全国大学生数学建模竞赛论文--范例

合集下载

大学数学建模论文范文3000字(汇总5篇)

大学数学建模论文范文3000字(汇总5篇)

大学数学建模论文范文3000字第1篇一、小学数学建模_数学建模_已经越来越被广大教师所接受和采用,所谓的_数学建模_思想就是通过创建数学模型的方式来解决问题,我们把该过程简称为_数学建模_,其实质是对数学思维的运用,方法和知识解决在实际过程中遇到的数学问题,这一模式已经成为数学教育的重要模式和基本内容。

叶其孝曾发表《数学建模教学活动与大学数学教育改革》,该书指出,数学建模的本质就是将数学中抽象的内容进行简化而成为实际问题,然后通过参数和变量之间的规律来解决数学问题,并将解得的结果进行证明和解释,因此使问题得到深化,循环解决问题的过程。

二、小学数学建模的定位1.定位于儿童的生活经验儿童是小学数学的主要教学对象,因此数学问题中研究的内容复杂程度要适中,要与儿童的生活和发展情况相结合。

_数学建模_要以儿童为出发点,在数学课堂上要多引用发生在日常生活中的案例,使儿童在数学教材上遇到的问题与现实生活中的问题相结合,从而激发学生学习的积极性,使学生通过自身的经验,积极地感受数学模型的作用。

同时,小学数学建模要遵循循序渐进的原则,既要适合学生的年龄特征,赋予适当的.挑战性;又要照顾儿童发展的差异性,尊重儿童的个性,促进每一个学生在原有的基础上得到发展。

2.定位于儿童的思维方式小学生的特点是年龄小,思维简单。

因此小学的数学建模必须与小学生的实际情况相结合,循序渐进的进行,使其与小学生的认知能力相适应。

实际情况表明,教师要想使学生能够积极主动的思考问题,提高他们将数学思维运用到实际生活中的能力,就必须把握好儿童在数学建模过程中的情感、认知和思维起点。

我们以《常见的数量关系》中关于速度、时间和路程的教学为例,有的老师启发学生与二年级所学的乘除法相结合,使乘除法这一知识点与时间、速度和路程建立了关联,从而使_数量关系_与数学原型_一乘两除_结合起来,并且使学生利用抽象与类比的思维方法完成了_数量关系_的_意义建模_,从而创建了完善的认知体系。

