立体几何中角度与距离求法

立体几何中角度与距离求法
立体几何中角度与距离求法

立体几何中角度距离的求法

一 空间向量及其运算 1 .空间向量的坐标表示及应用

(1)数量积的坐标运算 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a·b =___________. (2)共线与垂直的坐标表示

设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a ∥b ?______________ a ⊥b ?__________?________________________(a ,b 均为非零向量). (3)模、夹角和距离公式 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则|a |=a·a =__________________, cos 〈a ,b 〉=a·b |a||b|=__________.

设A (a 1,b 1,c 1),B (a 2,b 2,c 2), 则d AB =|AB →

|=___________. 2.空间向量的数量积及运算律 (1)数量积及相关概念

①两向量的夹角,已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →

=b ,则∠AOB 叫做向量a 与b 的夹角,记作____________,其范围是____________,若〈a ,b 〉=π2,则

称a 与b __________,记作a ⊥b .

②两向量的数量积,已知空间两个非零向量a ,b ,则____________叫做向量a ,b 的数量积,记作__________,即__________________.

(2)空间向量数量积的运算律①结合律:(λa )·b =____________; ②交换律:a·b =__________; ③分配律:a·(b +c )=__________.

2.共线向量、共面向量定理和空间向量基本定理

(1)共线向量定理对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是

________________________.

推论,如图所示,点P 在l 上的充要条件是:OP →=OA →

+t a ① 其中a 叫直线l 的方向向量,t ∈R ,在l 上取AB →

=a , 则①可化为OP →=________或OP →=(1-t )OA →+tOB →

.

(2)共面向量定理的向量表达式:p =____________,其中x ,y ∈R ,a ,b 为不共线向量,推论的表达式为MP →=xMA →+yMB →或对空间任意一点O ,有OP →=____________或OP →=xOM →

+yOA →+zOB →

,其中x +y +z =______.

(3)空间向量基本定理,如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =____________,把{a ,b ,c }叫做空间的一个基底.

二 用向量的方法求角度 (一)知识清单

1.直线的方向向量与平面的法向量的确定

(1)直线的方向向量:在直线上任取一非零向量作为它的方向向量.

(2)平面的法向量可利用方程组求出:设a ,b 是平面α内两不共线向量,n 为平面α的法向

量,则求法向量的方程组为?

????

n·a =0n·b =0. 2.空间向量与空间角的关系

(1)设异面直线l 1,l 2的方向向量分别为m 1,m 2,则l 1与l 2所成的角θ满足cos θ=____________. (2)设直线l 的方向向量和平面α的法向量分别为m ,n ,则直线l 与平面α所成角θ满足sin θ=__________.

(3)求二面角的大小

1°如图①,AB 、CD 是二面角α—l —β的两个面 内与棱l 垂直的直线,则二面角的大小 θ=____________.

2°如图②③,n 1,n 2分别是二面角α—l —β的两个半平面α,β的法向量,则二面角的大小θ满足cos θ=________________________________________. (二) 题型

题型一 求异面直线所成的角

例1如图所示,在长方体ABCD —A 1B 1C 1D 1中,已知AB =4,AD =3 AA 1=2.E 、F 分别是线段AB 、BC 上的点,且EB =BF =1. 求直线EC 1与FD 1所成的角的余弦值.

解方法一以A 为原点,AB →、AD →、AA 1→

分别为x 轴、y 轴、z 轴的 正向建立空间直角坐标系,则有D 1(0,3,2),E (3,0,0),F (4,1,0), C 1(4,3,2),于是EC 1→=(1,3,2),FD 1→

=(-4,2,2),设EC 1与FD 1所

成的角为β,则:cos β=|EC 1→·FD 1→

||EC 1→|·|FD 1→|=1×(-4)+3×2+2×212+32+22×(-4)2+22+22=21

14, ∴直线EC 1与FD 1所成的角的余弦值为

21

14

. 方法二延长BA 至点E 1,使AE 1=1,连接E 1F 、DE 1、D 1E 1、DF , 有D 1C 1∥E 1E ,D 1C 1=E 1E ,则四边形D 1E 1EC 1是平行四边形. 则E 1D 1∥EC 1.于是∠E 1D 1F (或补角)为直线EC 1与FD 1所成 的角.在Rt △BE 1F 中, E 1F =E 1B 2+BF 2=52+12=26.

在Rt △D 1DE 1中,D 1E 1=DE 21+DD 21=AE 21+AD 2+DD 21=12+32+22

=14. 在Rt △D 1DF 中,FD 1=FD 2+DD 21=CF 2+CD 2+DD 21=22+42+22=24. 在△E 1FD 1中,由余弦定理得:cos ∠E 1D 1F =D 1E 21+FD 21-E 1F

2

2×D 1E 1×FD 1

=2114.

∴直线EC 1与FD 1所成的角的余弦值为

21

14

. 练习1 如图,在四棱锥O —ABCD 中,底面ABCD 是边长为1的菱形, ∠ABC =π

4.OA ⊥底面ABCD ,OA =2,M 为OA 的中点,N 为BC 的中点.

(1)证明:直线MN ∥平面OCD ; (2)求异面直线AB 与MD 所成角的大小.

(1)证明作AP ⊥CD 于点P .如图,分别以AB ,AP ,AO 所在直线为x , y ,z 轴建立直角坐标系.A (0,0,0),B (1,0,0),P ?

???0,

22,0,D ???

?-22,22,0, O (0,0,2),M (0,0,1),N ?

???1-

24,24,0. MN →=????1-24,24,-1,OP →=???

?0,22,-2,

OD →

=????-22,22,-2.设平面OCD 的法向量为n =(x ,y ,z ),

则n ·OP →=0,n ·OD →

=0.即??

?

2

2y -2z =0,-22x +22y -2z =0.

取z =2,解得n =(0,4,2).∵MN →

·n =????1-24,24,-1·(0,4,2)=0,∴MN ∥平面OCD .

(2)解设AB 与MD 所成角为θ, ∵AB →=(1,0,0),MD →

=????-22,22,-1,

∴cos θ=|AB →·MD →

||AB →|·|MD →|=12

,θ∈????0,π2, ∴θ=π3.∴直线AB 与MD 所成的角为π3. 题型二 求直线与平面所成的角

例2如图所示,直三棱柱ABC —A 1B 1C 1中,底面是等腰直角三角形, ∠ACB =90°,侧棱AA 1=2,D 、E 分别是CC 1、A 1B 的中点,点E 在平面ABD 上的射影是△ABD 的重心G . 求A 1B 与平面ABD 所成角的正弦值.

解建立空间直角坐标系,坐标原点为C ,设CA =2a ,则A (2a,0,0),B (0,2a,0) D (0,0,1),A 1(2a,0,2),E (a ,a,1),G ????2a 3,2a 3,13,EG →=????-a 3,-a 3,-2

3, BD →=(0,-2a,1),·BD →=23a 2-23

=0,∴a =1,EG →

=????-13,-13,-23,

A 1

B →=(-2,2,-2).∵EG →

为平面ABD 的一个法向量,

且cos 〈A 1B →,EG →

〉=A 1B →·EG →|A 1B →||EG →

|=23,∴A 1B 与平面ABD 所成角的正弦值是23.

练习2如图所示,在正三棱柱ABC —A 1B 1C 1中,AB =4,AA 1=7, 点D 是BC 的中点,点E 在AC 上,且DE ⊥A 1E . (1)证明:平面A 1DE ⊥平面ACC 1A 1; (2)求直线AD 和平面A 1DE 所成角的正弦值.

(1)证明由正三棱柱ABC —A 1B 1C 1的性质知,AA 1⊥平面ABC .又DE ?平面ABC ,所以DE ⊥AA 1.又DE ⊥A 1E ,AA 1∩A 1E =A 1, 所以DE ⊥平面ACC 1A 1 .又DE ?平面A 1DE , 故平面A 1DE ⊥平面ACC 1A 1.

