接SO.则SA 与平面SBD 所成的角为/ ASO , SC 与平面SBD 所成的角为/ CSO ,练出高分A 组专项基础训练 (时间:40分钟)B i D = (— i,i ,i),COS 〈 CD i , B i D >i + 0— i 2X- 3= 0,SA. i2nB.nnC.4nD.6答案B解析如图所示:iS ABC = 2 X ■. 3 X•.::.;: 3 X. nsin 3=3“ 34A: 2B.3 C逅C. 3答案解析以A为原点建立如图所示的空间直角坐标系Axyz,设棱长为i,1则A i(0,0,i), E i , 0, 2 , D(0,i,0),Eft •-心=(0,i, —i) , A T E= i, 0, —2 ,设平面A i ED的一个法向量为n i= (i, y, z), y—z= 0 ,则i|i —2z= 0 ,y= 2,z= 2..n i= (1,2,2).•••平ABCD 的一个法向量为2n2= (0,0,i) , . cos〈n i ,血〉=23.所以平面A i ED与平面ABCD夹角的余弦值为2 3.在四面体P —ABC中,PA, PB, PC两两垂直,设PA = PB= PC = a,则点P到平面ABC又0A= OC, SA= SC,.•./ ASO= / CSO.故C正确;由排除法可知选 D.93. (2013山东)已知三棱柱ABC —A i B i C i的侧棱与底面垂直,体积为4底面是边长为.3的正三角形•若P为底面A i B i C i的中心,则PA与平面ABC所成角的大小为()VABC—A i B i C i = S\BC X OP = 3-43 X OP = 4, /. OP = _ 3. 又OA= ~2^X ,3X1= i, tan/ OAP = OA = .3,—/ 兀/ n又0< / OAP<2, OAP = 3.2 3余弦值为在正方体ABCD —A i B i C i D i中,点E为BB i的中点,则平面A i ED与平面ABCD夹角的的距离为A•身 B.fa C.3 D. 6a答案B解析根据题意,可建立如图所示的空间直角坐标系Pxy z,则P(0,0,0),A(a,O,O),B(0,a,0),C(0,0,a).过点P作PH丄平面ABC,交平面ABC于点H,则PH的长即为点P到平面ABC的距离.PA = PB= PC, ••• H ABC 的外心.又•••△ ABC为正三角形,• H ABC的重心,可得H点的坐标为(3,3,3)• PH - ... 3- 02+ a - 0 2+ 3 - 0 2詔a.•••点P到平面ABC的距离为-^a.二、填空题6. 已知两平面的法向量分别为_______________________________ m = (0,1,0), n= (0,1,1),则两平面夹角的大小为 ____________________________________________ 答案n4m n 2 n解析cos〈m, n>=丽厂T,•〈m,n>=;.•两平面夹角的大小为n7. 如图所示,在三棱柱ABC—A i B i C i中,AA i丄底面ABC, AB = BC= AA i,/ ABC = 90°点E、F分别是棱AB、BB i的中点,则直线EF和BC i所成的角是_________ .答案60°解析以BC为x轴,BA为y轴,BB i为z轴,建立空间直角坐标系. 设AB = BC = AA i = 2,则C i(2,0,2), E(0,i,0), F(0,0,i),则E F = (0,- i,i), B C i= (2,0,2),•- EF BC i= 2,RBcos〈E F, B C1> 2 _ 1 -,2X2*2—2,答案3,5 i0解析以A为坐标原点,AB、AD、AA i所在直线分别为x轴、y轴、z轴建立空间直角坐标系,如图所示,小i i则A i(0,0,i),E(i,0,2),F(2, i,0), D i(0,i,i).• A?E_ (1,0,—2), A?D i_ (0,1,0).设平面A i D i E的一个法向量为n_ (x, y, z),n A T E _ 0, 则n A i D i_ 0,1x —2z_ 0, 即2y_ 0.••• EF和BC i所成的角为60°8. 正方体ABCD —A i B i C i D i的棱长为1 , E、F分别为BB「CD的中点,则点F到平面AQ i E的距离为________令z_ 2,贝y x_ 1..・.n_ (1,0,2).又心_ (2, 1, —1),•••点F到平面A i D i E的距离为T1_ 心n I_〔2 —2|_ d_|n| _ 5 _10 .三、解答题9. 如图,四棱锥P—ABCD中,PD丄平面ABCD , PA与平面ABD所成的角为60°,在四边形ABCD 中,/ ADC _/ DAB _ 90° AB _ 4,CD _ 1 , AD _ 2.(1) 建立适当的坐标系,并写出点B, P的坐标;(2) 求异面直线PA与BC所成的角的余弦值.解(1)建立如图空间直角坐标系,•••/ ADC _ Z DAB _ 90°AB_ 4, CD_ 1, AD _ 2,a • A(2,0,0), C(0,1,0), B(2,4,0)..13 13,•异面直线PA与BC所成的角的余弦值为.13 13 .由PD丄平面ABCD,得/ FAD为PA与平面ABCD所成的角,•••/ FAD = 60°在Rt△ FAD 中,由AD = 2,得PD = 2.3, • P(0,0,2 . 3).—> ——>(2) •/ FA = (2,0,- 2 3), BC= (- 2,- 3,0),• cos〈PA, BC〉2 X - 2 + 0X -3 + - 2^3 X 04 .1310. (2013天津)如图,四棱柱ABCD - A1B1C1D1中,侧棱A1A丄底面ABCD , AB // DC , AB 丄AD , AD = CD = 1 , AA1 = AB= 2, E 为棱AA1的中点.(1) 证明:B1C1 丄CE;(2) 求二面角B1 - CE - C1的正弦值;(3) 设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为¥,求线段AM的长.方法一如图,以点A为原点,以AD, AA1, AB所在直线为x轴, y轴,z轴建立空间直角坐标系,依题意得A(0,0,0), B(0,0,2) ,C(1,0,1),B1(0,2,2), C1(1,2,1), E(0,1,0).(1)证明易得B?C1 = (1,0, - 1), CE= ( - 1,1, - 1),于是B1C1C E =0,所以B1C1丄CE.(2)解B1C = (1 , - 2, - 1).设平面BQE的法向量m= (x, y, z),m B1C= 0, ]x-2y-z= 0,则即消去x,得y+ 2z= 0,不妨令z= 1,可得一个法m CE = 0, -x+ y-z=°.向量为m= (- 3,- 2,1).由(1)知,B1C1 丄CE,又CC1 丄B1C1,可得B1C1 丄平面CEC1, 故BQ1= (1,0,—1)为平面于是cos 〈 m, B i C i 〉 m B i C i|m | |B i C i |从而 sin 〈m , B ?C i 〉=亠尹sin 0= |cos 〈 AM , AB 〉|= AM AB||AM| |A B|于是-6,解得匸*(负值舍去), CEC i 的一个法向量.所以二面角B i - CE - C i 的正弦值为亡尹 ⑶解 AE =(o,i,o ), E C i =(i,i,i ),设E M = ?E C i =(入入为,o w 庄i ,有AM = AE + EM 可取AB = (0,0,2)为平面ADD i A i 的一个法向量.设B 为直线AM 与平面ADD i A i 所成的角,则所以AM = 2.方法二(1)证明因为侧棱CC i丄底面A i B i C i D i, B i C i平面A i B i C i D i,所以CC i丄B i C i.经计算可得B i E = .5, B i C i= .2, EC i=v3,从而B i E2= B i C i+ EC i,所以在△ B i EC i中,B i C i丄C i E,又CC i, C i E 平面CC i E, CC i Q C i E = C i,所以B i C i丄平面CC i E,又CE平面CC i E,故B i C i丄CE.⑵解过B i作B i G丄CE于点G,连接C i G.由⑴知,B i C i丄CE,故CE丄平面B i C i G,得CE丄C i G , 所以/ B i GC i为二面角B i-CE —C i的平面角.在Rt △ B1C1G 中, B i G ='42 3即二面角B i—CE —C i的正弦值为亠号.⑶解连接D i E,过点M作MH丄ED i于点H ,可得MH丄平面ADD i A i,连接AH , AM , 则/ MAH为直线AM与平面ADD i A i所成的角.设AM = x,从而在Rt△ AHM中,有在Rt△ C i D i E 中,C i D i = i, ED i = , 2,得EH = ,2MH = 3X.在厶AEH 中,/ AEH = i35° AE = i,由AH2= AE2+ EH2—2AE EHcos i35 °得珞(=i+9/+承整理得5x2— 2 2x— 6 = 0,解得x = ■, 2(负值舍去).所以线段AM的长为.2.所以sin / B i GC i =• cos〈F D i, OE >〔+ 2=VT55 • 3= 5B组专项能力提升(时间:30分钟)1.过正方形ABCD的顶点A作线段PA丄平面ABCD ,若AB= PA,则平面ABP与平面CDP的夹角大小为A. 30°B. 45°C. 60°D. 90°答案B解析建立如图所示的空间直角坐标系,设AB= PA= 1,知A(0,0,0) , B(1,0,0), D(0,1,0), C(1,1,0), P(0,0,1)由题意得,AD丄平面ABP,设E为PD的中点,连接AE,贝U AE丄PD ,又••• CD丄平面PAD, ••• AE丄CD,又PD A CD = D, • AE 丄平面CDP.• AD = (0,1,0), AE = (0, 2 , 2)分别是平面ABP、平面CDP的法向量,而〈AD, AE〉= 45°•平面ABP与平面CDP的夹角大小为45° 2 .