全国数模优秀论文

全国数模优秀论文

全国数模优秀论文摘要:数学建模竞赛是我国高校和科研机构之间最具影响力的竞赛之一。

在每年的比赛中,数模优秀论文成为了评选标杆。

本文将介绍一些全国数模优秀论文的典型案例以及其独特之处,以期为今后的数学建模竞赛提供参考和借鉴。

第一部分:背景介绍数学建模竞赛在我国的高校和科研机构之间已经有着悠久的历史。

每年,大量的参赛团队通过精心准备和协作,在赛场上展示自己的数学建模能力。

然而,仅有少部分论文能够被评为全国数模优秀论文。

这些论文具有出色的创新性、严谨的研究方法和对实际问题的深入理解。

第二部分:案例分享2.1 实时监测系统优化某团队在2019年的数学建模竞赛中提出了一种实时监测系统的优化方案。

该方案通过改进数据采集与传输方式、优化算法和提高系统的稳定性,使实时监测系统的准确性和效率得到了极大的提升。

这项优化方案在实际应用中显著降低了监测数据的延迟和误差,为实时监测领域的相关研究提供了有益的参考。

2.2 路径优化及决策支持系统另一团队的研究成果是关于路径优化及决策支持系统。

他们利用数学模型和优化算法,对城市交通拥堵问题进行了研究,并提出了一种有效的路径优化策略,能够帮助驾驶员避开拥堵路段,减少交通时间和燃料消耗。

该论文的创新之处在于结合实时交通数据、地理信息和优化算法,为城市交通领域提供了新的思路和解决方案。

2.3 物流网络规划在2020年的数学建模竞赛中,一支团队针对物流网络规划问题进行了深入研究。

他们结合了图论、运筹学和网络优化方法,提出了一种高效的物流网络规划模型,并利用实际数据进行验证。

该模型不仅考虑了用户需求和运输成本,还考虑了不同供应商之间的协同与共享,使物流网络的效率和资源利用率得到了极大的提高。

第三部分:独特之处3.1 创新性全国数模优秀论文的独特之处在于具有创新性。

这些论文通过对现有问题的重新思考,提出了新的解决方法和思路。

创新性不仅体现在算法和模型的设计上,更是在问题的选取和实际应用中的独特性。

优秀的数学建模论文范文(通用8篇)

优秀的数学建模论文范文(通用8篇)

优秀的数学建模论文范文第1篇摘要:将数学建模思想融入高等数学的教学中来,是目前大学数学教育的重要教学方式。

建模思想的有效应用,不仅显著提高了学生应用数学模式解决实际问题的能力,还在培养大学生发散思维能力和综合素质方面起到重要作用。

本文试从当前高等数学教学现状着手,分析在高等数学中融入建模思想的重要性,并从教学实践中给出相应的教学方法,以期能给同行教师们一些帮助。

关键词:数学建模;高等数学;教学研究一、引言建模思想使高等数学教育的基础与本质。

从目前情况来看,将数学建模思想融入高等教学中的趋势越来越明显。

但是在实际的教学过程中,大部分高校的数学教育仍处在传统的理论知识简单传授阶段。

其教学成果与社会实践还是有脱节的现象存在,难以让学生学以致用,感受到应用数学在现实生活中的魅力,这种教学方式需要亟待改善。

二、高等数学教学现状高等数学是现在大学数学教育中的基础课程,也是一门必修的课程。

他能为其他理工科专业的学生提供很多种解题方式与解题思路,是很多专业,如自动化工程、机械工程、计算机、电气化等必不可少的基础课程。

同时,现实生活中也有很多方面都涉及高数的运算,如,银行理财基金的使用问题、彩票的概率计算问题等,从这些方面都可以看出人们不能仅仅把高数看成是一门学科而已,它还与日常生活各个方面有重要的联系。

但现在很多学校仍以应试教育为主,采取填鸭式教学方式,加上高数的教材并没有与时俱进,将其与生活的关系融入教材内,使学生无法意识到高数的重要性以及高数在日常生活中的魅力,因此产生排斥甚至对抗的心理,只是在临考前突击而已。

因此,对高数进行教学改革是十分有必要的,而且怎么改,怎么让学生发现高数的魅力,并积极主动学习高数也是作为教师所面临的一个重大问题。

三、将数学建模思想融入高等数学的重要性第一,能够激发学生学习高数的兴趣。

建模思想实际上是使用数学语言来对生活中的实际现象进行描述的过程。

把建模思想应用到高等数学的学习中,能够让学生们在日常生活中理解数学的实际应用状况与解决日常生活问题的方便性,让学生们了解到高数并不只是一门课程,而是整个日常生活的基础。

数学建模竞赛优秀大学生论文.doc

数学建模竞赛优秀大学生论文.doc

数学建模竞赛优秀大学生论文医学论文》1数学建模的过程1.1模型准备首先要了解实际背景,寻找内在规律,形成一个比较清晰的轮廓,提出问题。

1.2模型假设在明确目的、掌握资料的基础上,抓住问题的本质,舍弃次要因素,对实际问题做出合理的简化假设。

1.3模型建立在所作的假设条件下,用适当的数学方法去刻画变量之间的关系,得出一个数学结构,即数学模型。

原则上,在能够达到预期效果的基础上,选择的数学方法应越简单越好。

1.4模型求解建模后要对模型进行分析、求解,求解会涉及图解、定理证明及解方程等不同数学方法,有时还需用计算机求数值解。

1.5模型分析、检验、应用模型的结果应当能解释已存的现象,处理方法应该是最优的决策和控制方案,所以,对模型的解需要进行分析检验。

把求得的数学结果返回到实际问题中去,检验其合理性。

如果理论结果符合实际情况,那么就可以用它来指导实践,否则需再重新提出假设、建模、求解,直到模型结果与实际相符,才能进行实际应用。

总之,数学建模是一项富有创造性的工作,不可能用一些条条框框的规则规定的十分死板,只要是能够做到全面兼顾、能抓住问题的本质、最终检验结果合理,都是一个好的数学模型。