(2)解 如图所示,设O 是AC 的中点,以O 为原点建立空间直角坐标 系,则相关各点的坐标分别是A (2,0,0),A 1(2,0,7), D (-1,3,0),E (-1,0,0).易知A 1D →

=(-3,3,-7),

DE →=(0,-3,0),AD →

=(-3,3,0).设n =(x ,y ,z )是平面A 1DE 的一个法向量, 则?????

n ·DE →=-3y =0,n ·

A 1D →=-3x +3y -7z =0.解得x =-73z ,y =0. 故可取n =(7,0,-3).

于是cos 〈n ,AD →

〉=n ·AD →

|n |·|AD →|=-374×23

=-218.

故直线AD 和平面A 1DE 所成角的正弦值为218

. 题型三 求二面角

例3如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB =1

2PD .

(1)证明:平面PQC ⊥平面DCQ ; (2)求二面角Q —BP —C 的余弦值.

(1)证明如图,以D 为坐标原点,线段DA 的长为单位长,

以AD 、DP 、DC 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系Dxyz . 依题意有Q (1,1,0),C (0,0,1),P (0,2,0),则DQ →=(1,1,0),DC →

=(0,0,1), PQ →=(1,-1,0). 所以PQ →·DQ →=0,PQ →·DC →=0,

即PQ ⊥DQ ,PQ ⊥DC .又DQ ∩DC =D ,所以PQ ⊥平面DCQ . 又PQ ?平面PQC ,所以平面PQC ⊥平面DCQ . (2)解依题意有B (1,0,1),CB →=(1,0,0),BP →

=(-1,2,-1).

设n =(x ,y ,z )是平面PBC 的法向量,

则?????

n ·CB →=0,n ·

BP →=0, 即?????

x =0,-x +2y -z =0. 因此可取n =(0,-1,-2).

同理,设m 是平面PBQ 的法向量,

则?????

m ·BP →=0,m ·

PQ →=0,可取m =(1,1,1).所以cos 〈m ,n 〉=-15

5.

故二面角Q —BP —C 的余弦值为-

15

5

. 练习3如图,在底面为直角梯形的四棱锥P —ABCD 中,AD ∥BC , ∠ABC =90°,P A ⊥平面ABCD ,P A =3,AD =2,AB =23,BC =6. (1)求证:BD ⊥平面P AC ; (2)求二面角P —BD —A 的大小.

(1)证明 如图,建立坐标系,则A (0,0,0),B (23,0,0),C (23,6,0), D (0,2,0),P (0,0,3),∴AP →=(0,0,3),AC →

=(23,6,0),

BD →=(-23,2,0). ∴BD →·AP →=0,BD →·AC →=0. ∴BD ⊥AP ,BD ⊥AC . 又∵P A ∩AC =A ,∴BD ⊥面P AC .

(2)解设平面ABD 的法向量为m =(0,0,1),设平面PBD 的法向量为n =(x ,y ,z ), 则n ·BD →=0,n ·BP →=0.∵BP →=(-23,0,3),

∴???

-23x +2y =0,-23x +3z =0解得?????

y =3x ,z =233x .

令x =3,则n =(3,3,2), ∴cos 〈m ,n 〉=m·n |m||n |=1

2

. ∴二面角P —BD —A 的大小为60°. 二距离的求法 1.点面距的求法

①垂面法:借助面面垂直的性质来作垂线,其中过已知点确定已知面的垂面是关键 ②等体积法,转化为求三棱锥的高 ③等价转移法;

④法向量法.如图,设AB 为平面α的一条斜线段,n 为平面α的法向量,

则B 到平面α的距离n BA d n

?=

2题型

题型一 用向量法求空间距离

例1在三棱锥S —ABC 中,△ABC 是边长为4的正三角形,平面SAC ⊥平 面ABC ,SA =SC =23,M 、N 分别为AB 、SB 的中点,如图所示. 求点B 到平面CMN 的距离.

说明:点到平面的距离,利用向量法求解比较简单,它的理论基础仍出于几何法.如本题,事实上,作BH ⊥平面CMN 于H .由BH →=BM →+MH →及BH →·n =n ·BM →

, ∴|BH →·n |=|n ·BM →|=|BH →|·|n |, ∴|BH →|=|n ·

BM →||n |,即d =|n ·BM →

||n |

.

解 取AC 的中点O ,连接OS 、OB .∵SA =SC ,AB =BC ,∴AC ⊥SO ,AC ⊥BO . ∵平面SAC ⊥平面ABC ,平面SAC ∩平面ABC =AC ,∴SO ⊥平面ABC , 又∵BO ?平面ABC ,∴SO ⊥BO .

如图所示,建立空间直角坐标系Oxyz ,则B (0,23,0),C (-2,0,0),S (0,0,22), M (1,3,0),N (0,3,2). ∴CM →=(3,3,0),MN →

=(-1,0,2), MB →

=(-1,3,0). 设n =(x ,y ,z )为平面CMN 的一个法向量,

则?????

CM →·n =3x +3y =0MN →·

n =-x +2z =0,取z =1,则x =2,y =-6,∴n =(2,-6,1).

∴点B 到平面CMN 的距离 d =|n ·MB →

||n |=42

3

.

练习1 如图,△BCD 与△MCD 都是边长为2的正三角形,平面 MCD ⊥平面BCD ,AB ⊥平面BCD ,AB =2 3 .求点A 到平面MBC 的距离.

解 取CD 中点O ,连接OB ,OM ,则OB ⊥CD ,OM ⊥CD . 又平面MCD ⊥平面BCD , 则MO ⊥平面BCD .取O 为原点,直线OC 、BO 、OM 为x 轴、y 轴、z 轴, 建立空间直角坐标系如图.OB =OM =3,则各点坐标分别为C (1,0,0), M (0,0,3),B (0,-3,0),A (0,-3,23).设n =(x ,y ,z )是

平面MBC 的法向量,则BC →=(1,3,0),BM →=(0,3,3), 由n ⊥BC →

得x +3y =0;由n ⊥BM →得3y +3z =0.取n =(3,-1,1),BA →

=(0,0,23), 则点A 到平面MBC 的距离

d =|BA →·n ||n |=235=2155.

题型二 用等体积法求距离

例2 已知直二面角E AB D --中,四边形 ABCD 是边长为2的正方形,AE=EB,F 为CE

上的点,且ACE BF 平面⊥ (1) 求证BCE AE 平面⊥, (2) 求二面角E AC B --的大小, (3) 求点D 到平面ACE 的距离

练习2、如图,已知正三棱柱ABC —111C B A 的底面边长是2,D 是侧棱1CC 的中点,直线AD 与侧面11BB C C 所成的角为45. (Ⅰ)求此正三棱柱的侧棱长; (Ⅱ)求二面角C BD A --的大小; (Ⅲ)求点C 到平面ABD 的距离.

解:(Ⅰ)设正三棱柱ABC —111C B A 的侧棱长为

x .

取BC 中点E ,连AE .ABC ? 是正三角形,AE BC ∴⊥.又底面ABC ⊥侧面11BB C C ,

且交线为BC .AE ∴⊥侧面11BB C C .连ED ,则直线AD 与侧面11BB C C 所成的角为

45ADE ∠=. 在AED Rt ?中,tan 45AE

ED

=

=,解得x =此正三棱

柱的侧棱长为 注:也可用向量法求侧棱长.

(Ⅱ)解法1:过E 作EF BD ⊥于F ,连AF ,⊥AE 侧面,11C C BB ∴AF BD ⊥.