在棱长为2的正方体ABCD —A i B i C i D i中,0是底面ABCD的中点,E, F分别是CC i,AD的中点,那么异面直线0E和FD i所成的角的余弦值等于 _____________ .答案严5解析以D为原点,分别以DA、DC、DD i为x轴、y轴、z轴建立空间直角坐标系,•F(1,0,O), D i(0,0,2), O(1,1,0), E(0,2,1),•F D i= (—1,0,2),OE = (—1,1,1),3. ________________________________________________________________________ 设正方体ABCD —A i B i C i D i的棱长为2,则点D i到平面A i BD的距离是_________________________DA I =(2,0,2), DB =(2,2,0),设平面A I BD的一个法向量n = (x, y, z),n DA I=2X+ 2z= 0 则S T .n DB = 2x+ 2y= 0令x= 1,贝U n= (1, - 1,- 1),•••点D1到平面A1BD的距离为.ID^A1 n| 2 23d |n| .3 3 .4. 如图,在底面为直角梯形的四棱锥P—ABCD中,AD // BC,Z ABC=90° PA丄平面ABCD , PA = 3, AD = 2, AB = 2羽,BC= 6.(1)求证:BD丄平面PAC;(2)求平面BPD与平面ABD的夹角.(1)证明如图,建立空间直角坐标系,则A(0,0,0) , B(2 3, 0,0),C(2 .3, 6,0), D(0,2,0), P(0,0,3),• A P =(0,0,3), A C = (2西,6,0), BD = (- 2亞,2,0).•- BD AP = 0, BD AC= 0.• BD 丄AP, BD 丄AC.又••• FA Q AC= A, • BD丄平面FAC.⑵解设平面ABD的法向量为m= (0,0,1), 平面PBD的法向量为n = (x, y, z),则n BD = 0, n BP = 0.答案2333解析如图建立空间直角坐标系,则D I(0,0,2) , A i(2,0,2), D(0,0,0), B(2,2,0), D1A1 = (2,0,0),••• BP = (- 2 3, 0,3), •••-2 3x+ 2y= 0,-2 3x+ 3z= 0, 丫=晶,解得\ =塑Z= 丁x.令x= .3,则n= ( .3, 3,2),m-n 1• cos〈 m, n > = ----- =一|m||n| 2•••平面BPD与平面ABD的夹角为60°(3)证明:在线段 5. (2013北京)如图,在三棱柱 ABC — A i B i C i 中,AAQ I C 是边长为4的正方形.平面 ABC 丄平面AA 1C 1C , AB = 3, BC = 5.(1)求证:AA i 丄平面ABC ;⑵求平面A 1BC 1与平面BB 1C 1夹角的余弦值;BD BC 1上存在点D ,使得AD 丄A 1B ,并求 的值. BC 1(1)证明 在正方形 AA 1C 1C 中,A 1A 丄AC.又平面ABC 丄平面AA 1C 1C ,且平面ABC 门平面AA 1C 1C = AC , ••• 丄平面 ABC.(2)解 在厶ABC 中,AC = 4, AB = 3, BC = 5,••• BC 2 = AC 2+ AB 2, AB 丄AC•以A 为坐标原点,建立如图所示空间直角坐标系 Axyz. A 1(0,0,4), B(0,3,0), C 1(4,0,4), B 1(0,3,4), A 1C 1= (4,0,0), A 1B = (0,3 , — 4), B 1C 1 = (4 , — 3,0) , BB 1 = (0,0,4). 设平面 A 1BC 1的法向量 n 1= (X 1 , y 1 , Z 1),平面 B 1BC 1的法向量n 2= (X 2 , y ,Z 2).A 1C 1 n 1 = 0 , 4x 1 = 0• \AB m= 0 脚-4乙=0•取向量 n 1= (0,4,3)f _B 1C 1 n 2= 0, 4x 2 — 3y 2 = 0,由S _ ? $^B _1 n 2= 0 -4z2= °.取向量 n 2= (3,4,0), m n 2 16 16…cos 〈 n 1, n 2〉= 1 1 1 . = = cl2 |n 1| |n 2| 5X 5 25'由题意知二面角 A 1 — BC 1 — B 1为锐角,•平面A 1BC 1与平面BB 1C 1夹角的余弦值为 黒 25 ⑶证明 设D(x , y , z)是直线BC 1上一点,且BD =疋_1.• (x , y — 3, z) = X 4,— 3,4),3— 3 X, 4 A 解得 x = 4 入 y = 3 — 3 入 z = 4 X — AD = (4 人又 AD 丄A i B , ••• 0+ 3(3 — 3R — 16X= 09 BD 9则X=旦,因此BD =— 则 A 25 '因此 BC i 25.。

利用向量方法求空间角 知识点+例题+练习

利用向量方法求空间角 知识点+例题+练习

教学内容利用向量方法求空间角教学目标1.掌握各种空间角的定义,弄清它们各自的取值范围.2.掌握异面直线所成的角,二面角的平面角,直线与平面所成的角的联系和区别,体会求空间角中的转化思想.重点1.掌握各种空间角的定义,弄清它们各自的取值范围.2.掌握异面直线所成的角,二面角的平面角,直线与平面所成的角的联系和区别,体会求空间角中的转化思想.难点1.掌握各种空间角的定义,弄清它们各自的取值范围.2.掌握异面直线所成的角,二面角的平面角,直线与平面所成的角的联系和区别,体会求空间角中的转化思想.教学准备教学过程自主梳理1.两条异面直线的夹角①定义:设a,b是两条异面直线,在直线a上任取一点作直线a′∥b,则a′与a的夹角叫做a与b的夹角.②范围:两异面直线夹角θ的取值范围是_____________________.③向量求法:设直线a,b的方向向量为a,b,其夹角为φ,则有cos θ=________=_______________.2.直线与平面的夹角①定义:直线和平面的夹角,是指直线与它在这个平面内的射影的夹角.②范围:直线和平面夹角θ的取值范围是________________________.③向量求法:设直线l的方向向量为a,平面的法向量为u,直线与平面所成的角为θ,a与u的夹角为φ,则有sin θ=|cos φ|或cos θ=sin φ.3.二面角(1)二面角的取值范围是____________.(2)二面角的向量求法:①若AB、CD分别是二面角α—l—β的两个面内与棱l垂直的异面直线,则二面角的大小就是向量AB→与CD→的夹角(如图①).②设n1,n2分别是二面角α—l—β的两个面α,β的法向量,则向量n1与n2的夹角(或其补角)的大小就是二面角的平面角的大小(如图②③).自我检测1.已知两平面的法向量分别为m=(0,1,0),n=(0,1,1),则两平面所成的二面角为________.2.若直线l1,l2的方向向量分别为a=(2,4,-4),b=(-6,9,6),则l1与l2所成的角等于________.3.若直线l的方向向量与平面α的法向量的夹角等于120°,则直线l与平面α所成的角等于________.4.二面角的棱上有A、B两点,直线AC、BD分别在这个二面角的两个半平面内,且都垂直于AB.已知AB=4,AC=6,BD=8,CD=217,则该二面角的大小为_______________________________________.5.(2010·铁岭一模)已知直线AB、CD是异面直线,AC⊥CD,BD⊥CD,且AB=2,CD=1,则异面直线AB与CD所成的角的大小为________.教学效果分析教学过程探究点一利用向量法求异面直线所成的角例1已知直三棱柱ABC—A1B1C1,∠ACB=90°,CA=CB=CC1,D为B1C1的中点,求异面直线BD和A1C所成角的余弦值.变式迁移1如图所示,在棱长为a的正方体ABCD—A1B1C1D1中,求异面直线BA1和AC所成的角.探究点二利用向量法求直线与平面所成的角例2如图,已知平面ABCD⊥平面DCEF,M,N分别为AB,DF的中点,求直线MN与平面DCEF所成的角的正弦值.变式迁移2如图所示,在几何体ABCDE中,△ABC是等腰直角三角形,∠ABC=90°,BE和CD都垂直于平面ABC,且BE=AB=2,CD=1,点F是AE的中点.求AB与平面BDF所成的角的正弦值.教学效果分析教学过程探究点三利用向量法求二面角例3如图,ABCD是直角梯形,∠BAD=90°,SA⊥平面ABCD,SA=BC=BA=1,AD=12,求面SCD与面SBA所成角的余弦值大小.变式迁移3如图,在三棱锥S—ABC中,侧面SAB与侧面SAC均为等边三角形,∠BAC=90°,O为BC中点.(1)证明:SO⊥平面ABC;(2)求二面角A—SC—B的余弦值.探究点四综合应用例4如图所示,在三棱锥A—BCD中,侧面ABD、ACD是全等的直角三角形,AD是公共的斜边,且AD=3,BD=CD=1,另一个侧面ABC是正三角形.(1)求证:AD⊥BC;(2)求二面角B-AC-D的余弦值;(3)在线段AC上是否存在一点E,使ED与面BCD成30°角?若存在,确定点E的位置;若不存在,说明理由.教学效果分析教学过程变式迁移4 (2011·山东,19)在如图所示的几何体中,四边形ABCD为平行四边形,∠ACB=90°,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC,AB=2EF.(1)若M是线段AD的中点,求证:GM∥平面ABFE;(2)若AC=BC=2AE,求二面角A-BF-C的大小.1.求两异面直线a、b的所成的角θ,需求出它们的方向向量a,b的夹角,则cos θ=|cos〈a,b〉|.2.求直线l与平面α所成的角θ.可先求出平面α的法向量n与直线l的方向向量a的夹角.则sin θ=|cos〈n,a〉|.3.求二面角α—l—β的大小θ,可先求出两个平面的法向量n1,n2所成的角.则θ=〈n1,n2〉或π-〈n1,n2〉.)一、填空题(每小题6分,共48分)1.在正方体ABCD—A1B1C1D1中,M是AB的中点,则sin〈DB1→,CM→〉的值等于________.2.已知长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是侧棱BB1的中点,则直线AE与平面A1ED1所成的角的大小为________.3.