2数学建模在生物医学中的应用2.1DNA序列分类模型DNA分子是遗传信息存储的基本单位,许多生命科学中的重大问题都依赖于对这种特殊分子的深入了解。

因此,关于DNA分子结构与功能的问题,成为二十一世纪最重大的课题之一。

DNA序列分类问题是研究DNA分子结构的基础,它常用的方法是聚类分析法。

聚类分析是使用数据建模简化数据的一种方法,它将数据分成不同的类或者簇,同一个簇中的数据有很大的同质性,而不同的簇中的数据有很大的相异性。

在对DNA序列进行分类时,需首先引入样品变量,比如说单个碱基的丰度、两碱基丰度之比等;然后计算出每条DNA序列的样品变量值,存入到向量中;最后根据相似度度量原理,计算出所有序列两两之间的Lance与Williams距离,依据距离的远近进行分类。

全国数模优秀论文参考

全国数模优秀论文参考

全国数模优秀论文参考数学建模就是通过计算得到的结果来解释实际问题,并接受实际的检验,来建立数学模型的全过程。

本篇文章整理提供了两篇全国数模优秀论文范文供大家参考学习。

全国数模优秀范文一:溜井放矿量与磨损量计算式的数模摘要:在溜井放矿过程中,井筒井壁会随着井筒内矿石移动而同时产生磨损,这种磨损缓慢、渐进式连续发生的,均匀的向四周发展扩大。

提出了连续式的积分方程,推导出溜井井筒的磨损量与放矿量之间关系的数学模型。

用德兴铜矿的相关数据进行了计算,计算结果表明,该数学模型所提供的计算数据与实际井筒磨损情况接近,可为矿山规划、溜井设计与生产管理提供可靠的依据。

关键词:溜井放矿;放矿量;磨损量;数学模型在溜井放矿过程中,井筒必然产生磨损。

若管控不严,措施不当,会引起井筒破坏,影响生产,威胁安全,严重时井筒报废。

研究溜井放矿时的井筒磨损规律,减缓井筒磨损速度,延长服务年限,增加井筒通过矿量,是一个重要的研究课题。

本文就溜井放矿时井筒磨损规律进行探讨。

1、溜井放矿时井筒磨损人们在长期观察中发现,溜井在放矿过程中,井筒的井壁磨损呈现:贮矿段井筒磨损速度较小且均匀,井壁光滑[1];矿石对井壁的磨损轻微,溜井周边面磨损是均匀的[2];贮矿段溜井磨损均匀,上下磨损速度非常接近[3];全溜井的井壁光滑、完整,磨损轻微[4]。

根据以上的观察描述,溜井放矿的井筒磨损规律是:在放矿过程中,贮矿段的溜井井筒是以其中心线为中心,向四周磨损扩大是均匀的、相等的。

2、溜井磨损的计算式2.1、多项式的计算式根据上述井筒磨损规律,按照井筒磨损速度的计算公式U=r-r0Q(其中,U为井筒磨损速度,m/万t;r为经放矿磨损后的井筒半径,m;r0为初始的井筒半径,m;Q为放出的矿石量,万t),采用多项式推导出的溜井放矿量与井筒磨损量之间的计算公式为[5]:为溜井井筒初始直径,m溜井放矿的井筒磨损量与放矿量之间的关系是一个相互渐进且连续的过程。