AFE ∴∠为二面角C BD A --的平面角 在BEF Rt ?中,sin EF BE EBF =∠,又

1,sin 3CD BE EBF BD =∠=

==, ∴EF =. 又AE =

A

B

D

1

A 1

B 1

C E F G H

I

∴在AEF Rt ?中,tan 3AE

AFE EF

∠=

=,故二面角C BD A --的大小为arctan 3. 解法2:(向量法,)

(Ⅲ)解法1:由(Ⅱ)可知,⊥BD 平面AEF ,∴平面AEF ⊥平面ABD ,且交线为AF ,

∴过E 作EG AF ⊥于G ,则EG ⊥平面ABD

在AEF Rt ?

中,AE EF

EG AF

?=

==

E 为BC 中点,∴点C 到平面ABD

的距离为210

EG =

. 解法2:取AB 中点H ,连CH 和DH ,由,CA CB =DA DB =,易得平面ABD ⊥平面

CHD ,且交线为DH .过点C 作CI DH ⊥于I ,则CI 的长为点C 到平面ABD 的距离.

解法3:等体积变换:由C ABD A BCD V V --=可求. 解法4:(向量法,见后)题(Ⅱ)、(Ⅲ)的向量解法: (Ⅱ)解法2:如图,建立空间直角坐标系

o 则(0,1,0),(0,1,0),(A B C D -设

1(,,)n x y z =为平面ABD 的法向量.

由?????=?=?0

,

021AD n AB n 得0

y y ?=?

-+=.取1(6,n =-又平面BCD 的一个法向量2(0,0,1).n =

∴10

10

1)3()6(1)1,0,0()1,3,6(,cos 222212121=+-+-??--=

?>=

. 结合图形可知,二面角C BD A --的大小为arccos

10

. (Ⅲ)解法4:由(Ⅱ)解法2,1(6,),n =-(0,1CA =-

∴点C 到平面ABD 的距离d =2

221)3()6()1,3,6()3,1,0(+-+---?-==

10

30

2. 1

练习题

1.如图所示,在空间直角坐标系中,有一棱长为a 的正方体 ABCO —A ′B ′C ′D ′,A ′C 的中点E 与AB 的中点F 的 距离为_____

2

2

a ___. 2 在长方体ABCD —A 1B 1C 1D 1中,AA 1=5,AB =12,那么直线B 1C 1和平面A 1BCD 1的 距离是___60

13

_____.

3.正方体ABCD —A 1B 1C 1D 1的棱长为1,E 、F 分别为BB 1、CD 的中点,则点F 到平面A 1D 1E 的距离为__3510

______.

4.在四面体P ABC 中,P A ,PB ,PC 两两垂直,设P A =PB =PC =a ,则点P 到平面ABC 的距离为___

3

3

a _____. 5.设A (2,3,1),B (4,1,2),C (6,3,7),D (-5,-4,8),则D 到平面ABC 的距离为___4917

17_____.

6在空间直角坐标系O —xyz 中,平面OAB 的一个法向量为n =(2,-2,1),已知点P (-1,3,2),则点P 到平面OAB 的距离d 等于( B ) A. 4 B. 2 C .3 D .1

7已知在矩形ABCD 中,AB =4,AD =3,沿对角线AC 折叠,使面ABC 与面ADC 垂直,求B 、D 间的距离.

解方法一如图,过D 、B 分别作DE ⊥AC 于点E ,BF ⊥AC 于点F ,则由已知条件得AC =5,

∴DE =AD ·DC AC =125,BF =AB ·BC AC =125. ∴AE =AD 2

AC =95=CF . ∴EF =AC -2AE =7

5

.

∵DB →=DE →+EF →+FB →, ∴|DB →|2=|DE →+EF →+FB →|2 =DE →2+EF →2+FB →2+2DE →·EF →+2DE →·FB →+2EF →·FB →. ∵面ADC ⊥面ABC ,而DE ⊥AC ,

∴DE ⊥面ABC ,∴DE ⊥BF .(8分) ∴|DB →|2=DE →2+EF →2+FB →2=14425+4925+14425=337

25

.

∴|DB →

|=3375,故B 、D 间的距离为3375

方法二过E 作FB 的平行线交AB 于P 点,以E 为坐标原点,以EP 、EC 、ED 所在直线分别为x 、y 、z 轴建立空间直角坐标系,如图.则

由方法一知DE =FB =125,EF =7

5

.(4分)

∴D ????0,0,125,B ???

?125,7

5,0. ∴|DB →

|=????1252+????752+????-1252=3375

.

立体几何(角度、距离、体积)

立体几何 一、角度问题。 1. 如图,四棱锥P ABCD -中,PA ABCD ⊥底面, 2,4,3 BC CD AC ACB ACD π ===∠=∠=,F 为PC 的中点,AF PB ⊥. (1)求PA 的长; (2)求二面角B AF D --的正弦值. 【答案】

2. 如图,圆锥顶点为p .底面圆心为o ,其母线与底面所成的角为22.5°.AB 和CD 是底 面圆O 上的两条平行的弦,轴OP 与平面PCD 所成的角为60°. (Ⅰ)证明:平面PAB 与平面PCD 的交线平行于底面; (Ⅱ)求cos COD ∠. 【答案】解: (Ⅰ) PAB P D ,////C m AB CD CD PCD AB PCD ?=??设面面直线且面面 //AB m ?直线 ABCD m ABCD AB 面直线面//?? . 所以,ABCD D P PAB 的公共交线平行底面与面面C . (Ⅱ)

r PO OPF F CD r =??=∠5.22tan .60,由题知,则的中点为线段设底面半径为. ? -?=?∠==????=?5.22tan 15.22tan 245tan ,2cos 5.22tan 60tan 60tan ,2COD r OF PO OF . )223(3)],1-2(3[2 1cos ,1-25.22tan 12cos 2cos 22-==+∠=??-∠=∠COD COD COD 212-17cos .212-17cos =∠=∠COD COD 所以. 3. 如图,在四面体BCD A -中,⊥AD 平面BCD ,22,2,==⊥BD AD CD BC .M 是 AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且QC AQ 3=. (1)证明://PQ 平面BCD ;(2)若二面角D BM C --的大小为060,求BDC ∠的大 小. 【答案】解:证明(Ⅰ)方法一:如图6,取MD 的中点F ,且M 是AD 中点,所以3AF FD =.因为P 是BM 中点,所以//PF BD ;又因为(Ⅰ)3AQ QC =且 3AF FD =,所以//QF BD ,所以面//PQF 面BDC ,且PQ ?面BDC ,所以 //PQ 面BDC ; 方法二:如图7所示,取BD 中点O ,且P 是BM 中点,所以1// 2 PO MD ;取CD 的三等分点H ,使3DH CH =,且3AQ QC =,所以11////42QH AD MD ,所以A B C D P Q M (第20题图)

立体几何中的角度问题

立体几何题中的角度问题 一.异面直线所成的角 例1.(2011年宁波)正方体1111D C B A ABCD -中, (1).求D A AC 1与所成角的大小. (2).若E 、F 分别为AB 、AD 的中点,求11C A 与EF 所成角大小. 练习:1.A 是ΔBCD 平面外的一点,E 、F 分别是BC 、AD 的中点,AC ⊥BD.AC=BD.求EF 与BD 所成的角. 2.如图,在三棱锥S�ABC 中,,SA=AC=BC.求异 面直线SC 与AB 所成角的大小。 3.长方体ABCD -A 1B 1C 1D 1中,AB=AA 1=2cm ,AD=1cm ,求异面直线A 1C 1与BD 1所成的角的余弦值。