如图,在正四面体ABCD中,E、F分别是BC和AD的中点,则AE与CF所成的角的余弦值为________.教学效果分析教学过程4.(2011·南通模拟) 如图所示,在长方体ABCD—A1B1C1D1中,已知B1C,C1D与上底面A1B1C1D1所成的角分别为60°和45°,则异面直线B1C和C1D所成的余弦值为________.5.P是二面角α—AB—β棱上的一点,分别在α、β平面上引射线PM、PN,如果∠BPM=∠BPN=45°,∠MPN=60°,那么二面角α—AB—β的大小为________.6.(2011·无锡模拟)已知正四棱锥P—ABCD的棱长都相等,侧棱PB、PD的中点分别为M、N,则截面AMN与底面ABCD所成的二面角的余弦值是________.7.如图,P A⊥平面ABC,∠ACB=90°且P A=AC=BC=a,则异面直线PB与AC所成角的正切值等于________.8.如图,已知正三棱柱ABC—A1B1C1的所有棱长都相等,D是A1C1的中点,则直线AD与平面B1DC所成的角的正弦值为________.二、解答题(共42分)9.(14分) 如图所示,AF、DE分别是⊙O、⊙O1的直径,AD与两圆所在的平面均垂直,AD=8.BC是⊙O的直径,AB=AC=6,OE∥AD.(1)求二面角B-AD-F的大小;(2)求直线BD与EF所成的角的余弦值.10.(14分)(2011·大纲全国,19)如图,四棱锥S-ABCD中,AB∥CD,BC⊥CD,侧面SAB为等边三角形,AB=BC=2,CD=SD=1.(1)证明:SD⊥平面SAB;(2)求AB与平面SBC所成角的正弦值.教学效果分析教学过程11.(14分)(2011·湖北,18)如图,已知正三棱柱ABC-A1B1C1各棱长都是4,E是BC的中点,动点F在侧棱CC1上,且不与点C重合.(1)当CF=1时,求证:EF⊥A1C;(2)设二面角C-AF-E的大小为θ,求tan θ的最小值.自主梳理1.②⎝⎛⎦⎤0,π2③|cos φ|⎪⎪⎪⎪a·b|a|·|b| 2.②⎣⎡⎦⎤0,π2 3.(1)[0,π]教学效果分析自我检测 1.45°或135° 2.90° 3.30° 4.60° 5.60° 课堂活动区例1 解题导引 (1)求异面直线所成的角,用向量法比较简单,若用基向量法求解,则必须选好空间的一组基向量,若用坐标求解,则一定要将每个点的坐标写正确.(2)用异面直线方向向量求两异面直线夹角时,应注意异面直线所成的角的范围是⎝⎛⎦⎤0,π2 解如图所示,以C 为原点,直线CA 、CB 、CC 1分别为x 轴、y 轴、z 轴建立空间直角坐标系.设CA =CB =CC 1=2,则A 1(2,0,2),C (0,0,0),B (0,2,0),D (0,1,2), ∴BD →=(0,-1,2),A 1C →=(-2,0,-2),∴cos 〈BD →,A 1C →〉=BD →·A 1C →|BD →||A 1C →|=-105.∴异面直线BD 与A 1C 所成角的余弦值为105.变式迁移1 解 ∵BA 1→=BA →+BB 1→,AC →=AB →+BC →, ∴BA 1→·AC →=(BA →+BB 1→)·(AB →+BC →) =BA →·AB →+BA →·BC →+BB 1→·AB →+BB 1→·BC →. ∵AB ⊥BC ,BB 1⊥AB ,BB 1⊥BC , ∴BA →·BC →=0,BB 1→·AB →=0, BB 1→·BC →=0,BA →·AB →=-a 2, ∴BA 1→·AC →=-a 2. 又BA 1→·AC →=|BA 1→|·|AC →|·cos 〈BA 1→,AC →〉,∴cos 〈BA 1→,AC →〉=-a 22a ×2a =-12.∴〈BA 1→,AC →〉=120°.∴异面直线BA 1与AC 所成的角为60°.例2 解题导引 在用向量法求直线OP 与α所成的角(O ∈α)时,一般有两种途径:一是直接求〈OP →,OP ′→〉,其中OP ′为斜线OP 在平面α内的射影;二是通过求〈n ,OP →〉进而转化求解,其中n 为平面α的法向量.解设正方形ABCD ,DCEF 的边长为2,以D 为坐标原点,分别以射线DC ,DF ,DA 为x ,y ,z 轴正半轴建立空间直角坐标系如图.则M (1,0,2),N (0,1,0),可得MN →=(-1,1,-2).又DA →=(0,0,2)为平面DCEF 的法向量,可得cos 〈MN →,DA →〉=MN →·DA →|MN →||DA →|=-63.所以MN 与平面DCEF 所成的角的正弦值为|cos 〈MN →,DA →〉|=63.变式迁移2 解 以点B 为原点,BA 、BC 、BE 所在的直线分别为x ,y ,z 轴,建立如图所示的空间直角坐标系,则B (0,0,0),A (2,0,0),C (0,2,0),D (0,2,1),E (0,0,2),F (1,0,1). ∴BD →=(0,2,1),DF →=(1,-2,0). 设平面BDF 的一个法向量为 n =(2,a ,b ),∵n ⊥DF →,n ⊥BD →, ∴⎩⎪⎨⎪⎧n ·DF →=0,n ·BD →=0.即⎩⎪⎨⎪⎧(2,a ,b )·(1,-2,0)=0,(2,a ,b )·(0,2,1)=0. 解得a =1,b =-2.∴n =(2,1,-2). 设AB 与平面BDF 所成的角为θ,则法向量n 与BA →的夹角为π2-θ,∴cos ⎝⎛⎭⎫π2-θ=BA →·n |BA →||n |=(2,0,0)·(2,1,-2)2×3=23, 即sin θ=23,故AB 与平面BDF 所成的角的正弦值为23.例3 解题导引 图中面SCD 与面SBA 所成的二面角没有明显的公共棱,考虑到易于建系,从而借助平面的法向量来求解.解建系如图,则A (0,0,0), D ⎝⎛⎭⎫12,0,0,C (1,1,0), B (0,1,0),S (0,0,1), ∴AS →=(0,0,1),SC →=(1,1,-1),SD →=⎝⎛⎭⎫12,0,-1,AB →=(0,1,0),AD →=⎝⎛⎭⎫12,0,0. ∴AD →·AS →=0,AD →·AB →=0. ∴AD →是面SAB 的法向量,设平面SCD 的法向量为n =(x ,y ,z ),则有n ·SC →=0且n ·SD →=0.即⎩⎪⎨⎪⎧x +y -z =0,12x -z =0.令z =1,则x =2,y =-1.∴n =(2,-1,1).∴cos 〈n ,AD →〉=n ·AD →|n ||AD →|=2×126×12=63.故面SCD 与面SBA 所成的二面角的余弦值为63. 变式迁移3 (1)证明 由题设AB =AC =SB =SC =SA . 连结OA ,△ABC 为等腰直角三角形,所以OA =OB =OC =22SA , 且AO ⊥BC .又△SBC 为等腰三角形,故SO ⊥BC ,且SO =22SA .从而OA 2+SO 2=SA 2,所以△SOA 为直角三角形,SO ⊥AO . 又AO ∩BC =O ,所以SO ⊥平面ABC . (2)解以O 为坐标原点,射线OB 、OA 、OS 分别为x 轴、y 轴、z 轴的正半轴,建立如图的空间直角坐标系O -xyz ,如图.设B (1,0,0),则C (-1,0,0), A (0,1,0),S (0,0,1).SC 的中点M ⎝⎛⎭⎫-12,0,12, MO →=⎝⎛⎭⎫12,0,-12,MA →=⎝⎛⎭⎫12,1,-12, SC →=(-1,0,-1), ∴MO →·SC →=0,MA →·SC →=0.故MO ⊥SC ,MA ⊥SC ,〈MO →,MA →〉等于二面角A —SC —B 的平面角.cos 〈MO →,MA →〉=MO →·MA →|MO →||MA →|=33,所以二面角A —SC —B 的余弦值为33.例4 解题导引 立体几何中开放性问题的解决方式往往是通过假设,借助空间向量建立方程,进行求解.(1)证明作AH ⊥面BCD 于H ,连结BH 、CH 、DH ,则四边形BHCD 是正方形,且AH =1,将其补形为如图所示正方体.以D 为原点,建立如图所示空间直角坐标系.则B (1,0,0),C (0,1,0),A (1,1,1). BC →=(-1,1,0),DA →=(1,1,1), ∴BC →·DA →=0,则BC ⊥AD .(2)解 设平面ABC 的法向量为n 1=(x ,y ,z ),则由n 1⊥BC →知:n 1·BC →=-x +y =0,同理由n 1⊥AC →知:n 1·AC →=-x -z =0, 可取n 1=(1,1,-1),同理,可求得平面ACD 的一个法向量为n 2=(1,0,-1). 由图可以看出,二面角B -AC -D 即为〈n 1,n 2〉,∴cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=1+0+13×2=63.即二面角B -AC -D 的余弦值为63. (3)解 设E (x ,y ,z )是线段AC 上一点, 则x =z >0,y =1,平面BCD 的一个法向量为n =(0,0,1),DE →=(x,1,x ),要使ED 与平面BCD 成30°角,由图可知DE →与n 的夹角为60°,所以cos 〈DE →,n 〉=DE →·n |DE →||n |=x 1+2x 2 =cos 60°=12.则2x =1+2x 2,解得x =22,则CE =2x =1.故线段AC 上存在E 点,且CE =1时,ED 与面BCD 成30°. 变式迁移4(1)证明 方法一 因为EF ∥AB ,FG ∥BC ,EG ∥AC ,∠ACB =90°, 所以∠EGF =90°, △ABC ∽△EFG . 由于AB =2EF , 因此BC =2FG . 连结AF ,由于FG ∥BC ,FG =12BC ,在▱ABCD 中,M 是线段AD 的中点,则AM ∥BC ,且AM =12BC ,因此FG ∥AM 且FG =AM ,所以四边形AFGM 为平行四边形, 因此GM ∥F A .又F A ⊂平面ABFE ,GM ⊄平面ABFE ,方法二 因为EF ∥AB ,FG ∥BC ,EG ∥AC ,∠ACB =90°, 所以∠EGF =90°, △ABC ∽△EFG . 由于AB =2EF , 所以BC =2FG .取BC 的中点N ,连结GN ,因此四边形BNGF 为平行四边形, 所以GN ∥FB .在▱ABCD 中,M 是线段AD 的中点,连结MN , 则MN ∥AB .