上述使用多项式的推导过程,采用的是渐进式,但不是连续式。

数学建模优秀论文(精选范文10篇) 2021

数学建模优秀论文(精选范文10篇) 2021

根据实际问题来建立数学模型,对数学模型来进行求解,然后根据结果去解决实际问题,这就是数学建模,本篇文章主要是向大家介绍几篇数学建模优秀论文得范文,希望对有这方面参考得学者有所帮助。

数学建模优秀论文精选范文10篇之第一篇:培养低年段学生数学建模意识得微课教学---------------------------------------------------------------------------------------------------------------------感谢使用本套资料,希望本套资料能带给您一些思维上的灵感和帮助,个人建议您可根据实际情况对内容做适当修改和调整,以符合您自己的风格,不太建议完全照抄照搬哦。

---------------------------------------------------------------------------------------------------------------------摘要:本文阐述了录制微课对培养学生建模意识得必要性和可行性,认为在小学数学教学中,鼓励低年段学生录制微课有积极意义,主张提高小学生建模语言表达能力,通过任务驱动和学生自主录制微课,逐步深入学习建模内容,培养并增强学生得建模意识。

关键词:低年段数学; 微课; 建模意识;当今社会,信息技术高速发展使教学资源高度丰富。

广大教师纷纷探讨如何利用信息技术更好地为教学服务,有效地改进教与学得方式,提高学生学习兴趣。

一、录制微课对培养学生建模意识得必要性和可行性“三年级现象”备受关注,很多人认为小学三年级是道坎,有得学生一、二年级数学成绩很好,到了三年级就断崖式下降。

如果真得出现这种现象,那么学生一、二年级数学成绩好只是表象。

一、二年级是学生初步感知数学得重要时期。

低年段数学知识是基础,对于低年段数学教学包括建模教学必须引起广大教育工作者得重视,让学生从小接受正确得教学模式,真正掌握学习数学得思想方法,避免出现短暂成绩好得现象。

大学生数学建模论文(专业推荐范文10篇)

大学生数学建模论文(专业推荐范文10篇)

大学生数学建模是一项基础性得学科竞赛,可以交流更多得经验,学习更多得知识,所以大学生数学建模很受学者们得欢迎,本篇文章就向大家介绍一些大学生数学建模论文,供给大家作为一个参考。

大学生数学建模论文专业推荐范文10篇之第一篇:数学建模对大学生综合素质影响得调查研究---------------------------------------------------------------------------------------------------------------------感谢使用本套资料,希望本套资料能带给您一些思维上的灵感和帮助,个人建议您可根据实际情况对内容做适当修改和调整,以符合您自己的风格,不太建议完全照抄照搬哦。

---------------------------------------------------------------------------------------------------------------------摘要:文章通过问卷网以调查问卷得形式和线下访谈得方法 ,对笔者所在学校参加过数学建模竞赛得同学和未参加过数学建模竞赛得同学对数学建模对自身综合素质得影响进行了调查研究。

调查表明,大部分学生都能认识到数学建模学习和竞赛对其自身综合素质得提升是有帮助得,但是大多数学生对数学建模得意义认识还不到位。

文章对调查结果进行分析,结合笔者得切身体会对地方高校数学建模课程教学及学生参加竞赛提出某些建议。

关键词:数学建模; 大学生; 综合素质; 研究;一、前言随着社会得不断进步和发展,大学生想要在激烈得人才竞争中脱颖而出,就必须要不断提高自己得综合素质,而良好得综合素质不仅应具有坚实得理论基础,扎实得专业知识,还应该具有较强得创新能力、与他人合作得能力、较强得语言表达能力、以及稳定得心理状态。

许多科学家断言未来科学技术得竞争是数学技术得竞争,这无疑对数学能力提出了更高得要求,不可否认数学建模课程教学及建模竞赛是提升大学生数学能力得有效途径。

数学建模竞赛论文模板

数学建模竞赛论文模板

地震预报方法的评价模型摘要内容:简要论述本文所要解决的问题及意义,解决问题的思路与方法、主要结果(数值结果或结论),建模的创新之处与特色等。

关键词:3-5个。

1、解决什么问题?有什么意义?(要简明)2、对每一问题,用什么方法?(要具体,并写出主要模型)3、得到什么结果?(要具体,列表)4、有什么特色与创新?(要简明)注1:全国竞赛组委会已加大对摘要在评奖中的比重。