二.直线与平面所成角 例 2.(2013年高考浙江卷(文))如图,在在四棱锥P-ABCD 中,PA⊥面 ABCD,AB=BC=2,AD=CD=7,PA=3,∠ABC=120°,G 为线段PC 上的点. (Ⅰ)证明:BD⊥面PAC ; (Ⅱ)若G 是PC 的中点,求DG 与APC 所成的角的正切值; (Ⅲ)若G 满足PC⊥面BGD,求 PG GC 的值. 练习:1(2013年高考天津卷(文))如图, 三棱柱ABC -A 1B 1C 1中, 侧棱A 1A ⊥底面ABC ,且各棱 长均相等. D , E , F 分别为棱AB , BC , A 1C 1的中点. (Ⅰ) 证明EF //平面A 1CD ; (Ⅱ) 证明平面A 1CD ⊥平面A 1ABB 1; (Ⅲ) 求直线BC 与平面A 1CD 所成角的正弦值. 错误!未指定书签。 2(2013年高考大纲卷(文))已知正四棱柱 1111112,ABCD A B C D AA AB CD BDC -=中,则与平面所成角的正弦值等于 ( ) A . 23 B . 33 C . 23 D . 13

立体几何中用传统法求空间角

-立体几何中的传统法求空间角 知识点: 一.异面直线所成角:平移法 二.线面角 1.定义法:此法中最难的是找到平面的垂线.1.)求证面垂线,2).图形中是否有 面面垂直的结构,找到交线,作交线的垂线即可。 2.用等体积法求出点到面的距离sinA=d/PA 三.求二面角的方法 1、直接用定义找,暂不做任何辅助线; 2、三垂线法找二面角的平面角. 例一:如图,在正方体错误!未找到引用源。中,错误!未找到 引用源。、错误!未找到引用源。分别是错误!未找到引用 源。、错误!未找到引用源。的中点,则异面直线错误!未 找到引用源。与错误!未找到引用源。所成的角的大小是 ______90______. 考向二线面角 例二、如图,在四棱锥P-ABCD中,底面ABCD是矩 形,AD⊥PD,BC=1, ,PD=CD=2. (I)求异面直线PA与BC所成角的正切值;(II)证明平面PDC⊥平面ABCD; (III)求直线PB与平面ABCD所成角的正弦值。 N A 1

练 习 : 如图 , 在 三棱锥 P ABC -中, PA ⊥底面 ,, 60,A B C P A A B A B C B C A ?? =∠=∠=, 点D ,E 分别在棱,PB PC 上,且//DE BC (Ⅰ)求证:BC ⊥平面PAC ; (Ⅱ)当D 为PB 的中点时,求AD 与平面PAC 所成的角的正弦值; (Ⅰ)∵PA ⊥底面ABC ,∴PA ⊥BC . 又90BCA ? ∠=,∴AC ⊥BC . ∴BC ⊥平面PAC . (Ⅱ)∵D 为PB 的中点,DE//BC ,

∴1 2 DE BC = , 又由(Ⅰ)知,BC ⊥平面PAC , ∴DE ⊥平面PAC ,垂足为点E . ∴∠DAE 是AD 与平面PAC 所成的角, ∵PA ⊥底面ABC ,∴PA ⊥AB ,又PA=A B , ∴△ABP 为等腰直角三角形,∴ AD AB = , ∴在Rt △ABC 中,60ABC ? ∠=,∴1 2 BC AB = . ∴在Rt △ADE 中,sin 24 DE BC DAE AD AD ∠= ==, 考向三: 二面角问题 在图中做出下面例题中二面角 例三:.定义法(2011广东理18) 如图5.在椎体P-ABCD 中,ABCD 是边长为1的棱形, 且∠DAB=60?,PA PD == E,F 分别是BC,PC 的中点. (1) 证明:AD ⊥平面DEF; (2) 求二面角P-AD-B 的余弦值. 法一:(1)证明:取AD 中点G ,连接PG ,BG ,BD 。 因PA=PD ,有PG AD ⊥,在ABD ?中,1,60AB AD DAB ==∠=?,有ABD ?为 等边三角形,因此,BG AD BG PG G ⊥?=,所以AD ⊥平面 PBG ,.AD PB AD GB ?⊥⊥ 又PB//EF ,得AD EF ⊥,而DE//GB 得AD ⊥DE ,又FE DE E ?=,所以AD ⊥ 平面DEF 。

立体几何--空间的距离.

、选择题 1.正方形ABCD边长为2, E、F分别是AB和CD的中点,将正方形沿 面角(如图),M为矩形AEFD内一点,如果/ MBE= / MBC , MB和平面BCF 1 值为1,那么点M至?线EF的距离为 ( 2 D.- 2 2 .三棱柱ABC—A1B1C1 中,AA i=1 , AB =4, BC= 3 , / ABC=90 °,设平面 ABC的交线为I,则A1C1与I的距离为() 二、填空题 4.如右上图,ABCD与ABEF均是正方形,如果二面角E—AB—C的度数为30°, 那么EF与平面ABCD的距离为 三、解答题 (1)求证:平面A1BC1 //平面ACD1; 立体几何--空间的距离 EF折成直二 所成角的正切 B.1 A i BC i与平面 A J10 B. TH C.2.6 D.2.4 3.如左下图,空间四点A、B、C、D中,每两点所连线段的长都等于a,动点P在线段AB上,动点Q在线段CD上,则P与Q的最短距离为 5.在长方体如图:

(2)求(1)中两个平行平面间的距离; ⑶求点B i到平面A i BC i的距离. 6.已知正四棱柱ABCD —A i B i C i D i,点E在棱D i D上,截面EAC // D i B且面EAC与底面ABCD所成的角为45° ,AB=a,求: (i)截面EAC的面积; ⑵异面直线A i B i与AC之间的距离; ⑶三棱锥B i —EAC的体积. 7?如图,已知三棱柱A i B i C i —ABC的底面是边长为2的正三角形, AC均成45°角,且A i E丄B i B于E, A i F丄CC i于F. (i)求点A到平面B i BCC i的距离; ⑵当AA i多长时,点A i到平面ABC与平面B i BCC i的距离相等. &如图,在梯形ABCD 中,AD // BC,/ ABC = —,AB= 2 2 / ADC=arccos—75 ,PA丄面ABCD 且PA=a. 5 (i)求异面直线AD与PC间的距离; (2)在线段AD上是否存在一点F,使点A到平面PCF的距离为亨 【空间的距离参考答案】 一、i.解析:过点M作MM '丄EF,则MM '丄平面BCF ?// MBE= / MBC ??? BM '为/ EBC为角平分线, £■ 侧棱A i A与AB 、 i -AD=a, 3

空间几何中的角和距离的计算

空间角和距离的计算(1) 一 线线角 1.直三棱柱A 1B 1C 1-ABC ,∠BCA=900,点D 1,F 1分别是A 1B 1和A 1C 1的中点,若BC=CA=CC 1,求BD 1与AF 1所成角的余弦值. 2.在四棱锥P-ABCD 中,底面ABCD 是直角梯形,∠BAD=900,AD ∥BC ,AB=BC=a ,AD=2a ,且PA ⊥面ABCD ,PD 与底面成300角. (1)若AE ⊥PD ,E 为垂足,求证:BE ⊥PD ; (2)若AE ⊥PD ,求异面直线AE 与CD 所成角的大小. 二.线面角 1.正方体ABCD-A 1B 1C 1D 1中,E ,F 分别为BB 1、CD 的中点,且正方体的棱长为2. (1)求直线D 1F 和AB 和所成的角; (2)求D 1F 与平面AED 所成的角. F 1D 1B 1 C 1A 1 B A C A B C D P E C D E F D 1 C 1 B 1 A 1 A B