因为MN ∩GN =N , 所以平面GMN ∥平面ABFE .又GM ⊂平面GMN ,所以GM ∥平面ABFE .(2)解 方法一 因为∠ACB =90°,所以∠CAD =90°. 又EA ⊥平面ABCD ,所以AC ,AD ,AE 两两垂直.分别以AC ,AD ,AE 所在直线为x 轴,y 轴和z 轴,建立如图所示的空间直角坐标系,不妨设AC =BC =2AE =2,则由题意得A (0,0,0),B (2,-2,0),C (2,0,0),E (0,0,1),所以AB →=(2,-2,0),BC →=(0,2,0).又EF =12AB ,所以F (1,-1,1),BF →=(-1,1,1).设平面BFC 的法向量为m =(x 1,y 1,z 1),则m ·BC →=0,m ·BF →=0,所以⎩⎪⎨⎪⎧y 1=0,x 1=z 1,取z 1=1,得x 1=1,所以m =(1,0,1).设平面向量ABF 的法向量为n =(x 2,y 2,z 2),则n ·AB →=0,n ·BF →=0,所以⎩⎪⎨⎪⎧x 2=y 2,z 2=0,取y 2=1,得x 2=1.则n =(1,1,0).所以cos 〈m ,n 〉=m ·n |m |·|n |=12.因此二面角A -BF -C 的大小为60°.方法二 由题意知,平面ABFE ⊥平面ABCD . 取AB 的中点H ,连结CH . 因为AC =BC , 所以CH ⊥AB ,过H 向BF 引垂线交BF 于R ,连结CR ,则CR ⊥BF , 所以∠HRC 为二面角A -BF -C 的平面角. 由题意,不妨设AC =BC =2AE =2,在直角梯形ABFE 中,连结FH ,则FH ⊥AB . 又AB =22,所以HF =AE =1,BH =2,因此在Rt △BHF 中,HR =63.由于CH =12AB =2,所以在Rt △CHR 中,tan ∠HRC =263= 3.因此二面角A -BF -C 的大小为60°. 课后练习区 1.21015 2.90°解析 ∵E 是BB 1的中点且AA 1=2,AB =BC =1, ∴∠AEA 1=90°,又在长方体ABCD -A 1B 1C 1D 1中, A 1D 1⊥平面ABB 1A 1,∴A 1D 1⊥AE ,∴AE ⊥平面A 1ED 1. ∴AE 与面A 1ED 1所成的角为90°. 3.23解析 设四面体的棱长为a , AB →=p ,AC →=q ,AD →=r ,则AE →=12(p +q ),CF →=12(r -2q ).∴AE →·CF →=-12a 2.又|AE →|=|CF →|=32a ,∴cos 〈AE →,CF →〉=AE →,CF →|AE →|·|CF →|=-23.即AE 和CF 所成角的余弦值为23.4.64 5.90° 解析不妨设PM =a ,PN =b ,作ME ⊥AB 于E ,NF ⊥AB 于F , 如图:∵∠EPM =∠FPN =45°,∴PE =22a ,PF =22b ,∴EM →·FN →=(PM →-PE →)·(PN →-PF →) =PM →·PN →-PM →·PF →-PE →·PN →+PE →·PF →=ab cos 60°-a ×22b cos 45°-22ab cos 45°+22a ×22b=ab 2-ab 2-ab 2+ab2=0, ∴EM →⊥FN →,∴二面角α—AB —β的大小为90°. 6.255解析 如图建立空间直角坐标系,设正四棱锥的棱长为2,则PB =2,OB =1,OP =1. ∴B (1,0,0),D (-1,0,0), A (0,1,0),P (0,0,1), M ⎝⎛⎭⎫12,0,12, N ⎝⎛⎭⎫-12,0,12, AM →=⎝⎛⎭⎫12,-1,12, AN →=⎝⎛⎭⎫-12,-1,12, 设平面AMN 的法向量为n 1=(x ,y ,z ),由⎩⎨⎧n ·AM →=12x -y +12z =0,n ·AN →=-12x -y +12z =0,解得x =0,z =2y ,不妨令z =2,则y =1.∴n 1=(0,1,2),平面ABCD 的法向量n 2=(0,0,1),则cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=25=255.7. 2解析 PB →=P A →+AB →,故PB →·AC →=(P A →+AB →)·AC →=P A →·AC →+AB →·AC →=0+a ×2a ×cos 45°=a 2.又|PB →|=3a ,|AC →|=a .∴cos 〈PB →,AC →〉=33,sin 〈PB →,AC →〉=63,∴tan 〈PB →,AC →〉= 2. 8.45解析 不妨设正三棱柱ABC —A 1B 1C 1的棱长为2,建立如图所示的空间直角坐标系,则C (0,0,0),A (3,-1,0),B 1(3,1,2),D ⎝⎛⎭⎫32,-12,2.则CD →=⎝⎛⎭⎫32,-12,2,CB 1→=(3,1,2),设平面B 1DC 的法向量为 n =(x ,y,1),由⎩⎪⎨⎪⎧n ·CD →=0,n ·CB 1→=0,解得n =(-3,1,1).又∵DA →=⎝⎛⎭⎫32,-12,-2,∴sin θ=|cos 〈DA →,n 〉|=45.9.解 (1)∵AD 与两圆所在的平面均垂直, ∴AD ⊥AB ,AD ⊥AF ,故∠BAF 是二面角B —AD —F 的平面角.(2分) 依题意可知,ABFC 是正方形,∴∠BAF =45°. 即二面角B —AD —F 的大小为45°.(5分)(2)以O 为原点,CB 、AF 、OE 所在直线为坐标轴,建立空间直角坐标系(如图所示),则O (0,0,0),A (0,-3 2,0),B (3 2,0,0),D (0,-3 2,8),E (0,0,8),F (0,3 2,0),(8分)∴BD →=(-3 2,-3 2,8), EF →=(0,3 2,-8).cos 〈BD →,EF →〉=BD →·EF →|BD →||EF →|=0-18-64100×82=-8210.(12分)设异面直线BD 与EF 所成角为α,则cos α=|cos 〈BD →,EF →〉|=8210.即直线BD 与EF 所成的角的余弦值为8210.(14分) 10.方法一 (1)证明 取AB 中点E ,连结DE ,则四边形BCDE 为矩形,DE =CB =2,连结SE ,则SE ⊥AB ,SE = 3.又SD =1,故ED 2=SE 2+SD 2,所以∠DSE 为直角,即SD ⊥SE .(4分) 由AB ⊥DE ,AB ⊥SE ,DE ∩SE =E , 得AB ⊥平面SDE , 所以AB ⊥SD .由SD 与两条相交直线AB 、SE 都垂直,所以SD ⊥平面SAB .(7分)(2)解 由AB ⊥平面SDE 知,平面ABCD ⊥平面SDE .(10分)作SF ⊥DE ,垂足为F ,则SF ⊥平面ABCD ,SF =SD ·SE DE =32.作FG ⊥BC ,垂足为G ,则FG =DC =1. 连结SG ,又BC ⊥FG ,BC ⊥SF ,SF ∩FG =F , 故BC ⊥平面SFG ,平面SBC ⊥平面SFG . 作FH ⊥SG ,H 为垂足,则FH ⊥平面SBC .FH =SF ·FG SG =37,则F 到平面SBC 的距离为217.由于ED ∥BC ,所以ED ∥平面SBC ,E 到平面SBC 的距离d 为217.(12分)设AB 与平面SBC 所成的角为α,则sin α=d EB =217,即AB 与平面SBC 所成的角的正弦值为217.(14分)方法二 以C 为坐标原点,射线CD 为x 轴正半轴,建立如图所示的空间直角坐标系C -xyz .设D (1,0,0),则A (2,2,0)、B (0,2,0).(2分) 又设S (x ,y ,z ),则x >0,y >0,z >0.(1)证明 AS →=(x -2,y -2,z ),BS →=(x ,y -2,z ), DS →=(x -1,y ,z ), 由|AS →|=|BS →|得(x -2)2+(y -2)2+z 2=x 2+(y -2)2+z 2, 故x =1. 由|DS →|=1得y 2+z 2=1.①又由|BS →|=2得x 2+(y -2)2+z 2=4, 即y 2+z 2-4y +1=0.②联立①②得⎩⎨⎧y =12,z =32.(4分)于是S (1,12,32),AS →=(-1,-32,32),BS →=(1,-32,32),DS →=(0,12,32).因为DS →·AS →=0,DS →·BS →=0, 故DS ⊥AS ,DS ⊥BS .又AS ∩BS =S ,所以SD ⊥平面SAB .(7分) (2)解 设平面SBC 的法向量a =(m ,n ,p ),则a ⊥BS →,a ⊥CB →,a ·BS →=0,a ·CB →=0.又BS →=(1,-32,32),CB →=(0,2,0),故⎩⎪⎨⎪⎧m -32n +32p =0,2n =0.取p =2得a =(-3,0,2).(10分) 又AB →=(-2,0,0),cos 〈AB →,a 〉=|AB →·a ||AB →||a |=217,所以AB 与平面SBC 所成角的正弦值为217.(14分) 11.(1)证明 建立如图所示的空间直角坐标系,则由已知可得A (0,0,0),B (23,2,0),C (0,4,0),A 1(0,0,4),E (3,3,0),F (0,4,1).(2分)于是CA 1→=(0,-4,4), EF →=(-3,1,1). 则CA 1→·EF →=(0,-4,4)·(-3,1,1)=0-4+4=0, 故EF ⊥A 1C .(8分)(2)解 设CF =λ(0<λ≤4),平面AEF 的一个法向量为m =(x ,y ,z ), 则由(1)得F (0,4,λ).(8分) AE →=(3,3,0),AF →=(0,4,λ),于是由m ⊥AE →,m ⊥AF →可得⎩⎪⎨⎪⎧m ·AE →=0,m ·AF →=0,即⎩⎨⎧3x +3y =0,4y +λz =0.取m =(3λ,-λ,4).又由直三棱柱的性质可取侧面AC 1的一个法向量为n =(1,0,0),于是由θ的锐角可得cos θ=|m ·n ||m |·|n |=3λ2λ2+4,sin θ=λ2+162λ2+4,所以tan θ=λ2+163λ=13+163λ2.(10分) 由0<λ≤4,得1λ≥14,即tan θ≥13+13=63. 故当λ=4,即点F 与点C 1重合时,tan θ取得最小值63.(14分)。