注2:摘要通常不超过一页,且单独编页.注3:摘要要能吸引评委的眼球,能表达全文的概貌、要点、特色,要回答题目要求的全部问题。

关键词:3-5个一、问题重述问题重述部分是要保持全文的完整性,要求用自己的语言将赛题重述一遍,可以简单地有删有增地重述,注意:拟解决的问题不得省略.●甲组参赛队从A、B题中任选一题,乙组参赛队从C、D题中任选一题。

●论文(答卷)用白色A4纸,上下左右各留出2.5厘米的页边距。

●论文第一页为承诺书,具体内容和格式见本规范第二页。

●论文第二页为编号专用页,用于赛区和全国评阅前后对论文进行编号,具体内容和格式见本规范第三页。

●论文题目和摘要写在论文第三页上,从第四页开始是论文正文。

●论文从第四页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。

●论文不能有页眉,论文中不能有任何可能显示答题人身份的标志。

●论文题目用3号黑体字、一级标题用4号黑体字,并居中。

论文中其他汉字一律采用小4号黑色宋体字,行距用单倍行距。

●提请大家注意:摘要应该是一份简明扼要的详细摘要(包括关键词),在整篇论文评阅中占有重要权重,请认真书写(注意篇幅不能超过一页,且无需译成英文)。

全国评阅时将首先根据摘要和论文整体结构及概貌对论文优劣进行初步筛选。

●引用别人的成果或其他公开的资料(包括网上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。

正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写):我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):眼科病床的合理安排摘要病床是医院的重要卫生资源,其使用情况是反映医院工作效率的重要指标,合理分配床位、提高病床使用率对于充分利用医疗资源、提高医院的两个效益有着十分重要的意义。

本题针对某医院眼科病床分配中存在的不合理现象,让我们建立一个合理的病床安排模型,以解决病床的最优分配问题,从而提高对医院资源的有效利用。

针对问题一,本文制定的指标评价体系包括门诊相关指标集(病人平均等待时间、门诊等待平均队长、病人平均满意度)和病床相关指标集(出院者平均住院日数、病床平均工作日、病床平均周转率、实际病床利用率)。

为了能够全面地评价出模型的优劣,本文采用目前普遍使用的密切值法、TOPSIS法和RSR法等综合评价方法,并对应建立了三个评价模型,以得出更为科学合理的结论。

针对问题二,本文建立了以病床需求数为状态转移变量、以各类病人的病床安排数为决策变量的动态规划模型。

模型中,充分考虑了观测期内病人平均等待时间、病床平均周转率、病床利用率和潜在流失率等指标,且在制定寻优策略时,引入了病人满意度量化函数和优先级函数,使得模型更加合理。

通过Matlab对该模型求解,得出了次日病床安排方案(结果见表4)。

综合评价模型时,以该医院目前的病床安排方案和我国医院通用的病床安排方法为比较对象,借助上述三种评价方法和模型,进行了综合评价比较,从综合评价结果来看,本文的模型相对较优(评价结果见表9)。

针对问题三,本文既充分考虑了如何缩短病人平均等待时间和提高病床利用率,又兼顾了公平原则,根据病症的不同和就诊病人到院的顺序制订了优先服务策略,给出了每个病人相应的入住时间区间(见P18)。

针对问题四,由于住院部周六和周日不安排手术,对某些类型病人的病床安排产生了一定的影响,因此我们对问题二中模型的优先级函数进行了相应的调整,并利用Matlab进行了求解(结果见表10)。