2.在三棱柱A 1B 1C 1-ABC 中,四边形AA 1B 1B 是菱形,四边形BCC 1B 1是矩形,C 1B 1⊥AB ,AB=4,C 1B 1=3,∠ABB 1=600,求AC 1与平面BCC 1B 1所成角的大小. 三.二面角 1.已知A 1B 1C 1-ABC 是正三棱柱,D 是AC 中点. (1)证明AB 1∥平面DBC 1; (2)设AB 1⊥BC 1,求以BC 1为棱,DBC 1与CBC 1为面的二面角的大小. 2.ABCD 是直角梯形,∠ABC=900,SA ⊥面ABCD ,SA=AB=BC=1,AD=0.5. (1)求面SCD 与面SBA 所成的二面角的大小; (2)求SC 与面ABCD 所成的角. 3.已知A 1B 1C 1-ABC 是三棱柱,底面是正三角形,∠A 1AC=600,∠A 1AB=450,求二面角B —AA 1—C 的大小. B 1 C 1 A 1 B A C D B 1 C 1 A 1B A C B A D C S B 1 C 1 B C A 1

立体几何空间距离问题

空间距离问题 (专注高三数学辅导:) 空间中距离的求法是历年高考考查的重点,其中以点与点、点到线、点到面的距离为基础,求其他几种距离一般化归为这三种距离. ●难点磁场 (★★★★)如图,已知ABCD是矩形,AB=a,AD=b,PA⊥平面ABCD,PA=2c,Q 是PA的中点. 求:(1)Q到BD的距离; (2)P到平面BQD的距离. 。 P为RT△ABC所在平面α外一点,∠ACB=90°(如图) (1)若PC=a,∠PCA=∠PCB=60°,求P到面α的距离及PC和α所成的角 (2)若PC=24,P到AC,BC的距离都是6√10,求P到α的距离及PC和α所成角 (3)若PC=PB=PA,AC=18,P到α的距离为40,求P到BC的距离

●案例探究 [例1]把正方形ABCD 沿对角线AC 折起成直二面角,点E 、F 分别是AD 、BC 的中点,点O 是原正方形的中心,求: (1)EF 的长; (2)折起后∠EOF 的大小. 命题意图:考查利用空间向量的坐标运算来解决立体几何问题,属★★★★级题目. < 知识依托:空间向量的坐标运算及数量积公式. 错解分析:建立正确的空间直角坐标系.其中必 须保证x 轴、y 轴、z 轴两两互相垂直. 技巧与方法:建系方式有多种,其中以O 点为原点,以OB 、OC 、OD 的方向分别为x 轴、y 轴、z 轴的正方向最为简单. 解:如图,以O 点为原点建立空间直角坐标系O —xyz ,设正方形ABCD 边长为a ,则A (0,-22a ,0),B (2 2 a ,0,0),C (0, 2 2 a ,0),D (0,0, 22a ),E (0,-4 2a , a ),F ( 42a , 4 2 a ,0) 21| |||,cos ,2||,2||8042)42)(42(420) 0,4 2 ,42(),42,42,0()2(23 ,43)420()4242()042(||)1(2 2222-=>=<== - =?+-+?=?=-==∴=-+++-=OF OE OF OE OF OE a OF a OE a a a a a OF OE a a OF a a OE a EF a a a a a EF ∴∠EOF =120° [例2]正方体ABCD —A 1B 1C 1D 1的棱长为1,求异面直线A 1C 1与AB 1间的距离. 命题意图:本题主要考查异面直线间距离的求法,属★★★★级题目. 知识依托:求异面直线的距离,可求两异面直线的公垂线,或转化为求线面

立体几何中角度与距离求法

立体几何中角度距离的求法 一 空间向量及其运算 1 .空间向量的坐标表示及应用 (1)数量积的坐标运算 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a·b =___________. (2)共线与垂直的坐标表示 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a ∥b ?______________ a ⊥b ?__________?________________________(a ,b 均为非零向量). (3)模、夹角和距离公式 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则|a |=a·a =__________________, cos 〈a ,b 〉=a·b |a||b|=__________. 设A (a 1,b 1,c 1),B (a 2,b 2,c 2), 则d AB =|AB → |=___________. 2.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角,已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB → =b ,则∠AOB 叫做向量a 与b 的夹角,记作____________,其范围是____________,若〈a ,b 〉=π2,则 称a 与b __________,记作a ⊥b . ②两向量的数量积,已知空间两个非零向量a ,b ,则____________叫做向量a ,b 的数量积,记作__________,即__________________. (2)空间向量数量积的运算律①结合律:(λa )·b =____________; ②交换律:a·b =__________; ③分配律:a·(b +c )=__________. 2.共线向量、共面向量定理和空间向量基本定理 (1)共线向量定理对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是 ________________________. 推论,如图所示,点P 在l 上的充要条件是:OP →=OA → +t a ① 其中a 叫直线l 的方向向量,t ∈R ,在l 上取AB → =a , 则①可化为OP →=________或OP →=(1-t )OA →+tOB → . (2)共面向量定理的向量表达式:p =____________,其中x ,y ∈R ,a ,b 为不共线向量,推论的表达式为MP →=xMA →+yMB →或对空间任意一点O ,有OP →=____________或OP →=xOM → +yOA →+zOB → ,其中x +y +z =______. (3)空间向量基本定理,如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =____________,把{a ,b ,c }叫做空间的一个基底.

立体几何及解题技巧以及空间距离专题复习

立体几何及解题技巧以及空间距离专题复习

知识点整理 (一)平行与垂直的判断 ⑴平行:设,的法向量分别为U,V ,贝U 直线l,m 的方向向量分 别为a,b ,平面 线线平行i // m a 〃 b a 诂;线面平行i // a u a u 0 ; 面面平行// u // v u J. ⑵ 垂直:设直线l ,m 的方向向量分别为a,b ,平面,的法向量 分别为u,v ,则 线线垂直I 丄m a 丄b ab 0 ;线面垂直I 丄 a // u a ku 「; 面面垂直丄 u 丄v u v 0. (二)夹角与距离的计算 注意:以下公式可以可以在非正交 基底下用,也可以在正交基底下用坐标运算 (1)夹角:设直线l ,m 的方向向量分别为,平面,的法向量 分别为u ,v ,则 ①两直线I ,m 所成的角为 (2)空间距离 ②直线I 与平面 ③二面角一I 的大小为(0< < ),cos cos (0< =2),sin 所成的角为

点、直线、平面间的距离有种.点到平面的距离是重点,两异面直线间的距离是难 ①点到平面的距离h:(定理)如图,设n是是平 面的法向量,AP是平面的一条斜线,其中A 则点P到平面的距离 uuu uu ②h 1 Auur n |(实质是AP在法向量n 方向上的投影的绝对值) |n| uuu ur ③异面直线l i,l2间的距离d: d AB JC』1( 11,12的公垂向量为 |n| ' n, C、D分别是h,l2上任一点). 题型一:非正交基底下的夹角、的计算 例1.如图,已知二面角-I - 点 A , B , A C I于点C, 且 AC=CD=DB=1. 求:(1) A、B两点间的距离; (2)求异面直线AB和CD勺所成的角(3) AB与CD勺距 离. 解:设AC a,CD b,DB c,则 |a| |b| |c| 1, a,b b,c 900, a,c 60°, 2 ? ? 2 ?? 2 ■■ 2 |AB | a b c . a b c 2a b 2b c 2c a 2 A、B两点间的距离为2. (2)异面直线AB和CD的所成的角为60°

高中数学立体几何空间距离问题

立体几何空间距离问题 空间中距离的求法是历年高考考查的重点,其中以点与点、点到线、点到面的距离为基础,求其他几种距离一般化归为这三种距离. ●难点磁场 (★★★★)如图,已知ABCD是矩形,AB=a,AD=b,P A⊥平面ABCD,P A=2c,Q 是P A的中点. 求:(1)Q到BD的距离; (2)P到平面BQD的距离. P为RT△ABC所在平面α外一点,∠ACB=90°(如图) (1)若PC=a,∠PCA=∠PCB=60°,求P到面α的距离及PC和α所成的角 (2)若PC=24,P到AC,BC的距离都是6√10,求P到α的距离及PC和α所成角(3)若PC=PB=PA,AC=18,P到α的距离为40,求P到BC的距离