法向量解立体几何专题训练

法向量解立体几何专题训练

法向量解立体几何专题训练一、运用法向量求空间角1、向量法求空间两条异面直线a, b 所成角θ,只要在两条异面直线a, b 上各任取一个向量''AA BB 和,则角<','AA BB >=θ或π-θ,因为θ是锐角,所以cos θ=''''AA BB AA BB ⋅⋅, 不需要用法向量;2、设平面α的法向量为n =x, y, 1,则直线AB 和平面α所成的角θ的正弦值为sin θ=cos2π-θ = |cos<AB , n >| = AB AB n n•• 3、 设二面角的两个面的法向量为12,n n ,则<12,n n >或π-<12,n n >是所求角;这时要借助图形来判断所求角为锐角还是钝角,来决定<12,n n >是所求,还是π-<12,n n >是所求角; 二、运用法向量求空间距离 1、求两条异面直线间的距离设异面直线a 、b 的公共法向量为(,,)n x y z =,在a 、b 上任取一点 A 、B,则异面直线a 、b 的距离d =AB ·cos ∠BAA '=||||AB n n • 2、求点到面的距离求A 点到平面α的距离,设平面α的法向量法为(,,1)n x y =,在α内任取一点B,则A 点到平面α的距离为d =||||AB n n •,n 的坐标由n 与平面α内的两个不共线向量的垂直关系,得到方程组类似于前面所述, 若方程组无解,则法向量与XOY 平面平行,此时可改设(1,,0)n y =三、证明线面、面面的平行、垂直关系设平面外的直线a 和平面α、β,两个面α、β的法向量为12,n n ,则1a//a n α⇔⊥ 1a a//n α⊥⇔12////n n αβ⇔ 12n n αβ⊥⇔⊥四、应用举例:例1:如右下图,在长方体ABCD —A 1B 1C 1D 1中,已知AB= 4, AD =3, AA 1= 2. E 、F 分别是线段AB 、BC 上的点,且EB= FB=1. 1 求二面角C —DE —C 1的正切值; 2 求直线EC 1与FD 1所成的余弦值.解:I 以A 为原点,1,,AB AD AA 分别为x 轴,y 轴,z 轴的正向建立空间直角坐标系,则D0,3,0、D 10,3,2、E3,0,0、F4,1,0、C 14,3,2 于是,11(3,3,0),(1,3,2),(4,2,2)DE EC FD =-==- 设法向量(,,2)n x y =与平面C 1DE 垂直,则有13301320n DE x y x y x y z n EC ⊥-=⇒⇒==-++=⊥⎫⎫⎪⎬⎬⎭⎪⎭11111(1,1,2),(0,0,2),cos 3||||1tan 2n AA CDE n AA C DE C n AAn AA θθθ∴=--=∴--•-===⨯∴=向量与平面垂直与所成的角为二面角的平面角 II 设EC 1与FD 1所成角为β,则1111cos 14||||1EC FD EC FD β•===⨯例2:高考辽宁卷17如图,已知四棱锥P-ABCD,底面ABCD 是菱形,∠DAB=600,PD⊥平面ABCD,PD=AD,点E 为AB 中点,点F 为PD 中点;1证明平面PED ⊥平面PAB ; 2求二面角P-AB-F 的平面角的余弦值 证明:1∵面ABCD 是菱形,∠DAB=600,∴△ABD 是等边三角形,又E 是AB 中点,连结BD ∴∠EDB=300,∠BDC=600,∴∠EDC=900, 如图建立坐标系D-ECP,设AD=AB=1,则PF=FD=12∴P0,0,1,E2,0,0,B2,12,0∴PB=32,12,-1,PE=2,0,-1,平面PED的一个法向量为DC=0,1,0 ,设平面PAB的法向量为n=x, y, 1由11(,,1),1)01022(,,1)1)010x y x y xn PBn PE yx y x⎧⎧•-=--=⎪⎧=⊥⎪⎪⎪⇒⇒⇒⎨⎨⎨⊥⎪⎪⎪⎩=•-=-=⎩⎪⎩∴n∵DC·n=0 即DC⊥n∴平面PED⊥平面PAB2解:由1知:平面PAB的法向量为n0, 1, 设平面FAB的法向量为n1=x, y, -1, 由1知:F0,0,12,FB,12,-12,FE,0,-12,由111111(,,1)(,)00222222110(,,1))0022x y x y xn FBn FE yx y x⎧⎧-•-=-+=⎪⎧=⊥⎪⎪⎪⎪⇒⇒⇒⎨⎨⎨⊥⎪⎪⎪⎩=-•-=+=⎩⎪⎩∴n1∴二面角P-AB-F的平面角的余弦值cosθ= |cos<n, n1>| =11n5714nnn•=•例3:在棱长为4的正方体ABCD-A1B1C1D1中,O是正方形A1B1C1D1的中心,点P在棱CC1上,且CC1=4CP.Ⅰ求直线AP与平面BCC1B1所成的角的大小结果用反三角函数值表示;Ⅱ设O点在平面D1AP上的射影是H,求证:D1H⊥AP;Ⅲ求点P到平面ABD1的距离.解: Ⅰ如图建立坐标系D-ACD1, ∵棱长为4 ∴A4,0,0,B4,4,0,P0,4,1∴AP = -4, 4, 1 , 显然DC=0,4,0为平面BCC1B1的一个法向量,∴直线AP与平面BCC1B1所成的角θ的正弦值sinθ= |cos<AP,DC >|=22216433334414=++• ∵θ为锐角,∴直线AP 与平面BCC 1B 1所成的角θ为arcsin 43333Ⅲ 设平面ABD 1的法向量为n =x, y, 1,∵AB =0,4,0,1AD =-4,0,4由n ⊥AB ,n ⊥1AD 得0440y x =⎧⎨-+=⎩ ∴ n =1, 0,1,∴点P 到平面ABD 1的距离 d =322AP n n•=例4:在长、宽、高分别为2,2,3的长方体ABCD-A 1B 1C 1D 1中,O 是底面中心,求A 1O 与B 1C 的距离;解:如图,建立坐标系D-ACD 1,则O1,1,0,A 12,2,3,C0,2,0∴1(1,1,3)AO =-- 1(2,0,3)B C =-- 11(0,2,0)A B = 设A 1O 与B 1C 的公共法向量为(,,1)n x y =,则113(,,1)(1,1,3)0302(,,1)(2,0,3)023032x n AO x y x y x y x n B C y ⎧=-⎧⎪⊥•--=-+-=⎧⎧⎪⎪⇒⇒⇒⎨⎨⎨⎨•--=--=⊥⎩⎩⎪⎪⎩=⎪⎩ ∴ 33(,,1)22n =-∴ A 1O 与B 1C 的距离为d =()1122330,2,0,,122||332211||11331222A B n n ⎛⎫•-⎪•⎝⎭===⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭例5:在棱长为1的正方体ABCD-A 1B 1C 1D 1中,E 、F 分别是B 1C 1、C 1D 1的中点,求A 1到面BDFEABCDA 1B 1D 1C 1O的距离;解:如图,建立坐标系D-ACD 1,则B1,1,0,A 11,0,1,E12,1,1 ∴(1,1,0)BD =-- 1(,0,1)2BE =- 1(0,1,1)A B =-设面BDFE 的法向量为(,,1)n x y =,则(,,1)(1,1,0)002112(,,1)(,0,1)01022x y x y n BD x y x y x n BE •--=--=⎧⎧⎧⊥=⎧⎪⎪⎪⇒⇒⇒⎨⎨⎨⎨=-•-=-+=⊥⎩⎪⎪⎪⎩⎩⎩ ∴ (2,2,1)n =-∴ A 1到面BDFE 的距离为d =()()()1220,1,12,2,1|||3|13||221A B n n -•-•-===+-+新课标高二数学空间向量与立体几何测试题1一、选择题1.在正三棱柱ABC —A 1B 1C 1中,若AB =2BB 1,则AB 1与C 1B 所成的角的大小为A .60°B .90°C .105°D .75°2.如图,ABCD —A 1B 1C 1D 1是正方体,B 1E 1=D 1F 1=411B A ,则BE 1与DF 1所成角的余弦值是A .1715 B .21 C .178 D .23 3.如图,A 1B 1C 1—ABC 是直三棱柱,∠BCA=90°,点D 1、F 1分别是A 1B 1、A 1C 1的中点,若BC=CA=CC 1,则BD 1与AF 1所成角的余弦值是A .1030 B .21 C .1530 D .1015 4.正四棱锥S ABCD -的高2SO =,底边长2AB =,则异面直线BD 和SC 之间的距离图图FEA BCDA 1B 1D 1C 1AA 1DCB B 1C 1图A .515 B .55 C .552 D .105 5.已知111ABC A B C -是各条棱长均等于a 的正三棱柱,D 是侧棱1CC 的中点.点1C 到平面1AB D 的距离A .a 42B .a 82C .a 423D .a 226.在棱长为1的正方体1111ABCD A B C D -中,则平面1AB C 与平面11A C D 间的距离A .63 B .33 C .332 D .23 7.在三棱锥P -ABC 中,AB ⊥BC,AB =BC =21PA,点O 、D 分别是AC 、PC 的中点,OP ⊥底面ABC,则直线OD 与平面PBC 所成角的正弦值A .621B .338 C .60210D .302108.在直三棱柱111C B A ABC -中,底面是等腰直角三角形, 90=∠ACB ,侧棱21=AA ,D,E分别是1CC 与B A 1的中点,点E 在平面ABD 上的射影是ABD ∆的重心G .则B A 1与平面ABD 所成角的余弦值A .32 B .37C .23 D .73 9.正三棱柱111C B A ABC -的底面边长为3,侧棱3231=AA ,D 是CB 延长线上一点,且BC BD =,则二面角B AD B --1的大小A .3π B .6πC .65πD .32π10.正四棱柱1111D C B A ABCD -中,底面边长为22,侧棱长为4,E,F 分别为棱AB,CD 的中点,G BD EF =⋂.则三棱锥11EFD B -的体积VA .66B .3316 C .316D .16二、填空题11.在正方体1111ABCD A B C D -中,E 为11A B 的中点,则异面直线1D E 和1BC 间的距离 . 12. 在棱长为1的正方体1111ABCD A B C D -中,E 、F 分别是11A B 、CD 的中点,求点B 到截面1AEC F 的距离 .13.已知棱长为1的正方体ABCD -A 1B 1C 1D 1中,E 、F 分别是B 1C 1和C 1D 1的中点,点A 1到平面DBEF 的距离 .14.