为了判断手术安排时间是否改变,本文根据问题一的评价方法和模型对修改后的模型进行了综合评价,从评价结果得知,手术安排时间应该做相应的调整。

针对问题五,为了使所有病人在系统内的平均逗留时间(含等待入院及住院时间)最短,本文建立了以其为目标函数且带约束条件的非线性规划模型,并利用了Lingo软件对其进行求解,得出的结论是:分配给外伤、白内障(双眼)、白内障(单眼)、青光眼、视网膜疾病等各类型病人的床位数依次为:8、16、12、21、22,分别占总床数的比例为:10.13%、20.25%、15.19%、26.58%、27.85%。

最后,本文对所建模型的优点和缺点进行了客观的评价,认为本文研究的结果在实际医院病床安排中有一定的参考价值。

关键词:病人平均等待时间;实际病床利用率;RSR法;满意度量化函数;动态规划模型;非线性规划1. 问题重述医院就医排队是大家都非常熟悉的现象,它以这样或那样的形式出现在我们面前,例如,病人到门诊就诊、到收费处划价、到药房取药、到注射室打针、等待住院等,往往需要排队等待接受某种服务。

我们考虑某医院眼科病床的合理安排的数学建模问题。

该医院眼科门诊每天开放,住院部共有病床79张。

该医院眼科手术主要分四大类:白内障、视网膜疾病、青光眼和外伤。

附录中给出了2008年7月13日至2008年9月11日这段时间里各类病人的情况。

白内障手术较简单,而且没有急症。

目前该院是每周一、三做白内障手术,此类病人的术前准备时间只需1、2天。

做两只眼的病人比做一只眼的要多一些,大约占到60%。

如果要做双眼是周一先做一只,周三再做另一只。

外伤疾病通常属于急症,病床有空时立即安排住院,住院后第二天便会安排手术。

其他眼科疾病比较复杂,有各种不同情况,但大致住院以后2-3天内就可以接受手术,主要是术后的观察时间较长。

这类疾病手术时间可根据需要安排,一般不安排在周一、周三。

由于急症数量较少,建模时这些眼科疾病可不考虑急症。

该医院眼科手术条件比较充分,在考虑病床安排时可不考虑手术条件的限制,但考虑到手术医生的安排问题,通常情况下白内障手术与其他眼科手术(急症除外)不安排在同一天做。

当前该住院部对全体非急症病人是按照FCFS(First come,First serve)规则安排住院,但等待住院病人队列却越来越长,医院方面希望你们能通过数学建模来帮助解决该住院部的病床合理安排问题,以提高对医院资源的有效利用。

问题一:试分析确定合理的评价指标体系,用以评价该问题的病床安排模型的优劣。

问题二:试就该住院部当前的情况,建立合理的病床安排模型,以根据已知的第二天拟出院病人数来确定第二天应该安排哪些病人住院。

并对你们的模型利用问题一中的指标体系作出评价。

问题三:作为病人,自然希望尽早知道自己大约何时能住院。

能否根据当时住院病人及等待住院病人的统计情况,在病人门诊时即告知其大致入住时间区间。

问题四:若该住院部周六、周日不安排手术,请你们重新回答问题二,医院的手术时间安排是否应作出相应调整?问题五:有人从便于管理的角度提出建议,在一般情形下,医院病床安排可采取使各类病人占用病床的比例大致固定的方案,试就此方案,建立使得所有病人在系统内的平均逗留时间(含等待入院及住院时间)最短的病床比例分配模型。

2. 模型假设1)假设医院床位数不发生变化,在考虑期间没有临时床位的增加;2)假设附录所给数据真实可靠;3)假设不存在当天门诊病人当天入院的情况;4)假设每天就诊的各类病人数是随机的,不受特殊情况的影响;5)假设同一病人同一天不会同时患有两种疾病。