●案例探究 [例1]把正方形ABCD 沿对角线AC 折起成直二面角,点E 、F 分别是AD 、BC 的中点,点O 是原正方形的中心,求: (1)EF 的长; (2)折起后∠EOF 的大小. 命题意图:考查利用空间向量的坐标运算来解决立体几何问题,属★★★★级题目. 知识依托:空间向量的坐标运算及数量积公式. 错解分析:建立正确的空间直角坐标系.其中必须保证x 轴、y 轴、z 轴两两互相垂直. 技巧与方法:建系方式有多种,其中以O 点为 原点,以OB 、OC 、OD 的方向分别为x 轴、y 轴、z 轴的正方向最为简单. 解:如图,以O 点为原点建立空间直角坐标系O —xyz ,设正方形ABCD 边长为a ,则A (0,-22a ,0),B (22a ,0,0),C (0, 22a ,0),D (0,0, 22a ),E (0,-4 2 a , a ),F ( 42a , 4 2 a ,0) 21| |||,cos ,2||,2||8042)42)(42(420) 0,4 2 ,42(),42,42,0()2(23 ,43)420()4242()042(||)1(2 2222-=?>=<== - =?+-+?=?=-==∴=-+++-=OF OE OF OE OF OE a OF a OE a a a a a OF OE a a OF a a OE a EF a a a a a EF ∴∠EOF =120° [例2]正方体ABCD —A 1B 1C 1D 1的棱长为1,求异面直线A 1C 1与AB 1间的距离. 命题意图:本题主要考查异面直线间距离的求法,属★★★★级题目. 知识依托:求异面直线的距离,可求两异面直线的公垂线,或转化为求线面距离,或面面距离,亦可由最值法求得.

高考数学复习 第十一讲 立体几何之空间距离

第十一讲 立体几何之空间距离 一、空间距离包括: 点与点、点与线、点与面、线与线(异面直线)、线与面(线面平行)、面与面(面面平行)的距离。要理解各个距离的概念。 二、空间距离的求法 重点掌握:线线距离、点面距离、尤其点面距离 (1) 线线距离:找公垂线段 (2) 点面距离 ① 直接法(过点向面作作垂线段,即求公垂线段长度) ② 等体积法(三棱锥) ③ 向量法:设平面α的法向量为n ,P 为平面α外一点,Q 是平面α内任一点,则 点P 到平面α的距离为d 等于PQ 在法向量n 上的投影绝对值。d =三、例题讲解 1、下列命题中: ①ABCD PA 矩形⊥所在的平面,则P 、B 间的距离等于P 到BC 的距离; ②若,,,//αα??b a b a 则a 与b的距离等于a 与α的距离; ③直线a 、b是异面直线,,//,ααb a ?则a 、b 之间的距离等于b 与α的距离 ④直线a 、b是异面直线,,//,,βαβα且??b a 则a 、b 之间的距离等于βα、间的距离 其中正确的命题个数有( C ) A . 1个 B. 2个 C. 3个 D. 4个 2、如图所示,正方形的棱长为1,C、D 为两条棱的中点,A 、B 、M 是顶点,那么点M 到截面ABCD 的距离是____________。

解析:取AB 、C D中点P、Q ,易证MPQ ?中,PQ 边长的高MH 为所求,423,22== PQ PM 3 2=∴MH 3、在底面是正方形的四棱锥A-B CD E中,BCDE AE 底面⊥且AE=CD =a , G、H是BE 、ED 的中点,则GH 到面ABD 的距离是____________。 解析:连结EC ,交BD 于O,且交GH 于O ',则有平面ABD AEO 面⊥。 过E作AO EK ⊥于K ,则所求距离等于a AO EO AE EK 6 32121=?= 4、如图,在棱长为a 的正方体1111D C B A ABCD -中,E 、F 分别为棱AB 和B C的中点,G为上底面1111D C B A 的中心,则点D 到平面EF B 1的距离___________。 解:方法1:建立如图直角坐标系,

《立体几何中的角度与距离问题》

二年级下学期小学期末检测 数学试卷 (考试时间:60分钟,满分100分) 题号一二三四五六总分 得分 一、我会算。(12分) 35÷7=900-700=73-(13+27)=9×9÷9= 280+300=1000-600=56-(90-60)= 37+8÷8= 860-260= 60-27÷3= 4×(78-70)= (40-8)÷4= 二、我会填。(22分) 1、有一个四位数,最高位上是5,十位上是3,其余各位上是0,这个数是(),读作()。 2、□÷7=3……□,余数最大是(),当余数最大时,被除数是()。 3、找规律填数。 537,437,(),237,();150,200,(),300,()。 4、605是()位数,最高位上的数字是(),这里的5表示()个()。 5、()×7<50,括号里最大能填()。 6、在()里填上合适的单位名称: 教室的门高2();铅笔长14();数学书厚4();课桌高8()。7、在○里填上“>”、“<”、“=”。 5千米○5000米30mm○3dm纯角○锐角 8、最大的两位数是(),与它相邻的两个数分别是()和()。 三、我是小判官。(对的画“√”,错的画“×”)(12分) 1、50÷7=6……8。…………………………………………………………………() 2、“333”里的“3”表示的意思一样。…………………………………………() 3、正方形和长方形都有4条边,4个直角。………………………………………() 4、角的大小与边的长短有关系。…………………………………………………() 5、2+10÷2=12÷2=6。…………………………………………………………() 6、左图中共有6个角。………………………………………………() 四、我是计算能手。(14分) 1、用竖式计算并验算。(6分) 284+357923-657

高考数学专题复习立体几何专题空间角

立体几何专题:空间角 第一节:异面直线所成的角 一、基础知识 1.定义: 直线a 、b 是异面直线,经过空间一交o ,分别a ?//a ,b ?//b ,相交直线a ?b ?所成的锐角(或直 角)叫做 。 2.范围: ?? ? ??∈2,0πθ 3.方法: 平移法、问量法、三线角公式 (1)平移法:在图中选一个恰当的点(通常是线段端点或中点)作a 、b 的平行线,构造一个三角形,并解三角形求角。 (2)向量法: 可适当选取异面直线上的方向向量,利用公式b a = ><=,cos cos θ 求出来 方法1:利用向量计算。选取一组基向量,分别算出 b a ? 代入上式 方法2:利用向量坐标计算,建系,确定直线上某两点坐标进而求出方向向量 ),,(111z y x a = ),,(222z y x b =2 2 22222 1 2 12 12 12121cos z y x z y x z z y y x x ++++++= ∴θ (3)三线角公式 用于求线面角和线线角 斜线和平面内的直线与斜线的射影所成角的余弦之积等于斜线和平面内的直线所成角的余弦 即:θθθcos cos cos 2 1= 二、例题讲练 例1、(2007年全国高考)如图,正四棱柱 1111ABCD A B C D -中, 12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为 例2、在长方体ABCD-A 1B 1C 1D 1中,已知AB=a ,BC=)(b a b >,AA 1= c ,求异面直线D 1B 和AC 所成 的角的余弦值。 方法一:过B 点作 AC 的平行线(补形平移法) A B 1 B 1 A 1D 1 C C D

高中数学专题讲义-空间几何体. 截面与距离问题

棱锥、棱台的中截面与轴截面 【例1】 正四棱锥的侧棱长是底面边长的k 倍,求k 的取值范围. 【例2】 正四棱锥的斜高为2,侧棱长为5,求棱锥的高与中截面(即过高线的中点且平 行于底面的截面)的面积? 【例3】 正四棱台的高为17,两底面的边长分别是4和16,求这个棱台的侧棱长和斜高. 【例4】 已知正六棱台的上,下底面的边长和侧棱长分别为a ,b ,c ,则它的高和斜高分 别为 【例5】 已知正三棱锥S ABC -的高SO h =,斜高SM l =,求经过SO 的中点且平行于底面 的截面111A B C ?的面积. M O C 1 B 1 A 1 C A 【例6】 如图所示的正四棱锥V ABCD -,它的高3VO =,侧棱长为7, ⑴ 求侧面上的斜高与底面面积. ⑵ 'O 是高VO 的中点,求过'O 点且与底面平行的截面(即中截面)的面积. 典例分析 板块二.截面与距离问题