已知棱长为1的正方体ABCD -A 1B 1C 1D 1中,E 是A 1B 1的中点,求直线AE 与平面ABC 1D 1所成角的正弦值 . 三、解答题 15.已知棱长为1的正方体ABCD -A 1B 1C 1D 1,求平面A 1BC 1与平面ABCD 所成的二面角的大小16.已知棱长为1的正方体ABCD -A 1B 1C 1D 1中,E 、F 、M 分别是A 1C 1、A 1D 和B 1A 上任一点,求证:平面A 1EF ∥平面B 1MC .17.在四棱锥P —ABCD 中,底面ABCD 是一直角梯形,∠BAD=90°,AD ∥BC,AB=BC=a,AD=2a,且PA ⊥底面ABCD,PD 与底面成30°角. 1若AE ⊥PD,E 为垂足,求证:BE ⊥PD ; 2求异面直线AE 与CD 所成角的余弦值.18.已知棱长为1的正方体AC 1,E 、F 分别是B 1C 1、C 1D 的中点. 1求证:E 、F 、D 、B 共面;2求点A 1到平面的BDEF 的距离; 3求直线A 1D 与平面BDEF 所成的角.19.已知正方体ABCD-A1B1C1D1的棱长为2,点E为棱AB的中点,求:ⅠD1E与平面BC1D所成角的大小;Ⅱ二面角D-BC1-C的大小;Ⅲ异面直线B1D1与BC1之间的距离.高二数学空间向量与立体几何专题训练2一、选择题1.向量a=2x,1,3,b=1,-2y,9,若a与b共线,则A.x=1,y=1 B.x=错误!,y=-错误!C.x=错误!,y=-错误! D.x=-错误!,y=错误! 2.已知a=-3,2,5,b=1,x,-1,且a·b=2,则x的值是A.6 B.5 C.4 D.33.设l1的方向向量为a=1,2,-2,l2的方向向量为b=-2,3,m,若l1⊥l2,则实数m的值为A.3 B.2 C.14.若a,b均为非零向量,则a·b=|a||b|是a与b共线的A.必要不充分条件 B.充分不必要条件C.充分必要条件 D.既不充分也不必要条件5.在△ABC中,错误!=c,错误!=b.若点D满足错误!=2错误!,则错误!=b+错误!c 错误!c-错误!b 错误!b-错误!c 错误!b+错误!c6.已知a,b,c是空间的一个基底,设p=a+b,q=a-b,则下列向量中可以与p,q一起构成空间的另一个基底的是A.a B.b C.c D.以上都不对7.已知△ABC的三个顶点A3,3,2,B4,-3,7,C0,5,1,则BC边上的中线长为A.2 B.3 C.错误!错误!8.与向量a=2,3,6共线的单位向量是A.错误!,错误!,错误! B.-错误!,-错误!,-错误!C.错误!,-错误!,-错误!和-错误!,错误!,错误! D.错误!,错误!,错误!和-错误!,-错误!,-错误!9.已知向量a=2,4,x,b=2,y,2,若|a|=6且a⊥b,则x+y为A.-3或1 B.3或-1 C.-3 D.110.已知a=x,2,0,b=3,2-x,x2,且a与b的夹角为钝角,则实数x的取值范围是A.x>4 B.x<-4 C.0<x<4 D.-4<x<0.11.已知空间四个点A1,1,1,B-4,0,2,C-3,-1,0,D-1,0,4,则直线AD与平面ABC所成的角为A.30° B.45° C.60° D.90°12.已知二面角α-l-β的大小为50°,P为空间中任意一点,则过点P且与平面α和平面β所成的角都是25°的直线的条数为A.2 B.3 C.4 D.5二、填空题13.已知{i,j,k}为单位正交基底,且a=-i+j+3k,b=2i-3j-2k,则向量a+b与向量a-2b的坐标分别是________;________.14.在△ABC中,已知错误!=2,4,0,错误!=-1,3,0,则∠ABC=________.15.正方体ABCD-A1B1C1D1中,面ABD1与面B1BD1所夹角的大小为________.16.在下列命题中:①若a,b共线,则a,b所在的直线平行;②若a,b所在的直线是异面直线,则a,b一定不共面;③若a,b,c三向量两两共面,则a,b,c三向量一定也共面;④已知三向量a,b,c,则空间任意一个向量p总可以唯一表示为p=xa+yb+zc,其中不正确的命题为________.三、解答题17.如图所示,PD垂直于正方形ABCD所在的平面,AB=2,PC与平面ABCD所成角是45°,F 是AD的中点,M是PC的中点.求证:DM∥平面PFB.18.如图,正四棱柱ABCD—A1B1C1D1中,AA1=2AB=4,点E在C1C上,且C1E=3EC.1证明A1C⊥平面BED;2求二面角A1-DE-B的余弦值.19.正方体ABCD-A1B1C1D1中,E,F分别是BB1,CD的中点.1证明:平面AED⊥平面A1FD1;2在AE上求一点M,使得A1M⊥平面DAE.高考真题能力提升1.如图,平面PAC⊥平面ABC,ABC∆是以AC为斜边的等腰直角三角形,,,E F O分别为PA,PB,AC的中点,16AC=,10PA PC==.I设G是OC的中点,证明://FG平面BOE;II证明:在ABO∆内存在一点M,使FM⊥平面BOE,并求点M到OA,OB的距离.2.如图,在三棱锥P ABC -中,PA ⊥底面,,60,90ABC PA AB ABC BCA ︒︒=∠=∠=, 点D ,E 分别在棱,PB PC 上,且//DE BCⅠ求证:BC ⊥平面PAC ;Ⅱ当D 为PB 的中点时,求AD 与平面PAC 所成的角的大小; Ⅲ是否存在点E 使得二面角A DE P --为直二面角 并说明理由.3.如图,四棱锥P ABCD -的底面是正方形,PD ABCD ⊥底面,点E 在棱PB 上.Ⅰ求证:平面AEC PDB ⊥平面;Ⅱ当2PD AB =且E 为PB 的中点时,求AE 与平面PDB 所成的角的大小.4.在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥平面ABCD ,4PA AD ==,2AB =. 以AC 的中点O 为球心、AC 为直径的球面交PD 于点M ,交PC 于点N . 1求证:平面ABM ⊥平面PCD ; 2求直线CD 与平面ACM 所成的角的大小; 3求点N 到平面ACM 的距离.yz DMCB PA NONMA BDCO5. 如图,在四棱锥O ABCD -中,底面ABCD 四边长为1的菱形,4ABC π∠=,OA ABCD ⊥底面, 2OA =,M 为OA 的中点,N 为BC 的中点Ⅰ证明:直线MN OCD 平面‖;Ⅱ求异面直线AB 与MD 所成角的大小; Ⅲ求点B 到平面OCD 的距离;6. 如图,正三棱柱ABC -A 1B 1C 1的所有棱长都为2,D 为CC 1中点; Ⅰ求证:AB 1⊥面A 1BD ;Ⅱ求二面角A -A 1D -B 的大小; Ⅲ求点C 到平面A 1BD 的距离;7.如图所示,AF 、DE 分别是⊙O 、⊙O 1的直径.AD 与两圆所在的平面均垂直,AD =8,BC 是⊙O 的直径,AB =AC =6,OE Ⅰ求二面角B —AD —F 的大小;Ⅱ求直线BD 与EF 所成的角.8.如图,在长方体ABCD —A 1B 1C 1D 1中,AD=AA 1=1,AB=2,点E 在棱AB 上移动.1证明:D 1E ⊥A 1D ;2当E 为AB 的中点时,求点E 到面ACD 1的距离;3AE 等于何值时,二面角D 1—EC —D 的大小为4π.9. 如图,边长为2的等边△PCD 所在的平面垂直于矩形ABCD 所在的平面,BC =22, M 为BC 的中点Ⅰ证明:AM ⊥PM ;Ⅱ求二面角P -AM -D 的大小; Ⅲ求点D 到平面AMP 的距离;10.如图,已知AB ⊥平面ACD ,DE ⊥平面ACD ,△ACD 为等边三角形,2AD DE AB ==,F 为CD 的中点. 1 求证://AF 平面BCE ; 2 求证:平面BCE ⊥平面CDE ; 3 求直线BF 和平面BCE 所成角的正弦值.1A C M PD C B A A BCD EF11. 如图,已知等腰直角三角形RBC ,其中∠RBC =90º,2==BC RB .点A 、D 分别是RB 、RC 的中点,现将△RAD 沿着边AD 折起到△PAD 位置,使PA ⊥AB ,连结PB 、PC . 1求证:BC ⊥PB ;2求二面角P CD A --的平面角的余弦值.12. 如图,正三棱柱ABC -111C B A 的底面边长是2,D 是侧棱C 1C 的中点,直线AD 与侧面C C BB 11所成的角为45°.1 求二面角A-BD-C 的大小; 2求点C 到平面ABD 的距离.13. 如图,P 、O 分别是正四棱柱1111ABCD A B C D -上、下底面的中心,E 是AB 的中点,1AB kAA =. Ⅰ求证:1A E ∥平面PBC ;Ⅱ当k =,求直线PA 与平面PBC 所成角的大小;Ⅲ 当k 取何值时,O 在平面PBC 内的射影恰好为PBC ∆ABCD1A 1B 1C A 1C14. 如图,在正四棱锥P ABCD -中,PA AB a ==,点E 在棱PC 上.Ⅰ问点E 在何处时,//PA EBD 平面,并加以证明; Ⅱ当//PA EBD 平面时,求点A 到平面EBD 的距离; Ⅲ求二面角C PA B --的大小.15.如图所示,在长方体1111ABCD A B C D -中,AB=AD=1,AA 1=2,M 是棱CC 1的中点 Ⅰ求异面直线A 1M 和C 1D 1所成的角的正切值; Ⅱ证明:平面ABM ⊥平面A 1B 1M 116.已知三棱锥P -ABC 中,PA ⊥ABC,AB ⊥AC,PA=AC=½AB,N 为AB 上一点,AB=4AN,M,S 分别为PB,BC 的中点. Ⅰ证明:CM ⊥SN ;Ⅱ求SN 与平面CMN 所成角的大小.EPDCBA17.如图,四棱锥S-ABCD 中,SD ⊥底面ABCD,AB ⊥⊥Ⅰ证明:SE=2EB ; Ⅱ求二面角A-DE-C 的大小 .18.如图,在多面体ABCDEF 中,四边形ABCD 是正方形,EF ∥AB ,EF FB ⊥,2AB EF =,90BFC ∠=︒,BF FC =,H 为BC 的中点;ABCDEFHⅠ求证:FH ∥平面EDB ;Ⅱ求证:AC ⊥平面EDB ; Ⅲ求二面角B DE C --的大小;19.