3. 通用符号说明4. 问题一:评价指标体系的建立、评价方法和评价模型4.1问题分析问题一要求建立合理的评价指标体系,用来评价病床安排模型的优劣。

制定评价指标体系是模型评价的基础,它由评价指标集的识别和指标体系递阶结构的建立两部分组成。

为了使模型评价指标体系全面地反映出模型的性能,尽可能地做到科学合理,且符合实际情况,所以必须认真分析问题的组成和建模目标。

从所给信息来看,本题既包括眼科门诊病人的类型、门诊时间,又包括病人入院时间、手术时间和出院时间。

从目标上看,本题要求建立病床安排模型。

因此制定指标评价体系时,除了采用医疗机构通用的规范性指标外,还应该充分考虑到病人门诊等待时间和住院时间等,从而制定科学合理的指标评价体系。

模型评价时,本文结合目前给定的病床安排数据和我国当前一般医院的实际情况,采用常用的密切值法、TOPSIS法和RSR法(秩和比法)三种综合评价法,同时进行综合比较评价,从而得出更为科学准确的结论。

4.2评价指标体系本题评价指标体系制定的难点在于医院安排受到许多因素的影响,这些因素又多具有交叉重复,为了使评价指标体系全面客观、科学合理,本文借鉴专家知识经验和医疗机构的通用指标,结合附录中所给的数据,制定了两类指标[1-5]:一类为门诊相关指标,包括门诊病人平均等待时间、门诊等待平均队长、病人平均满意度;二类为病床相关指标,包括出院者平均住院日数、病床平均工作日、病床平均周转率、实际病床利用率。

指标递阶次序按上述指标排列先后次序从低到高。

4.3评价方法本文的评价对象为问题二中建立的病床安排模型,评价的目的是针对上述评价指标,采用合理的综合评价方法对该医院眼科原有的病床安排方法和所建模型中病床的安排策略进行综合对比分析,从而评价病床安排模型的优劣,为该医院眼科病床的安排提供决策依据。

由于医院病床的安排受到许多因素的交叉作用和影响,要全面、准确、客观、简便地评价一个病床安排模型的优劣,选择合适的综合评价方法显得尤为重要。

目前医疗机构经常采用的综合评价方法有密切值法、TOPSIS 法、RSR 法(秩和比法)等。

其中密切值法作为一种综合评价方法,能够准确合理地评价医院工作质量,其计算方法简便,结果直观可靠。

TOPSIS 法具有计算简便、结构合理和应用灵活的特点。

RSR 法也是一种综合评价方法,它以非参数法为基础,对指标的选择无特殊要求,综合能力强,可显示微小变动,适用于各种对象,且简单易行,使用方便。

这些方法不仅可用于医院之间的比较,还可用于医院某部门不同病床安排模型之间的比较。

一般来讲,用上述三种方法之一即可实现对三个对象的评价,但为了使评价的结果更加全面准确,本文利用三种方法分别进行综合评价,从而得出更为科学的评价结论。

4.4综合评价模型 4.4.1模型准备1、评价对象本文选取该医院病床的安排方法、本文欲建立的病床安排模型、一般医院病床安排的统计数据作为评价比较对象。

为了便于叙述,对各评价对象进行编号,代号如下:I ——该医院原有的病床安排模型; II ——本文欲建立的病床安排模型; I I I ——一般医院的病床安排模型。

2、评价指标根据对问题一的分析,为了使评价指标体系全面客观、科学合理,本文选取了七个综合评价指标i X ,并把它们分为高优指标和低优指标:门诊病人平均等待时间1X (低优)、门诊等待平均队长2X (低优)、病人平均满意度3X (高优)、出院者平均住床日数4X (低优)、平均病床工作日5X (高优)、病床平均周转率6X (高优)、实际病床利用率7X (高优),具体数据可表示如下:1234567()()()()()()()i i i i i i i x x x x x x x =======⨯所有病人的等待时间之和门诊病人平均等待时间总病人数每天等待的队长之和门诊等待平均队长总天数每个病人的满意度之和病人平均满意度病人的总数每个病人的住床日之和住院者平均住院日数病人的总数实际占用总病床日数平均病床工作日平均开放病床数出院人数之和病床平均周转率平均开放病床数实际病床利用率病床工作日平均周转次数上式中,1,2,3i =,分别表示I 、II 、III 评价对象。

相关文档
最新文档