H O'O D C B A V 【例7】 如图,已知棱锥V ABC -的底面积是264cm ,平行于底面的截面面积是24cm ,棱锥 顶点V 在截面和底面上的射影分别是1O 、O ,过1O O 的三等分点作平行于底面的截面,求各截面的面积. C A 圆锥、圆台的中截面与轴截面 【例8】 把一个圆锥截成圆台,已知圆台的上、下底面半径的比是14∶,母线长10,求 圆锥的母线长. 【例9】 一圆锥轴截面顶角为120?,母线长为1,求轴截面的面积. 【例10】 圆台的母线长为2a ,母线和轴的夹角为30?,一个底面半径是另一个底面半径的2 倍,求圆台的高与上下两底面面积之和. 【例11】 圆台两底半径分别是2和5,母线长是,求它的轴截面的面积; 【例12】 圆台侧面的母线长为2a ,母线与轴的夹角为30?,一个底面半径是另一个底面 半径的2倍,则两底面半径为 .

最新高考数学专题复习立体几何重点题型空间距离空间角(师)

立体几何题型 【考点透视】 (A)版.掌握两条直线所成的角和距离的概念,对于异面直线的距离,只要求会计算已给出公垂线时的距离.掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念.掌握二面角、二面角的平面角、两个平行平面间的距离的概念. (B)版. ①理解空间向量的概念,掌握空间向量的加法、减法和数乘. ②了解空间向量的基本定理,理解空间向量坐标的概念,掌握空间向量的坐标运算. ③掌握空间向量的数量积的定义及其性质,掌握用直角坐标计算空间向量数量积公式. ④理解直线的方向向量、平面的法向量,向量在平面内的射影等概念. ⑤了解多面体、凸多面体、正多面体、棱柱、棱锥、球的概念. ⑥掌握棱柱、棱锥、球的性质,掌握球的表面积、体积公式. ⑦会画直棱柱、正棱锥的直观图. 空间距离和角是高考考查的重点:特别是以两点间距离,点到平面的距离,两异面直线的距离,直线与平面的距离以及两异面直线所成的角,直线与平面所成的角,二面角等作为命题的重点内容,高考试题中常将上述内容综合在一起放在解答题中进行考查,分为多个小问题,也可能作为客观题进行单独考查.考查空间距离和角的试题一般作为整套试卷的中档题,但也可能在最后一问中设置有难度的问题. 不论是求空间距离还是空间角,都要按照“一作,二证,三算”的步骤来完成,即寓证明于运算之中,正是本专题的一大特色. 求解空间距离和角的方法有两种:一是利用传统的几何方法,二是利用空间向量。 【例题解析】 考点1 点到平面的距离 求点到平面的距离就是求点到平面的垂线段的长度,其关键在于确定点在平面内的垂足, 当然别忘了转化法与等体积法的应用. 典型例题 例1如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点. (Ⅰ)求证: 1AB ⊥ 平面 1A BD ; (Ⅱ)求二面角 1A A D B --的大小; (Ⅲ)求点C 到平面1A BD 的距离. 考查目的:本小题主要考查直线与平面的位置关系,二面角的 A B C D 1 A 1 C 1 B

立体几何中的常见模型化方法

立体几何中的常见模型化方法 建构几何模型的两个角度:一是待研究的几何体可与特殊几何体建立关联,二是数量关系有明显特征的几何背景 例题一个多面体的三视图如图1 所示,则该多面体的体积是 A. 23/3 B. 47/6 C.6 D.7 分析该几何体的三视图为 3 个正方形,所以可建构正方体模型辅助解答. 解图 2 为一个棱长为2 的正方体. 由三视图可知,该几何体是正方体截去两个小三棱锥后余下的部分,其体积V=8-2 X 1/3X 1/2X 1 X 1 X仁23/3选A. 解后反思大部分几何体可通过对正方体或长方体分割得到,所以将三视图问题放在正方体或长方体模型中研究,能够快速得到直观图,并且线面的位置关系、线段的数量关系明显,计算简便. 变式1已知正三棱锥P-A BC,点P, A , B , C都在半径为的球面上,若PA,PB,PC 两两互相垂直,则球心到截面ABC 的距离为_______ 分析由于在正三凌锥P-ABC 中,PA,PB,PC 两两互 相垂直,所以可以将该正三棱锥看作正方体的一部分,构造正方体模型.

解构造如图 3 所示的正方体. 此正方体外接于球,正方体的体对角线为球的直径EP,球心为正方体对角线的中点0,且EP丄平面ABC , EP与平 面ABC相交于点F.由于FP为正方体体对角线长度的1/3, 所以又0P为球的半径,所以0P=.故球心0到截面ABC的距离解后反思从正方体的8 个顶点之中选取不共面的点,可构造出多种几何体,这些几何体可以分享正方体的结构特征. 变式2-个四面体的所有棱长都为,四个顶点在同一球面上,则此球的表面积为 A.3 n B.4 n C.3 n D.6 n 分析将一个正方体切掉四个大的“角” ,就可得到一个正四面体. 解如图4 所示,构造一个棱长为1 的正方体 ABCD-A1B1C1D1 ,连接AB1,AD1 ,AC,CD1,CB1, B1D1,?t 四面体B1-ACD1 为符合题意的四面体,它的外接球的直径 AC1=,所以此正方体外接球的表面积S=4 n R2=3 n .选A. 解后反思正四面体的体积也可通过这种切割的方法求 得.由图形分析可知,正四面体的体积是它的外接正方体体积的}.若正四面体的棱长为a,则其体积为 变式 3 四面体A-BCD 中,共顶点A 的三条棱两两互相垂直,且其长分别为1,2, 3.若四面体A-BCD 的四个顶点同在一个球面上,则这个球的表面积为_____________ .

立体几何中的夹角、距离、向量归纳

D B A C α 一、空间中各种角包括:异面直线所成的角、直线与平面所成的角以及二面角 1、异面直线所成的角 (1)异面直线所成的角的范围是]2 ,0(π 。 (2)求两条异面直线所成的角的大小一般方法是通过平行移动直线,把异面问题转化为共面问题来解决 (3)具体步骤如下: ①利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选择在特殊的位置上; ②证明作出的角即为所求的角; ③利用三角形来求角 2、直线与平面所成的角 (1)直线与平面所成的角的范围是2 ,0[π 。 (2)求直线和平面所成的角用的是射影转化法。 (3)具体步骤如下: ①找过斜线上一点与平面垂直的直线; ②连结垂足和斜足,得出斜线在平面的射影,确定出所求的角; ③把该角置于三角形中计算。 3、二面角 (1)二面角的范围在课本中没有给出,一般是指],0(π,解题时要注意图形的位置和题目的要求。 (2)作二面角的平面角常有三种方法 图一 图二 图三 ①棱上一点双垂线法:在棱上任取一点,过这点在两个平面内分别引棱的垂线,这两条射线所成的角,就是二面角的平面角; 如图一示 ②面上一点三垂线法:自二面角的一个面上一点向另一面引垂线,再由垂足向棱作垂线得到棱上的点(即垂足),斜足与面上一点连线和斜足与垂足连线所夹的角,即为二面角的平面角; 如图二示 ③空间一点垂面法:自空间一点作与棱垂直的平面,截二面角得两条射线,这两条射线所成的角就是二面角的平面角 如图三示