如图,在直三棱柱111ABC A B C -中,13,4,5,4AC BC AB AA ==== 1求证1;AC BC ⊥2在AB 上是否存在点D 使得1?AC CD ⊥ 3在AB 上是否存在点D 使得11//A C CDB 平面A1C BCD1A 1B20、如图,在四棱锥P —ABCD 中,PD ⊥底面ABCD,底面ABCD 为正方形,PD=DC,E 、F 分别是AB 、PB 的中点. Ⅰ求证:EF ⊥CD ;Ⅱ在平面PAD 内求一点G,使GF ⊥平面PCB,并证明你的结论; Ⅲ求DB 与平面DEF 所成角的大小.21、如图, 在直三棱柱ABC -A 1B 1C 1中,∠ACB=90°,CB=1,CA=3, AA 1=6,M 为侧棱CC 1上一点, 1AM BA ⊥. 1求证: AM ⊥平面1A BC ; 2求二面角B -AM -C 的大小; 3求点C 到平面ABM 的距离.ABCABCM22、如图,在直三棱柱ABC—A1B1C1中,∠ACB=90°,AC=BC=CC1=2.I证明:AB1⊥BC1;II求点B到平面AB1C1的距离.III求二面角C1—AB1—A1的大小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A B C D PQ 向量法求空间角1.(本小题满分10分)在如图所示的多面体中,四边形ABCD为正方形,四边形ADPQ 是直角梯形,DP AD ⊥,⊥CD 平面ADPQ ,DP AQ AB 21==.(1)求证:⊥PQ 平面DCQ ; (2)求平面BCQ 与平面ADPQ 所成的锐二面角的大小.2.(满分13分)如图所示,正四棱锥P -中,O 为底面正方形的中心,侧棱与底面所成的角的正切值为26.(1)求侧面与底面所成的二面角的大小;D B A(2)若E是的中点,求异面直线与所成角的正切值;(3)问在棱上是否存在一点F,使⊥侧面,若存在,试确定点F的位置;若不存在,说明理由.3.(本小题只理科做,满分14分)如图,已知AB⊥平面ACD,DE//AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点.(1)求证:AF//平面BCE;(2)求证:平面BCE⊥平面CDE;(3)求平面BCE与平面ACD所成锐二面角的大小.4.(本小题满分12分)如图,在四棱锥ABCDP-中,PD⊥底面ABCD,且底面ABCD为正方形,G,==分别为,2AD,FEPD,的中点.PC,PDCB(1)求证://AP平面EFG;(2)求平面GEF和平面DEF的夹角.5.如图,在直三棱柱111ABC A B C -中,平面1A BC ⊥ 侧面11A ABB 且12AA AB ==.(Ⅰ)求证:AB BC ⊥;(Ⅱ)若直线与平面1A BC 所成的角为6π,求锐二面角1A A C B --的大小.HPGFE DCB6.如图,四边形ABCD 是正方形,EA ⊥平面ABCD ,EA P PD ,2AD PD EA ==,F ,G , H 分别为PB ,EB ,PC 的中点.(1)求证:FG P 平面PED ;(2)求平面FGH 与平面PBC 所成锐二面角的大小.参考答案1.(1)详见解析;(2)4π 【解析】试题分析:(1)根据题中所给图形的特征,不难想到建立空间直角坐标,由已知,DA ,DP ,DC 两两垂直,可以D 为原点,DA 、DP 、DC 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系.表示出图中各点的坐标:设a AB =,则)0,0,0(D ,),0,0(a C ,)0,,(a a Q ,)0,2,0(a P ,则可表示出),0,0(a DC =,)0,,(a a DQ =,)0,,(a a PQ -=,根据数量积为零与垂直的充要条件进行证明,由0=⋅,0=⋅,故⊥,⊥,即可证明;(2)首先求出两个平面的法向量,其中由于⊥平面ADPQ ,所以可取平面ADPQ 的一个法向量为)1,0,0(1=n ρ;设平面BCQ 的一个法向量为),,(2z y x n =ρ,则02=⋅n ρ,02=⋅n ρ,故⎩⎨⎧=+--=+-,0,0az ay ax az ay 即⎩⎨⎧=+--=+-,0,0z y x z y 取1==z y ,则0=x ,故)1,1,0(2=n ρ,转化为两个法向量的夹角,设1n ρ与2n ρ的夹角为θ,则2221||||cos 2121==⋅=n n n n ρρρρθ.即可求出平面BCQ 与平面ADPQ 所成的锐二面角的大小.试题解析:(1)由已知,DA ,DP ,DC 两两垂直,可以D 为原点,DA 、DP 、DC 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系.设a AB =,则)0,0,0(D ,),0,0(a C ,)0,,(a a Q ,)0,2,0(a P , 故),0,0(a =,)0,,(a a =,)0,,(a a -=,因为0=⋅PQ DC ,0=⋅PQ DQ ,故PQ DC ⊥,PQ DQ ⊥, 即PQ DC ⊥,PQ DQ ⊥, 又DC DQ D =I所以,⊥PQ 平面DCQ .(2)因为⊥DC 平面ADPQ ,所以可取平面ADPQ 的一个法向量 为)1,0,0(1=n ρ,点B 的坐标为),0,(a a ,则),,0(a a QB -=,),,(a a a QC --=,设平面BCQ 的一个法向量为),,(2z y x n =ρ,则02=⋅QB n ρ,02=⋅QC n ρ, 故⎩⎨⎧=+--=+-,0,0az ay ax az ay 即⎩⎨⎧=+--=+-,0,0z y x z y 取1==z y ,则0=x , 故)1,1,0(2=n ρ.设1n ρ与2n ρ的夹角为θ,则2221||||cos 2121==⋅=n n n n ρρρρθ.所以,平面BCQ 与平面ADPQ 所成的锐二面角的大小为4π考点:1.空间向量的应用;2.二面角的计算;3.直线与平面的位置关系2.(1)60︒; (2)5102; (3)F 是的4等分点,靠近A 点的位置.【解析】试题分析:(1)取中点M ,连接,,由正四棱锥的性质知∠为所求二面角P --O 的平面角,∠为侧棱与底面所成的角∴∠=26,设=a ,则=22a ,=23a ,12a , ∠=3,∠=60°; (2)依题意连结,,则∥ ,故∠为异面直线与所成的角,由正四棱锥的性质易证⊥平面,故AOE ∆为直角三角形,=21=2122DO PO +=45a ∴∠=EO AO =5102;(3)延长交于N ,取中点G ,连,,,易得⊥平面,故平面⊥平面,而△为正三角形,易证⊥平面,取的中点F,连,则四边形为平行四边形,从而⊥平面, F 是的4等分点,靠近A 点的位置.试题解析:(1)取中点M ,连接,,依条件可知⊥,⊥,则∠为所求二面角P --O 的平面角 (2分)∵⊥面,∴∠为侧棱与底面所成的角. ∴∠=26设=a ,=22a ,∴ =·∠=23a , ∠=MO PO =3.∴∠=60°. (4分)M DB A CO EP(2)连接,, ∵∥,∴∠为异面直线与所成的角. (6分) ∵⊥,⊥,∴⊥平面.又⊂平面, ∴ ⊥. ∵=21=2122DO PO +=45a , ∴∠=EO AO =5102. (8分)(3)延长交于N ,取中点G ,连,,.∵⊥,⊥,∴⊥平面∴平面⊥平面. (10分)又=,∠=60°,∴△为正三角形.∴⊥.又平面 ∩平面=,∴⊥平面. (12分) ∴F 是的4等分点,靠近A 点的位置 (13分) M D B A CO EPM D B A CO E PN GF考点:立体几何的综合问题3.(1)见解析;(2)见解析;(3)45︒. 【解析】试题分析:(1)取中点P ,连接、,根据中位线定理可知,且且.21DE ,而,且.21DE 则为平行四边形,则,⊄平面,⊂平面,满足线面平行的判定定理,从而证得结论;(2)根据⊥平面,,则⊥平面,又⊂平面,根据线面垂直的性质可知DE AF AF CD CD DE D ⊥⊥=I.又,,满足线面垂直的判定定理,证得⊥平面,又,则⊥平面,⊂平面,根据面面垂直的判定定理可证得结论;(3)由(2),以F 为坐标原点,,,所在的直线分别为x ,y ,z 轴建立空间直角坐标系F ﹣.设2,根据线面垂直求出平面的法向量n ,而(0,0,1)为平面的法向量,设平面与平面所成锐二面角为α,根据||cos ||||m n m n α⋅=⋅可求出所求.试题解析:(1)解:取中点P,连结、, ∵F 为的中点,∴,且.21DE又,且.21DE ∴,且,∴为平行四边形,∴又∵AF ⊄平面⊂平面, ∴平面(2)∵△为正三角形,∴AF CD ⊥. ∵⊥平面,∴⊥平面,又⊂平面, ∴⊥.又⊥∩, ∴⊥平面又,∴⊥平面.又∵⊂平面, ∴平面⊥平面(3)法一、由(2),以F 为坐标原点, 所在的直线分别为轴(如图),建立空间直角坐标系F —.设2, 则C (0,—1,0),).2,1,0(,),1,0,3(E B -设(,,)n x y z =v为平面的法向量,300,0,220x y z n CB n CE y z ⎧++=⎪∴⋅=⋅=∴⎨+=⎪⎩v u u u v v u u u v ,令1,则(0,1,1)n =-v显然,)1,0,0(=m 为平面的法向量. 设面与面所成锐二面角为,α则||cos||||m n m n α⋅===⋅∴ο45=α.即平面与平面所成锐二面角为45︒ 法二、延长、,设、交于一点O,连结. 则面EBC I 面DAC CO =.由是EDO ∆的中位线,则AD DO 2=. 在OCD ∆中22OD AD AC ==Q , 060=∠ODC .CD OC ⊥,又DE OC ⊥. OC ∴⊥ 面,ECD 而⊂面,为所求二面角的平面角ECD CE OC ∠∴⊥∴,在Rt EDC ∆中,ED CD =Q ,045=∠∴ECD 即平面与平面所成锐二面角为45︒.考点:与二面角有关的立体几何综合题;直线与平面平行的判定;平面与平面垂直的判定. 4.证明见解析 【解析】试题分析::(1)利用已知的线面垂直关系建立空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键.(2)证明线面平行,需证线线平行,只需要证明直线的方向向量与平面的法向量垂直;(3)把向量夹角的余弦值转化为两平面法向量夹角的余弦值;(4)空间向量将空间位置关系转化为向量运算,应用的核心是要充分认识形体特征,建立恰当的坐标系,实施几何问题代数化.同时注意两点:一是正确写出点、向量的坐标,准确运算;二是空间位置关系中判定定理与性质定理条件要完备.试题解析:(1)如图,以D 为原点,以,,DA DC DP u u u r u u u r u u u r为方向向量建立空间直角坐标系,xyz D -则)0,0,2(),1,0,0(),1,1,0(),0,2,1(),0,2,0(),2,0,0(A F E G C P .)11,1(),0,1,0(),2,0,2(-=-=-=∴.设平面EFG 的法向量为(,,)n x y z =r0,0,n EF n EG ⎧⋅=⎪∴⎨⋅=⎪⎩r u u u r r u u u r 即⎩⎨⎧=-+=-.0,0z y x y ⎩⎨⎧==∴.0,y z x 令1=x 则(1,0,1)n =r. 1(2)00120,.n AP n AP ⋅=⨯-+⨯+⨯=∴⊥r u u u r r u u u r Q又⊄AP 平面//,AP EFG ∴平面.EFG(2)Θ底面ABCD 是正方形,,DC AD ⊥∴又⊥PD Θ平面ABCD.AD PD ⊥∴又D CD PD =I ,AD ∴⊥平面PCD∴向量是平面PCD 的一个法向量,)0,0,2(=又由(1)知平面EFG 的法向量(1,0,1)n =r.cos ,2||||DA n DA n DA n ⋅∴<>===⋅u u u r ru u u r r u u u r r∴二面角D EF G --的平面角为045.考点:(1)证明直线与平面平行;(2)利用空间向量解决二面角问题.5.(Ⅰ)详见解析;(Ⅱ)3π. 【解析】试题分析:(Ⅰ)取1A B 的中点D ,连接,由已知条件推导出⊥平面1A BC ,从而AD BC ⊥,由线面垂直得1AA BC ⊥.由此能证明AB BC ⊥.(Ⅱ)方法一:连接,由已知条件得ACD ∠即为直线AC 与平面1A BC 所成的角,AED ∠即为二面角1A A C B --的一个平面角,由此能求出二面角1A A C B --的大小.解法二(向量法):由(1)知AB BC ⊥且1BB ABC ⊥底面,所以以点B 为原点,以1BC BA BB 、、所在直线分别为,,x y z 轴建立空间直角坐标系B xyz -,设BC a =,则(0,2,0)A ,(0,0,0)B ,(,0,0)C a ,1(0,2,2)A ,(,0,0)BC a =u u u r,1(0,2,2)BA =u u u r ,(,2,0)AC a =-u u u r,1(0,0,2)AA =u u u r,求出平面1A BC的一个法向量1(,,)n x y z =u r ,设直线AC 与平面1A BC 所成的角为θ,则6πθ=得12121sin 6242AC n AC n a π-===+u u u r u r g u u u r u r,解得2a =,即(2,2,0)AC =-u u u r ,求出平面1A AC 的一个法向量为2(1,1,0)n =u u r,设锐二面角1A A C B --的大小为α,则1212121cos cos ,2n n n n n n α=<>==u r u u ru r u u r g u r u u r ,且(0,)2πα∈, 即可求出锐二面角1A A C B --的大小.试题解析:解(1)证明:如图,取1A B 的中点D ,连接AD ,因1AA AB =,则1AD A B ⊥由平面1A BC ⊥侧面11A ABB ,且平面1A BC I 侧面11A ABB 1A B =, 得1AD A BC ⊥平面,又BC ⊂平面1A BC , 所以AD BC ⊥. 因为三棱柱111ABC A B C —是直三棱柱,则1AA ABC⊥底面,所以1AA BC ⊥.又1=AA AD A I ,从而BC ⊥侧面11A ABB ,又AB ⊂侧面11A ABB ,故AB BC ⊥. 6分解法一:连接CD ,由(1)可知1AD A BC ⊥平面,则CD 是AC 在1A BC 平面内的射影∴ ACD ∠即为直线AC 与1A BC 平面所成的角,则=6ACD π∠ 在等腰直角1A AB ∆中,12AA AB ==,且点D 是1A B 中点,∴112AD A B ==且=2ADC π∠,=6ACD π∠∴AC =过点A 作1AE A C ⊥于点E ,连DE ,由(1)知1AD A BC ⊥平面,则1AD A C ⊥,且AE AD A =I∴ AED ∠即为二面角1A A C B --的一个平面角且直角1A AC ∆中:113A A AC AE AC ⋅===,又AD ,=2ADE π∠ ∴sin =AD AED AE ∠==且二面角1A A C B --为锐二面角 ∴ =3AED π∠,即二面角1A A C B --的大小为3π12分解法二(向量法):由(1)知AB BC ⊥且1BB ABC ⊥底面,所以以点B 为原点,以1BC BA BB 、、所在直线分别为,,x y z 轴建立空间直角坐标系B xyz -,如图所示,且设BC a =,则(0,2,0)A ,(0,0,0)B ,(,0,0)C a ,1(0,2,2)A ,(,0,0)BC a =u u u r ,1(0,2,2)BA =u u u r ,(,2,0)AC a =-u u u r,1(0,0,2)AA =u u u r 设平面1A BC 的一个法向量1(,,)n x y z =u r ,由1BC n ⊥u u u r u r , 11BA n ⊥u u u r u r得:220xa y z =⎧⎨+=⎩ 令1y = ,得 0,1x z ==-,则1(0,1,1)n =-u r 设直线AC 与1A BC 平面所成的角为θ,则6πθ=得111sin 62AC n AC n π⋅===u u u r u r u u u r u r,解得2a =,即(2,2,0)AC =-u u u r 又设平面1A AC 的一个法向量为2n u u r ,同理可得2(1,1,0)n =u u r,设锐二面角1A A C B --的大小为α,则1212121cos cos ,2n n n n n n α⋅=<>==u r u u ru r u u r u r u u r ,且(0,)2πα∈,得 3πα=∴ 锐二面角1A A C B --的大小为3π.考点:1.用空间向量求平面间的夹角;2.空间中直线与直线之间的位置关系.6.(1)证明见解析;(2)045 【解析】试题分析:(1)利用已知的线面垂直关系建立空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键.(2)证明证线线垂直,只需要证明直线的方向向量垂直;(3)把向量夹角的余弦值转化为两平面法向量夹角的余弦值;(4)空间向量将空间位置关系转化为向量运算,应用的核心是要充分认识形体特征,建立恰当的坐标系,实施几何问题代数化.同时注意两点:一是正确写出点、向量的坐标,准确运算;二是空间位置关系中判定定理与性质定理条件要完备.试题解析:(1)证明:F Q ,G 分别为PB ,BE 的中点,FG ∴P PE .又FG Q ⊄平面PED ,PE ⊂平面PED ,FG ∴P 平面PED .(2)解:EA ⊥Q 平面ABCD ,EA P PD ,PD ∴⊥平面.ABCD,AD CD ⊂Q 平面,ABCD PD AD ∴⊥,PD CD ⊥.Q 四边形ABCD 是正方形,AD CD ∴⊥.以D 为原点,分别以直线,,DA DC DP 为x 轴, y 轴,z 轴 建立如图所示的空间直角坐标系,设 1.EA =2AD PD EA ==Q ,D ∴()0,0,0,P ()0,0,2,A ()2,0,0,C ()0,2,0,B ()2,2,0,(2,0,1)E , (2,2,2)PB =-u u u r ,(0,2,2)PC =-u u u r.F Q ,G ,H 分别为PB ,EB ,PC 的中点,F ∴()1,1,1,G 1(2,1,)2,H (0,1,1),1(1,0,)2GF =-u u u r ,1(2,0,).2GH =-u u u r(解法一)设1111(,,)x y z =n 为平面FGH 的一个法向量,则110GF GH ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u rn n , 即11111021202x z x z ⎧-+=⎪⎪⎨⎪-+=⎪⎩,令11y =,得1(0,1,0)=n .设2222(,,)x y z =n 为平面PBC 的一个法向量,则220PB PC ⎧⋅=⎪⎨⋅=⎪⎩u u u ru u ur n n , 即222222220220x y z y z +-=⎧⎨-=⎩,令21z =,得2(0,1,1)=n .所以12cos,n n 1212⋅⋅n n nn 2.所以平面FGH 与平面PBC 所成锐二面角的大小为π4(或45︒)(解法二)(0,1,1)(2,0,0)0DH BC ⋅=⋅-=u u u u r u u u r Q ,(0,1,1)(0,2,2)0DH PC ⋅=⋅-=u u u u r u u u r,DH ∴u u u u r是平面PBC 一个法向量.(0,2,0)(1,0,0)0DC FH ⋅=⋅-=u u u r u u u r Q ,1(0,2,0)(1,0,)02DC FG ⋅=⋅-=u u u r u u u r ,DC ∴u u u r是平面平面FGH 一个法向量.cos ,,2DH DC DH DC DH DC ⋅===⋅u u u u r u u u r u u u u r u u u r Q u u u u r u u u r ∴平面FGH 与平面PBC 所成锐二面角的大小为π4(或45︒). (解法三)延长AE 到,Q 使得,AE EQ =连,.PQ BQQP HGFE D C BA2PD EA AQ ==Q ,EA P PD ,∴四边形ADPQ 是平行四边形,.PQ AD P Q 四边形ABCD 是正方形,,.BC AD PQ BC ∴P PF Q ,H 分别为PB ,PC 的中点,,.FH BC FH PQ ∴P P FH Q ⊄平面PED ,PQ ⊂平面PED , FH ∴P 平面PED . ,,FH FG F FH FG =⊂QI 平面,ADPQ ∴平面FGH P 平面.ADPQ故平面FGH 与平面PBC 所成锐二面角与二面角D PQ C --相等.,PQ CD PQ PD ⊥⊥Q ,,,PD CD D PD DC =⊂I 平面,PDC PQ ∴⊥平面.PDCPC ⊂Q 平面,,PDC PQ PC ∴⊥DPC ∠是二面角D PQ C --的平面角.,,45.AD PD AD PD DPC =⊥∴∠=︒Q∴平面FGH 与平面PBC 所成锐二面角的大小为π4(或45︒). 考点:1、直线与平面平行的判定;2、平面与平面所成的角.。

相关文档
最新文档