1、点到直线的距离: 点P到直线a 的距离为点P到直线a 的垂线段的长,常先找或作直线a 所在平面的垂线,得垂足为A,过A作a 的垂线,垂足为B连PB,则由三垂线定理可得线段PB即为点P到直线a 的距离。在直角三角形PAB中求出PB的长即可。 例1、在△ABC 中,AB=2,BC=3,AC=4,求点A 到BC 的距离。 解:作BC AD ⊥,垂足为D ,又 AB=2,BC=3,AC=4, 8 74 322432c o s 2 222 2 2 =??-+= ?-+= ∴BC AC AB BC AC C 8 15)8 7(1sin 2= -=∴C 4 1538 15432 1sin 432 1= ???=??= ∴?C S ABC AD BC S ABC ?= ?2 1 又 2 153 415322= ?= = ∴?BC S AD ABC ∴点A 到BC 的距离为 2 15 2、点到平面的距离: 点P到平面α的距离为点P到平面α的垂线段的长.常用求法①作出点P到平面的垂线后求出垂线段的长;②转移法,如果平面α的斜线上两点A,B到斜足C的距离AB,AC的比为n m :,则点A,B到平面α的距离之比也为n m :.特别地,AB=AC时,点A,B到平面α的距离相等;③体积法 例2、如图,在长方体1111D C B A ABCD -中,,22,2,51===AA BC AB E 在AD 上,且AE=1,F 在AB 上,且AF=3,(1)求点1C 到直线EF 的距离;(2)求点C 到平面EF C 1的距离。 解:(1)连接FC,EC, 由已知FC=22, 41=∴FC ,34 82511=++= EC , 10 91= += EF 10 104 1023416102cos 1 2 12 12 1- =??-+= ?-+= ∠FC EF EC FC EF EFC B

高考典型题型训练——立体几何中求角与距离

C A1 E B1 C1 高考典型题型训练——立体几何中求角与距离 1. 四棱锥P —ABCD 的底面是边长为a 的正方形,PB ⊥面ABCD. (1)若面PAD 与面ABCD 所成的二面角为60°,求这个四棱锥的体积; (2)证明无论四棱锥的高怎样变化,面PAD 与面PCD 所成的二面角恒大于90° 2如图,直三棱柱ABC-A 1B 1C 1的底面ABC 为等腰直角三角形,∠ACB=900,AC=1,C 点到AB 1的距离为CE= 2 3 ,D 为AB 的中点. (1)求证:AB 1⊥平面CED ; (2)求异面直线AB 1与CD 之间的距离; (3)求二面角B 1—AC —B 的平面角.

3. 如图a—l—β是120°的二面角,A,B两点在棱上,AB=2,D在α内,三角形ABD是等腰直角三角形,∠DAB=90°,C在β内,?ABC是等腰直角三角形∠ACB=. 900 (I)求三棱锥D—ABC的体积; (2)求二面角D—AC—B的大小; (3)求异面直线AB、CD所成的角. 4. 在边长为a的正三角形的三个角处各剪去一个四边形.这个四边形是由两个全等的直角三角形组成的,并且这三个四边形也全等,如图①.若用剩下的部分

折成一个无盖的正三棱柱形容器,如图②.则当容器的高为多少时,可使这个容器的容积最大,并求出容积的最大值. 图①图② 5. 已知三棱锥P—ABC中,PC⊥底面ABC,AB=BC, D、F分别为AC、PC的中点,DE⊥AP于E. (1)求证:AP⊥平面BDE; (2)求证:平面BDE⊥平面BDF; (3)若AE∶EP=1∶2,求截面BEF分三棱锥 P—ABC所成两部分的体积比.

立体几何五 夹角的计算

空间向量在立体几何中的应用 一:两直线的夹角: 1.当两条直线1l 与2l 共面时,我们把两条直线交角中,范围在0,2π?? ???? 内的角叫 作两直线的夹角.当直线1l 与2l 是异面直线时,在直线1l 上任取一点A 作AB ∥2l ,我们把直线1l 和直线AB 的夹角叫作异面直线1l 与2l 的夹角. 异面直线的夹角的范围是0,2π?? ?? ? . 2. 直线夹角的向量计算方法: 已知空间两条直线a ,b ,且A ,C 是直线a 上不同的两点,B ,D 是直线b 上 不同的两点,设直线a ,b 的夹角θ由向量AC BD ,确定,满足|| cos |||| AC BD AC BD θ?= ?. 要点诠释:空间两直线所成的角可以通过这两直线的方向向量的夹角来求得,但二者不完全相等,当两方向向量的夹角是钝角时,应取其补角作为两异面直线所成的角. 例1. 如图所示,在四棱锥P ABCD -中,底面是矩形,⊥底面 . 是 的中点,已知, , ,求异面直线与 所成的角的大小. 【变式2】如图,直三棱柱111ABC A B C -中,1AA AB =2=,AC BC =,D 为1BB 的中点,若异面直线1AB 与CD 的夹角为 ,求AC 的长.

要点二:平面间的夹角 1. 平面间的夹角的定义:平面 1π与2π相交于直线l ,点R 为直线l 上任意一点,过点R ,在平面1π上作直线1l ⊥ l ,在平面2π上作直线2l ⊥l ,则1 2l l =R 。我们把直线 1l 和2l 的夹角叫做平面1π与2π的夹角. 2. 平面间夹角的向量计算方法: 设平面1π与2π的法向量分别为1n 和2n ,平面1π与2π的夹角为θ,则 12 1212cos =cos = .θ?n n n n n n , 两平面的夹角范围是02π?? ????,. 3. “平面间的夹角”不同于“二面角” (1)二面角的有关概念 半平面:一个平面内的一条直线,把这个平面分成两部分,其中的每一部分都叫半平面. 二面角:从一条直线出发的两个半平面所组成的图形叫二面角. 如图,可记作二面角--a αβ或--AB αβ. (2)区别:

立体几何专题复习空间角的求法(三)

立体几何专题复习-----空间角的求法(三) (一)异面直线所成的角: 定义:已知两条异面直线a,b,经过空间任一点0作直线a //a,b //b, a ,b■所成的角的大小与点0的选择无关,把a,b?所成的锐角(或直角)叫异面直线a,b所成的角(或夹角)?为了简便,点0通常取在异面直线的一条上? (1)平移法:即根据定义,以“运动”的观点,用“平移转化”的方法,使之成为相交直线所成的角。 (2)异面直线所成的角的范围:(0,—]. 2 (3)异面直线垂直:如果两条异面直线所成的角是直角,则叫两条异面直线垂直?两条异面直线a,b垂直,记作a_b. (4)求异面直线所成的角的方法: 法1:通过平移,在一条直线上找一点,过该点做另一直线的平行线; 法2;找出与一条直线平行且与另一条相交的直线,那么这两条相交直线所成的角即为所求+ (二)直线和平面所成的角 1.线面角的定义:平面的一条斜线和它在平面上的射影所成的锐角叫做这条斜线和这个平面所成的角 2.记作:二;3 、范围:0,】1; 当一条直线垂直于平面时,所成的角二 2 即直线与平面垂直; 2 当一条直线平行于平面或在平面内,所成角为二二0。 3.求线面角的一般步骤: (1)经过斜线上一点作面的垂线;(2)找出斜线在平面内的射影,从而找出线 I 面角;(3)解直角三角形。cos^=L,sin日 l l (三)二面角 1.二面角的平面角: (1)过二面角的棱上的一点O分别在两个半平面内作棱的两条垂线 OA,OB,则AOB叫做二面角〉-丨- 一:的平面角. (2)一个平面垂直于二面角〉-丨- 1的棱丨,且与两半平面交线分别为0A,0B,0 为垂足,则.A0B也是〉-丨- 1的平面角* 说明:(1)二面角的平面角范围是[0:,180打; (2)二面角的平面角为直角时,则称为直二面角,组成直二面角的两个平

相关文档
最新文档